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Abstract: HIV-1 cell-to-cell transmission is key for an effective viral replication that evades immunity.
This highly infectious mechanism is orchestrated by different cellular targets that utilize a wide variety
of processes to efficiently transfer HIV-1 particles. Dendritic cells (DCs) are the most potent antigen
presenting cells that initiate antiviral immune responses, but are also the cells with highest capacity
to transfer HIV-1. This mechanism, known as trans-infection, relies on the capacity of DCs to capture
HIV-1 particles via lectin receptors such as the sialic acid-binding I-type lectin Siglec-1/CD169. The
discovery of the molecular interaction of Siglec-1 with sialylated lipids exposed on HIV-1 membranes
has enlightened how this receptor can bind to several enveloped viruses. The outcome of these
interactions can either mount effective immune responses, boost the productive infection of DCs and
favour innate sensing, or fuel viral transmission via trans-infection. Here we review these scenarios
focusing on HIV-1 and other enveloped viruses such as Ebola virus or SARS-CoV-2.

Keywords: DC; trans-infection; HIV-1; Ebola virus; SARS-CoV-2

1. Walking on Thin Ice: Cellular Mechanisms of HIV-1 Spread

Several viruses have the ability to hijack pre-existing mechanisms of cellular commu-
nication to facilitate direct cell-to-cell viral spread [1–3], and the human immunodeficiency
virus type 1 (HIV-1) is not an exception [1,4]. Before the definition of the precise mecha-
nisms of cell-to-cell viral transmission, early studies highlighted the increased efficiency of
HIV-1 spread by cellular contacts as compared to the diffusion-limited movement of free
viral particles, suggesting that cell-to-cell dissemination might be up to 1000 times more
efficient [5]. However, the first detailed description of a stable cellular junction between
infected and non-infected cells to facilitate viral spread, known as virological synapse (VS),
was reported for the human T cell leukaemia virus type 1 (HTLV-1), which is inefficient
at infecting T cells and requires cellular contacts for effective spread [6]. Soon after this
description, several studies showed co-clustering of HIV-1 proteins with their receptors
CD4 and CXCR4, together with a massive viral transmission at the stable interface formed
between HIV-1-infected and non-infected CD4+ T cells [7,8], thus expanding the concept
of vs. to HIV-1.

The relevance of this mechanism prompted extensive research in HIV-1 transmission
allowing for the identification of several types of synapses involving: susceptible cells to
infection, such as CD4+ T cells or macrophages [4,9]; non-susceptible cells to infection, such
as endothelial cells or dendritic cells (DCs) [10,11]; and different mechanisms of membrane
dynamics [12]. Aside from entering susceptible cells through envelope glycoprotein-
mediated fusion at the plasma membrane, HIV-1 also accumulates into target cells using
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the intracellular or endocytic route that may involve active infection or passive transport of
viruses. Several studies have shown that HIV-1 particles can be captured into intracellular
compartments in different cell types, being particularly relevant in mature DCs [13]. High
levels of viral endocytosis have also been observed during synaptic transmission of HIV-1
in both CD4+ T cells [8] and DCs after being in contact with HIV-1 infected cells [14].

In addition to these mechanisms of viral entry, other transport phenomena have
been observed in HIV spread through cell-to-cell contacts. Trogocytosis (from the ancient
Greek trogo, meaning “gnaw” or “nibble”) was described as the transfer of plasma mem-
brane fragments from a presenting cell to a lymphocyte [15] and has been documented
in T, B and natural killer cells both in vitro and in vivo [16]. Trogocytosis can be distin-
guished from other mechanisms of intercellular material exchange because it is a process
that allows the rapid transference of intact cell-surface proteins accumulated at the synapse
and can also allow for transmission of HIV-1 receptors [17] or for massive transfer of large
amounts of Gag involving entire synaptic buttons [18]. Another mechanism that may be
implicated in cell-to-cell HIV-1 transfer are nanotubes, long cytoplasmatic bridges that
facilitate communication between cells [19,20]. Another mode of HIV-1 transfer involves
the establishment of filopodial bridges between infected and target cells where viruses
move along the outer surface of the bridge toward the target cell [21]. Both filopodia and
nanotubes might allow transfer to distant cells, as observed not only for retroviruses, but
also for multiple viral species, such as herpesvirus, papillomavirus, and vaccinia virus [22].

Among cellular contacts involved in HIV-1 spread, the T cell-T cell synapse has been
deeply analysed and studied. In T cell-T cell synapses, the central supramolecular activation
cluster (cSMAC) is formed by the binding of cell surface-expressed envelope glycoprotein to
its receptor CD4 on the uninfected cell [23–25]. Here, cellular contacts between infected and
non-infected CD4+ T cells recruit the CD4 receptor and coreceptors CXCR4 and CCR5 to the
site of cell-to-cell contact in an actin-dependent manner [7], whereas envelope glycoprotein
and Gag are recruited to the interface by a microtubule-dependent mechanism [26], finally
leading to viral budding towards the contact area where the vs. is assembled. The direct
passage of virus across vs. may be particularly relevant in lymphoid tissues, where cells
are in close contact, as well as in epithelial or endothelial surfaces, where cellular synapses
may favour initial steps of viral invasion [10]. Furthermore, viral traffic across vs. may
have additional implications, as it may confer shielding to the virus physically and over
time against the inhibitory action of antibodies or antivirals [27–29].

In addition to the VS, there is another type of synapse formed between antigen
presenting cells (APCs) such as DCs and CD4+ T cells, which can even operate in the absence
of productive infection of the donor APC. During antigen presentation, the formation of
cognate DC:T cell conjugates or ‘immunological synapses’ is necessary for the activation of
T cells [30,31]. Once activated, T cells proliferate and differentiate into effector cells, which
mediate adaptive immune responses aimed to eliminate invading viruses [32]. Intriguingly,
upon HIV-1 infection, the intimate cell-to-cell contacts formed between DCs and CD4+

T cells can boost viral transmission via the formation of an ‘infectious synapse’ [33] that
allows for systemic HIV-1 dissemination. In this review we focus on how DCs, which
are the most potent APCs found in our organism [34,35], are also the ones with greater
capacity to boost HIV-1 transmission via a cell-to-cell transfer mechanism co-opted by other
enveloped viruses.

2. Breaking the Ice: DCs Orchestrate Immune Responses against HIV-1 and Other Viruses

DCs act as pivotal players in the initiation of immunity against invading viruses [36,37],
participating in both innate and adaptive immune responses. These cellular sentinels patrol
distinct mucosae and, upon infection, viral sensing triggers rapid innate immune responses
to contain viral spread. DC activation also elicits cellular migration towards secondary
lymphoid tissues, where DCs acquire a fully mature phenotype and become competent for
presenting antigens to T cells and activate them [34,35].
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DCs form an integral part of innate immunity, along with other leukocytes and tissue-
resident cells. DCs are present at the sites of pathogen invasion such as mucosal surfaces
and the skin, and are among the first cells encountering these pathogens. DCs detect molec-
ular patterns shared by broad groups of pathogens, termed pathogen-associated molecular
patterns (PAMPs), which include viral RNA or DNA genomes, bacterial lipopolysaccharide
(LPS) and yeast mannans [38,39]. DCs recognize these conserved motifs through pattern-
recognition receptors (PRRs) [40]. A well-studied family of PRRs are Toll-like receptors
(TLRs), which recognize a variety of ligands [41,42], each TLR having a particular sub-
cellular localization and ligand specificity [43]. For instance, endosomal TLR7 and TLR8
recognize single-stranded RNA, while TLR9 binds DNA, and TLR4 recognizes LPS, an
integral component of the outer membrane of gram-negative bacteria. Another group of
PRRs found on DCs are C-type lectin receptors (CLRs), which include DC-SIGN (CD209),
L-SIGN (CD299, Clec4M) and LSECtin (Clec4G), and recognize high mannose-containing
glycans [44,45]. Within the group of I-type lectin receptors, the sialic acid-binding Ig-like
lectins (Siglecs) are the best characterized members [46,47]. They are expressed by DCs,
macrophages and monocytes and recognize sialic acids found on pathogens and also in
host cells [48].

Viral recognition by DCs triggers the expression of genes involved in the secretion
of cytokines and chemokines [49,50], which create a proinflammatory environment to
eliminate or limit its replication. The main antiviral cytokines are type I interferons (IFNs),
such as IFNα and IFNβ, and plasmacytoid DCs are major producers of these cytokines [51].
DCs that patrol mucosal surfaces display an immature status and can trap viruses at the
entry sites, degrade them in endosomal lytic compartments and load pathogen-derived
peptides onto molecules of the major histocompatibility complex (MHC). When this occurs,
DCs become activated and migrate to the secondary lymphoid tissues [52], where DCs
present viral-derived antigens to naïve T lymphocytes.

There are different ways of antigen presentation by DCs to T cells, depending partially
on the origin of such antigens. Endogenous antigens are those expressed by the DC
itself (for example viral proteins synthesized in the cytoplasm upon viral infection), and
after proteasomal cleavage, the derived peptides are loaded onto MHC class I molecules
and presented to CD8+ T cells [53]. In contrast, exogenous antigens are internalized by
DCs through pinocytosis, phagocytosis and receptor-mediated endocytosis, processed
by endosomal proteases, and the derived peptides are incorporated onto MHC class II
molecules that also reach the cell surface [54]. MHC-II:peptide complexes are recognized
by CD4+ T cells, which differentiate into several effector cell subtypes. In the context of
viral infection these cells are mainly Th1 and T follicular helper cells [55], which prompt
specific antiviral responses.

Of note, DCs have the unique capacity of presenting exogenous antigens to CD8+

T cells via MHC-I, a process known as ‘cross-presentation’ [56]. This mechanism allows
antigen presentation to CD8+ T cells without productive DC infection, and is an efficient
presentation pathway for viruses such as influenza A virus (IAV) [57,58] and HIV-1 [59].
Another non-classical antigen presentation pathway is that followed by endogenous pep-
tides from measles virus [60], IAV [61] and HIV-1 [62], which are loaded onto MHC-II
molecules instead of MHC-I molecules, being therefore presented to CD4+ T cells.

Despite the fined-tuned machinery for antigen presentation displayed by DCs, DC:T
cell conjugates also represent a unique niche for viral transmission through the formation
of infectious synapses [33], a mechanism extensively studied for HIV-1, that is also hijacked
by other enveloped viruses.

3. When Immunity Is Put on Ice: DCs as Promoters of HIV-1 Cell-to-cell Transmission

Although DCs orchestrate key innate and adaptive immune antiviral responses [36,37,63],
HIV-1 and other viruses have evolved strategies to evade DC surveillance [64–66]. Indeed,
viruses exploit DC function as a way to fuel infection of target cells, colonizing distant
tissues as DCs migrate (Figure 1). Landmark studies carried out in the 90s in the lab-
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oratory of Ralph Steinman showed that the efficacy of HIV-1 infection of CD4+ T cells
was increased when DCs were added in co-culture as compared to the transmission of
cell-free viruses [67,68]. Noteworthy, DCs are non-permissive to HIV-1 infection, as they
express low levels of viral receptor and co-receptors [69], efficiently degrade incoming
viruses [70,71] and express several restriction factors such as SAMHD1 that interfere with
viral replication [72–77]. However, these pioneering studies demonstrated that DCs can
transmit a vigorous HIV-1 infection to bystander CD4+ T cells in the absence of produc-
tive viral replication on DCs, a mechanism of viral cell-to-cell transmission known as
trans-infection [44,67].
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Figure 1. HIV-1 invasion is boosted by DC-mediated viral transmission in the mucosa and the
migration to secondary lymphoid tissues. HIV-1 replication in the mucosa is facilitated by Siglec-1-
expressing DCs that can mediate viral transmission to mucosal CD4+ T cells or migrate to secondary
lymphoid tissues where the interaction with other target CD4+ T cells accelerates the settlement of sys-
temic infection. HIV-1: human immunodeficiency virus type 1; VCC: viral containing compartment;
DC: dendritic cell.

trans-infection is one of the most potent viral transmission processes identified so far,
but is only boosted when DC infection is restricted, as it is the case of HIV-1. trans-infection
was initially attributed to the activity of a DC-specific intercellular adhesion molecule-3-
grabbing non-integrin (DC-SIGN), a C-type lectin receptor expressed by DCs that recognizes
the HIV-1 envelope glycoprotein [44,78]. However, several studies suggested that other
receptors aside from DC-SIGN operated in HIV-1 transmission [79–86]. This was suspected
because DC maturation greatly increased HIV-1 trans-infection capacity while it decreased
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the expression of DC-SIGN [86], and because antibodies directed against DC-SIGN were
not able to consistently block HIV-1 transmission [82]. Such inconsistencies led to the
identification, almost a decade ago, of the sialic acid-binding immunoglobulin-like lectin 1
(Siglec-1/CD169) as the key molecule for DC-mediated HIV-1 trans-infection [87,88].

Siglec-1, also termed sialoadhesin, is an I-type lectin expressed by APCs of myeloid
origin such as DCs, macrophages and monocytes [87–91]. At a structural level, this receptor
consists of different immunoglobulin-like domains or ‘sets’, all of them extracellular. The
N-terminal V-set domain contains the ligand binding activity, while the 16 extracellular
C2-set domains project the V-set domain out of the cell glycocalyx, allowing for the inter-
action with extracellular molecules [48,92,93]. Siglec-1 has affinity for sialic acid present
in both N- and O-glycans, with a higher preference for α2-3 linkages [94]. These sugars
are found in a variety of complex glycolipid molecules such as gangliosides GM1a and
GM3, which are components of the cell and viral membranes. In particular, these gan-
gliosides are present in the membrane of HIV-1, allowing for viral binding to DCs via
Siglec-1 and the subsequent transmission to by-stander CD4+ T cells [87,88,95,96]. Siglec-1
avidity for sialylated ligands is increased upon clustering of thousands of gangliosides in
the viral membrane [48].

HIV-1 trans-infection is a dynamic process that involves viral attachment to Siglec-1,
internalization within a viral containing compartment (VCC), and viral release to the
intercellular space during the formation of DC:CD4+ T cell infectious synapses [25,97].
Following Siglec-1 recognition, HIV-1 particles concentrate on the surface of DCs [14,98] and
are internalized into non-classical and non-acidic endosomal VCC enriched in tetraspanins,
MHC-II and Siglec-1 [89,97,99]. Of note, VCCs and their content remain connected to the
extracellular milieu [14,98,99], which facilitates the transmission of trapped HIV-1 particles
upon the formation of DC:CD4+ T cell contacts. Although the physiological function of
VCCs remains unclear, it might be related to antigen dissemination and storage, as this
compartment also serves as a depot of antigen-containing extracellular vesicles that are also
captured by Siglec-1 and can prime adaptive immune responses [13,100,101]. Therefore,
HIV-1 exploits a pre-exiting Siglec-1-dependent antigen dissemination pathway to gain
access to target CD4+ T cells.

Aside from subverting antigen presentation, HIV-1 also exploits DC migratory capacity
to spread systemically. This has led to the idea that DCs can operate as ‘Trojan Horses’ and
disseminate HIV-1 from the portals of viral entry to lymphoid tissues [67,102]. HIV-1 is
mainly acquired through sexual transmission [103] and early events of retroviral infection
have been extensively studied in non-human primate models. Following early replication at
the reproductive mucosa, DCs bearing retroviruses can be found in draining lymph nodes
of different non-human primate models as soon as 24 h after vaginal challenge [104–107].
Noteworthy, viral spread does not only rely on the productive infection of DCs, but also on
the transference of captured viral particles via trans-infection [108–111]. Indeed, through
the ex vivo culture of cells derived from human cervical tissues, we demonstrated that this
mechanism relies on Siglec-1 [112]. Of note, we identified the presence of Siglec-1-enriched
VCCs in the biopsy of a viremic HIV-1+ patient [112], indicating that cervical DC-mediated
HIV-1 trans-infection might be a relevant process for viral acquisition in vivo. Thus, trans-
infection may be key to establishing HIV-1 infection in the mucosa, leading to systemic
viral dissemination thanks to the migratory capacity of DCs. Yet, this mechanism originally
described for HIV-1 is also used by many distinct viruses and can even lead to productive
infection depending on the viral tropisms.

4. When DCs Go Ice-Cold Blooded: Infection by Other Viruses via Siglec-1

Sialylated gangliosides are incorporated during the budding process of different
enveloped viruses [113–116], and can therefore interact with Siglec-1-expressing DCs and
contribute to the pathogenesis of distinct viruses aside from HIV-1. The outcome of
this early interaction may facilitate access to target cells via trans-infection, as we have
already discussed for HIV-1 and will later comment for other viruses, but also mediate DC
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productive infection if viruses overcome resistance. Viral tropism is a key determinant to
allow a productive cis-infection on DCs, or to limit susceptibility to favor dissemination
via trans-infection, what can either contribute to boost antiviral immunity or favor viral
immune evasion.

Paradoxically, in a murine model, Siglec-1 has a protective function capturing Friend
virus complex (FVC), which reduces the pathogenesis by limiting viral spreading to ery-
throblasts and by triggering an effective cytotoxic T cell response via conventional DCs [117].
During murine herpesvirus-4 (MuHV-4) infection, readily infected subcapsular sinus (SCS)
macrophages also protect target B lymphocytes by containing incoming viruses [117,118].
Similarly, vesicular stomatitis virus (VSV) infects Siglec-1 SCS macrophages to initiate a type
I IFN response that prevents virus dissemination towards the central nervous system [119].

While the productive infection of HIV-1 on macrophages and a human pre-DC precur-
sor is also facilitated by Siglec-1 [120,121], DCs are generally resistant to HIV-1 infection.
Yet, resistance to HIV-1 infection can favor trans-infection and viral transmission in the
absence of immune detection, as innate sensing and antigen presentation are delayed when
DCs are not productively infected. Indeed, as opposed to HIV-1, HIV-2 productively infects
DCs. This is because HIV-2 contains the viral accessory protein vpx that is able to counteract
the activity of the cellular restriction factor SAMHD1 [72,73], which abrogates the retro-
transcription of viral RNA into DNA and therefore precludes viral genome integration
and infection. An intriguing feature of the natural course of HIV-2 infection is the better
prognosis when compared to the evolution of HIV-1-infected individuals. This could be
associated with its greater capacity to mount an anti-HIV-2 immune response, thanks to
the productive infection of DCs. This triggers the presence of viral antigens that can be
initially detected by innate sensors [122,123] and also effectively presented to CD4+ and
CD8+ T cells.

Despite the triggering of immune signaling upon DC infection by viruses such as
HIV-2, other highly pathogenic viruses also infect myeloid cells with a worst outcome.
Ebola virus (EBOV) not only productively infects DCs, but also abrogates their function and
prevents the initiation of adaptive immune responses, facilitating uncontrolled systemic
virus replication [124]. Of note, Siglec-1 recognizes sialylated gangliosides on the surface
of EBOV membranes and modulates the binding, uptake and trafficking of Ebola viruses
towards VCCs, facilitating viral entry via the endosomal pathway [125]. This indeed has
also been described for C-type lectins such as DC-SIGN, liver/lymph node sinusoidal
endothelial C-type lectin (LSECtin) or proteins from the TIM/TAM family [126–128].

DCs are therefore susceptible to infection by some viruses, which counteract resistance
to infection, as is the case of HIV-2, or have a myeloid cell tropism, as is the case of EBOV.
Yet, DCs are also largely resistant to the infection of other viruses, as it happens with
HIV-1. This resistance does however not hamper viral transmission, as trans-infection
in the absence of productive infection is a highly infectious viral transmission pathway.
Moreover, trans-infection subverts the immune surveillance of sentinel DCs expressing
Siglec-1, which can be exploited by retroviruses and other enveloped viruses with restricted
cellular tropism [117].

5. The Snowball Effect: Other Viruses including SARS-CoV-2 Trans-Infect via Siglec-1

As previously highlighted, the broad viral binding capacity of Siglec-1 relies on
the recognition of sialylated gangliosides, which are also detected on the membranes of
other retroviruses aside from HIV-1. This allows DC-mediated trans-infection of other
viruses via Siglec-1. Indeed, the murine leukemia virus (MLV) relies on Siglec-1-mediated
capture for trans-infection of permissive lymphocytes [129,130]. MLV virions are captured
via Siglec-1 on sinus-lining macrophages that promote dissemination through synaptic
contacts to permissive T cells and, more efficiently, into B cells [129,130]. Siglec-1 viral
recognition is also extended to other families of enveloped viruses, including those from
the Paramyxoviridae family such as Nipah and Hendra viruses. These viruses are also
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recognized by Siglec-1 leading to an enhanced viral capture on activated DCs that allows
trans-infection of T cells [131].

Gangliosides are also an integral part of the viral membranes of coronaviruses [132].
Thus, it is not surprising that SARS-CoV-2 is effectively trans-infected via Siglec-1 by DCs
to ACE2-and TMPRSS2-expressingcells [132] in a mechanism of cell-to-cell transmission
that parallels that previously described for HIV-1 (Figure 2). As Siglec-1-mediated viral
transmission is not dependent on the recognition of the viral spike protein and relies
on the interaction with viral membrane gangliosides, it is equally effective for different
SARS-CoV-2 variants of concern [132]. Yet, in the case of SARS-CoV-2, further work should
address if sialylated moieties associated to the abundantly expressed viral spike glycopro-
tein could be also implicated in Siglec-1 recognition. In human biopsies from COVID-19
patients, analysis of single cell data has shown that myeloid cells including DCs contain
higher amounts of SARS-CoV-2 RNA, but lack ACE2, TMPRSS2, or classical SARS-CoV-2
entry factors [133]. These results clearly point out to the role of lectins such as Siglec-1 in
trapping viruses in vivo, as already observed in non-human primate models [132].
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Figure 2. DCs mediate trans-infection of HIV-1 and SARS-CoV-2 to target cells via Siglec-1. Viral mem-
brane ganglioside recognition of both HIV-1 and SARS-CoV-2 particles triggers VCC formation and
effective transfer to susceptible target cells that become productively infected via viral glycoprotein
interaction with CD4+ receptor and coreceptors in the case of HIV-1 and ACE2 and TMPRSS2 in the
case of SARS-CoV-2. HIV-1: human immunodeficiency virus type 1; SARS-CoV-2: severe acute respi-
ratory syndrome coronavirus 2; VCC: viral containing compartment; DC: dendritic cell; CXCR4: CXC
chemokine receptor type 4; CCR5: CC chemokine receptor 5; ACE2: angiotensin-converting enzyme 2;
TMPRSS2: transmembrane protease serine 2.

Other respiratory enveloped viruses such as the human respiratory syncytial virus
(RSV), the human metapneumovirus (HMPV) and other coronaviruses are also strong
candidates to interact with Siglec-1 via ganglioside recognition. Indeed, this has been
already described for the porcine reproductive and respiratory syndrome virus (PRRSV),
which interacts with Siglec-1 on the surface of alveolar macrophages [134]. Yet, other
respiratory viruses such as influenza lack gangliosides on their envelopes due to the
activity of viral neuraminidases [135], and will therefore escape to Siglec-1 recognition.
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It is important, however, to highlight that Siglec-1 viral recognition does not always
lead to effective trans-infection, as both HIV-1 or SARS-CoV-2 are poorly transmitted by
Siglec-1-expressing macrophages [89,132]. These APCs quickly degrade incoming viruses
and are therefore less capable of transferring infectivity to bystander cells [89]. Thus, the
outcome of Siglec-1 viral interaction depends on the cellular context and the activation
status of the cells expressing this lectin. Dissecting the dual role of this lectin, which can
favor viral dissemination but also contain infection while triggering antiviral immunity
will be key to implement future treatments.

Despite the largely acknowledged relevance of cell-to-cell viral spread mechanisms
in vivo, the exact contribution of Siglec-1-mediated trans-infection and other virus-mediated
synapses is not yet defined. The ability of viral proteins to generate virological synapses
and their cellular tropism are probably among the main factors that regulate both mech-
anisms. However, at least for HIV-1, current knowledge highlights relevant differences
between them. vs. formed between infected and uninfected T cells are associated with cell
death events involving apoptosis, autophagy or pyroptosis [136–139] but not necessarily
with active viral replication [140]. In contrast, Siglec-1 trans-infection takes advantage of
activation signals provided by DCs to CD4+ T cells, which promote active infection of
target cells as suggested by the preferential infection of HIV-1-specific CD4+ T cells [141].
Further studies using relevant animal models will bring light into the relative contribution
of Siglec-1-dependent and independent mechanisms of cell-to-cell transmission of HIV-1
and other viruses.

6. Melting the Ice: Concluding Remarks

Since the pioneering studies of the laboratory of Ralph Steinman deciphered the
ability of DCs to trans-infect HIV-1 in the absence of productive infection [67], many
reports have underscored the molecular pathways behind this mechanism, illustrating
not only which lectin receptors are implicated in this viral transmission process, but also
which restriction factors limit viral infectivity and contribute to trans-infection. Despite
the molecular insights gained in recent years, which have allowed to demonstrate the role
of trans-infection as a robust mechanism for viral dissemination within tissues in vivo,
we still lack efficacious antiviral therapies to counteract this process. Recent neutralizing
antibodies developed against SARS-CoV-2 interfere with this lectin-dependent pathway
that enhances ACE2-dependent coronavirus infection [142]. Antibodies targeting Siglec-1
have also demonstrated efficacy at blocking MLV capture at the lymph node and spleen in
mice [130]. In vitro, Siglec-1 blockage by antibodies has also disrupted HIV-1 and EBOV
binding and uptake into activated DCs [87,88,125]. Given the growing number of enveloped
viruses aside from HIV-1 that are able to subvert DCs for efficient dissemination, future
work should implement strategies to block this pathway and contain the pathogenesis of
known enveloped viruses and those to come.
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