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Background: Scapula kinematics is recognized to be a crucial variable in shoulder dysfunction. Never-
theless, quantitative scapula tracking and measurement are not part of the current clinical evaluation.
The main concern is measurement accuracy.
Methods: To assess the accuracy of the wearable sensor technology Showmotion a cadaver experiment
was designed, allowing a direct comparison between sensors directly pinned to the scapula and su-
perficial sensors. A measurement protocol was adopted to evaluate errors in measurement, mimicking
the suggested in vivo evaluation. Sensors were simultaneously placed above (supraspinal) and below
(infraspinal) the scapular spine to determine if one placement resulted in fewer errors compared to the
other.
Results: Mean and standard deviations of the supraspinal sensor root mean square error (RMSE) in
flexion-extension movements resulted in 3.59� ± 2.36�, 4.73� ± 2.98�, and 6.26� ± 3.62� for upward-
downward rotation (up-down), anterior-posterior tilt and internal-external (intra-extra) rotation,
respectively, while 2.16� ± 1.21�, 2.20� ± 1.02�, and 4.46� ± 2.16� for the infraspinal sensor. In abduction-
adduction movements, mean and standard deviations of the supraspinal sensor RMSE resulted in 4.26� ±
2.98�, 5.68� ± 4.22�, and 7.04� ± 4.36� for up-down rotation, anterior-posterior tilt, and intra-extra
rotation, respectively, while 2.38� ± 1.63�, 2.47� ± 1.77�, and 4.92� ± 3.14� for the infraspinal sensor.
The same behavior was confirmed in shrug movements, where 4.35� ± 3.24�, 4.63� ± 3.09�, and 5.34� ±
6.67� are mean and standard deviations of the supraspinal sensor RMSE for up-down rotation, anterior-
posterior tilt, and intra-extra rotation, respectively, while 2.76� ± 1.87�, 2.83� ± 2.53�, and 4.68� ± 5.22�

for the infraspinal sensor.
Conclusion: This method of quantitative assessment of scapular motion is shown to have good accuracy
and low error between the sensor measurements and actual bone movement in multiple planes of
scapular motion, both over the entire range of motion and in its individual segment intervals. The
decreased amount of error with the infraspinal sensor placement suggests that placement is ideal for
clinical quantitative assessment of scapular motion.

© 2023 The Authors. Published by Elsevier Inc. on behalf of American Shoulder & Elbow Surgeons. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
The importance of scapular resting position and dynamic mo-
tion in shoulder function has been established through observa-
tional assessments, electronic 3-dimensional motion analysis, and
bone pin studies.19,20,25,28,29,34-37,41,42,55,56 The roles of the scapula
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are based on optimizing scapular kinematics as part of scap-
ulohumeral rhythm.22,37,38 Altered kinematics are termed scapular
dyskinesis, which in isolation is not an injury or a musculoskeletal
diagnosis but rather a physical impairment,21 with the potential to
affect arm motion, muscular strength, and joint arthrokinematics.
The alteration of motion reduces the efficiency of shoulder function
in several ways, including changes in 3-dimensional glenohumeral
angulation, acromioclavicular joint strain, subacromial space di-
mensions, maximal muscle activation, and optimal arm position
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and motion.21 The exact incidence of clinically significant scapular
dyskinesis is not known. Most studies point to a high incidence of
dyskinesis in populations that require repetitive overhead motions
in their activities.5 Sports including baseball, tennis, swimming,
volleyball, cricket, kayaking, and surfing have demonstrated an
incidence of 30%-70% dyskinesis.13,16,30,39,40,49,54 Studies in symp-
tomatic patients reveal an incidence between 64%-100% depending
on the anatomic diagnosis.14,21,27,28,35,43,59 The literature has also
shown that an increased risk of shoulder pain and injury exists
when scapular dyskinesis is present.15,21 Expert opinion has rec-
ommended identification of the presence or absence of dyskinesis
as part of the initial evaluation of shoulder injury, and periodic
reevaluation of the kinematics as part of the progression of optimal
treatment.21 These recommendations can be best achieved by ac-
curate methods of measurement of scapular position and motion.

Efforts have been made to better clinically categorize, classify,
and identify the altered motions in the dyskinetic scapula to better
guide treatment. To date, the most commonly utilized method of
identifying scapular dyskinesis has been qualitative analysis by the
clinician using specific observational criteria to determine if the
scapula is moving in an abnormal pattern.21 Scapular dyskinesis
can be clinically observed and characterized by asymmetrical
medial or inferior medial border prominence, early scapular
elevation or shrugging upon arm elevation, and/or rapid downward
rotation upon arm lowering.22 The dyskinetic motion may involve
alteration of one or several of the scapular motions and translations
to produce the observed clinical findings. Although clinicians can
becomewell trained at distinguishing between clinically significant
and nonsignificant scapular dyskinesis,42,55 the inherent flaw with
observational analysis is the natural subjectivity of the assessment
method.

Multiple methods of quantitative analysis have been proposed
but have not been found to be clinically useful due to lack of
consistent reliability,44,45 limitation of data to one scapular kine-
matic component,17,52,53,60 large error of the data in relation to
actual bone motion,18,32,58 or inability to use the assessment
method(s) in a clinical setting due to inconveniences of cost and
set-up (bone pins, electromagnetic tracking, and computed to-
mography scans).28,29,38,41 As a result, even with the known limi-
tations of qualitative analyses,9,10 the visual observational method
is still the most frequently selected by clinicians to identify the
presence or absence of dyskinesis in the evaluation of the patient26

and to make generalized assessments of change during the treat-
ment process.

Precise and effective quantitative assessment of scapular
motion in the clinical setting that encompasses all scapular ki-
nematic components of 3-dimensional motion by a system of
wearable sensors would be of great importance to assist initial
evaluation and longitudinal follow-up in treatment. Ease of use,
the speed in the acquisition, the usability on a routine base, and
the avoidance of any specific expertise related to motion analysis
techniques are advantages of wearable technology. A known
limitation of a wearable sensor system is the mobility of the
skin over the underlying bone, resulting in large errors between
the measured motions and the actual bone motions.31 An
effective motion capture system would incorporate technology to
minimize the amount of error and therefore produce a high
degree of accuracy in the measurements. The Showmotion (NCS
lab srl, Capri, Italy) motion capture device was developed with
this goal in mind, and its standard capabilities have been
reported.7,8,46-48

The careful selection of anatomical landmarks is a key factor in
reducing skin artifacts. If the latter is not contained, the measure-
ment error can significantly increase, leading to additional diffi-
culties in data interpretation. Reducing the data dispersion means
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increasing the resolution of the methods that can be translated into
increasing the capability to discriminate deviation from normal
motion (ie, alterations of the kinematics). The purpose of this study
was to determine the accuracy of the data obtained by the device
sensors and to validate the optimal positioning of the scapular
sensor in relation to the gold standard of actual bone movement.
The research hypotheses were: (1) scapular motion obtained by the
Showmotion device would be comparable to measurements
obtained by bone pins; and (2) all scapular rotations can be
assessed via the Showmotion device.

Materials and methods

Procedures

Five cadaveric shoulders were included in the data acquisi-
tion process: three left and two right shoulders. The cadaveric
specimens were total body samples. Because this study aimed to
simulate the use of the sensors in the clinical setting, the
sensors were applied on intact external skin without altering the
anatomy of the specimens via dissection with the aim of
reproducing real in vivo use. Each shoulder was monitored using
3 sensors mounted on and taped to the skin according to the
Inail Shoulder and Elbow Outpatient protocol (ISEO)8 and one
gold standard sensor pinned to the scapula (Fig. 1). Two sensors
were mounted on the middle third of the scapular spine, just
above (supraspinal) and under (infraspinal) the bone (a- and
b-sensors in Fig. 1, respectively), and one skin mounted sensor
was attached to the acromion (c-sensor in Fig. 1). The supra-
spinal and infraspinal sensor positions allowed for the assess-
ment of the accuracy of the data since preliminary pilot studies
reported variability in accuracy between the two sensor posi-
tions. None of the sensors touched each other.

The gold standard sensor (NCS Lab, Carpi, Italy) was glued to a
specially designed 3-dimensional printed plastic platform (New-
cast Services srl, Carpi, Italy) that was connected with the scapula
through the use of threaded Kirschner wires (K-wires) (using a
minimum of 3 different 1.8 mm wires). The sensor orientation on
the plastic platform was to follow the scapular spine. The plastic
platform (Fig. 2) was designed for this experiment to seat the
additional reference sensor rigidly connected with the scapula and
to minimize two undesired effects: limiting data transmission is-
sues and limiting magnetometer interference.

The K-wires were inserted and positioned to engage the scap-
ular body without impinging the chest. Several plastic stoppers
were used to lock the platform position during the experiment and
avoid undesired small oscillations or deviations from the original
positioning. A stability check was done for the platform before
performing the movement trials, and additional K-wires were
added to fix it securely on the scapula as necessary.

Kinematic recordings

Kinematic data were acquired using Showmotion (NCS Lab,
Carpi, Italy), inwhich the ISEO protocol was implemented for upper
limb analysis.8 The interoprator and intraoperator variability of the
Showmotion systemwas previously described in an earlier study.51

In the current study, 3 body segments were analyzed using
magneto-inertial measurement units (MIMU): thorax, humerus,
and scapula. Each MIMU provides both raw data (triaxial acceler-
ometer, triaxial magnetometer, and triaxial gyroscope) and the
orientation matrix, which represents the orientation of the local
system of reference (SoR) with respect to a fixed SoR. The software
collects the data in real time from all the sensors by means of a
synchronized protocol and provides the 3-dimensional kinematics



Figure 1 Sensors positioning on the experiments. Sensors are marked with letters (a) (supraspinal sensor), (b) (infraspinal sensor) and (c) (acromion sensor). The figure shows the
different positioning of the sensors on the scapula the platform that allocate the sensor rigidly screwed to the bone.

Figure 2 Plastic 3D printed platform to allocate the pinned sensor and system of
fixation to the scapula.
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of the joints of interest (scapulothoracic and humerothoracic
joints), allowing visualization of the scapular motion as part of
scapulohumeral rhythm. All data were acquired in real-time with a
sampling frequency of 50 Hz. The thoracic sensor was positioned
over the manubrium of the sternum, while the scapular sensors
were considered as the main reference for the central one-third of
the ridge of the shoulder blade. These sensors were attached to the
study participants using double-sided tape (3M Health Care, St
Paul, MN, USA). The sensors were aligned to the scapular spine
direction. The acromion sensors were placed with the longer side
parallel to the lateral aspect of the underlying bone. The humerus
sensors were instead attached with dedicated Velcro straps in the
mid-third of the diaphysis in the range 40�-60� in respect to the
frontal plane (posteriorly). The anatomical landmarks have been
identified by palpation (following recommendations from the
International Society of Biomechanics) and marked with a pen
before positioning the sensors. The humerothoracic and scap-
ulothoracic angles were then obtained, sample-by-sample, by
decomposing the relative orientation of the anatomical system
of reference with the following sequences of Euler angles:
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scapulothoracic protraction-retraction (intra-extra), up-down
rotation (up-down), and anterior-posterior tilting with the
sequence YZ’ X’’; humerothoracic flexion-extension and abduction-
adduction with the sequence XZ’ Y’’ for almost sagittal tasks;
humerothoracic abduction-adduction and flexion-extension with
the sequence ZX’ Y’’ for almost frontal tasks.

The above described protocol has been published and used in
the clinical settings by several authors.7,8,12,51 The sensors used in
this experiment were manufactured by NCS lab (Carpi, Italy).

Synchronization between all the sensors during the measure-
ment phase is essential to allow the direct comparison of data
collected by the different units, and it is assured by the protocol
embedded into NCS lab MIMU sensors and into the Showmotion
technology.

For each plane of shoulder elevation, scapular motion is
described by three scapula-thoracic rotations (ie, upward-
downward rotation, internal-external rotation, and posterior-
anterior tilting) as a function of humeral flexion or humeral
abduction (Fig. 3, A-C respectively). Once the sensors were posi-
tioned, the protocol for data acquisition of each cadaveric shoulder
included both a static calibration phase and different passive
movements: arm abduction-adduction, flexion-extension, and
shoulder shrug movements.

During the static calibration phase lasting 5 seconds (according
to the Showmotion protocol), the anatomical coordinate systems
were created by the software acquiring static reference measure-
ments with the cadaveric shoulder positioned vertically and the
humerus positioned alongside the body. Passive shoulder move-
ments were performed, keeping the cadaveric trunk erect and
moving the arms in order to reach the maximum elevation in for-
ward flexion, scapular plane abduction, and scapular shrugging.
Each movement (abduction-adduction, flexion-extension, and
shrug) was repeated seven times consecutively. The entire pro-
cedurewas repeated three times for each cadaveric shoulder. At the
end of each session, all sensors were removed and repositioned by a
different operator with a complete restart of the measuring pro-
cedure. This approach made it possible to take into account the
interoperator differences in sensor positioning and how the
different sensor positioning affects the results. The intraoperator
reliability of sensor placement has been presented in a previously
published study.51



Figure 3 Main rotational degrees of freedom of the scapular blade.
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Statistical analysis

Scapular motion and scapulohumeral rhythm data were calcu-
lated via the ISEO protocol utilizing the skin sensors, while gold
standard data were obtained from the pinned scapula sensor rep-
resenting scapula bone movement. This allowed for an analysis of
the accuracy of the measurements. For each acquisition performed
and for each scapula degrees of freedom, the errors were evaluated
in terms of root mean square error (RMSE) with respect to the gold
standard.51 Mean and standard deviations of RMSE on all the ac-
quisitions were consequently used to describe the overall error of
the specific sensor positioning in the specific scapula degrees of
freedom. This error also already includes the interoperator differ-
ences in sensors positioning. No dedicated analysis related to the
specific evaluation of test and retest reliability was performed
because that was already included in a previously published
study.51

Finally, the motions in flexion, abduction, and shrug were
segmented into discrete intervals as a function of humerus eleva-
tion: from 0�-30�, from 30�-60�, from 60�-90�, and over 90�, and
RMSE was also calculated in each of these intervals of humeral
elevation. Mean and standard deviation of RMSE of each interval on
all the acquisitions were consequently evaluated to describe the
error variability as a function of the humeral elevation. From this
procedure, it is possible to compare how the error may change over
the entire range of arm elevation and how the different sensor
positionings perform in the various planes of motion. Statistical
analysis was performed in order to evaluate if the differences found
in the different sensor positionings are relevant, both considering
the RMSE over the full humerus range of motion and considering
the RMSE in the discrete intervals previously described. The normal
distribution of the data was checked using the Shapiro-Wilk test. A
multiple comparison test was used for pairwise post hoc analyses.
Statistical analysis was performed using the Matlab (Mathworks,
Natick, MA, USA) software package (version R2017b), and a P-value
<.05 was considered statistically significant. The minimum sample
size was calculated to achieve a power of 80% for ROM data analysis
to detect a difference in means of 2.5� (assuming that the common
standard deviation is 2, using a two group t-test with a two-sided
significance level of a ¼ 0.05). The adequate number of tests to
respect the above-reported conditions was 12. The current study
performed 15 tests, which was 20% more than the minimum
required.

Results

A numerical quantification of the errors of the Showmotion
system, expressed as mean and standard deviation of RMSE with
respect to the gold standard curves, is reported in Figure 4.
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The information collected by the sensor positioned over the
acromion showed a higher error and data dispersion. Because of
this result, the diagrams are limited to the over and under acromion
positioning. Mean and standard deviation of the RMSE over the
entire range of flexion, abduction, and shrug movements, and the
different scapula sensor positions are reported in Figures 5-7. The
magnitude of the error varied between 2.5� and 6.0� in the infra-
spinal sensor placement (under). The error was minimal in
upward-downward rotation and anterior-posterior tilt for all three
movements and was at its maximum in the internal rotation plane.

Mean and standard deviations of supraspinal sensor RMSE in
flexion-extension movements resulted in 6.26� ± 3.62�, 3.59� ±
2.36�, and 4.73� ± 2.98� for internal-external rotation, upward-
downward rotation, and anterior-posterior tilt, respectively, while
4.46� ± 2.16�, 2.16� ± 1.21�, and 2.20� ± 1.02� occurred for the
infraspinal sensor with respect to the same movements (Fig. 4).

In abduction-adduction movements, mean and standard de-
viations of the supraspinal sensor RMSE resulted in 7.04� ± 4.36�,
4.26� ± 2.98�, and 5.68� ± 4.22� for intra-extra rotation, up-down
rotation, and anterior-posterior tilt, respectively, while 4.92� ±
3.14�, 2.38� ± 1.63�, and 2.47� ± 1.77� for the infraspinal sensor
(Fig. 4). Similar results occurred for the shrug movements, where
5.34� ± 6.67�, 4.35� ± 3.24�, and 4.63� ± 3.09� are mean and stan-
dard deviations of supraspinal sensor RMSE for intra-extra rotation,
up-down rotation, and anterior-posterior tilt, respectively, while
4.68� ± 5.22�, 2.76� ± 1.87�, and 2.83� ± 2.53� occurred for the
infraspinal sensor (Fig. 4).

Figure 4 reports the P-values for each degree of freedom ob-
tained from statistical analysis comparing RMSEs of over scapula
sensor with RMSEs of under scapula sensors. The difference be-
tween upper and lower spine positioning was always statistically
significant, with the exception of anterior-posterior (intra-extra)
angles in shrug movements.

The variability, in terms of mean and standard deviation, of the
RMSE as a function of humerus elevation is presented in Figures 5-7
for flexion-extension, abduction-adduction and shrug exercises,
respectively, which show an increase of the error with the increase
of humerus elevation for both positionings and in all the move-
ments. Together with the variability of the performed motions, a
statistical analysis of the observed differences between the supra-
and infraspinal sensors is reported in Figures 5-7 subdivided into
discrete intervals of humeral elevation. Only the analysis of shrug
movements was not possible due to the lack of sufficient data in the
higher elevation ranges.

Discussion

The data support acceptance of the two research hypotheses.
Scapular motionmeasured by the Showmotion devicewas accurate



Figure 4 Mean and standard deviation of the RMSE of each acquisition for flexion-
extension, abduction-adduction, and shrug movements. *Supraspinal sensor place-
ment (over) had significantly more error compared to the infraspinal sensor placement
(under). The acromion sensor provides the highest error in all DOFs. In the table, the
P values are reported for each couple of placements. DOF, degrees of freedom; RMSE,
root mean square error.

Figure 5 Mean and standard deviation of the RMSE over the entire range of flexion
along the three scapular degrees of freedom. *Supraspinal sensor placement (over) had
significantly more error compared to the infraspinal sensor placement (under). RMSE,
root mean square error.
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within 2.5�-6� in multiple planes of scapular motion in flexion,
abduction, and shrug to the data measured by the bone pins, with
the measurements especially accurate in arm motion up to 90� of
elevation. Different positions of sensor placement, however, did not
demonstrate statistically different data. Infraspinal positioning did
consistently demonstrate smaller RMSE errors. Results indicate that
few significant differences were found in the 0�-30� range of hu-
meral elevation. More specifically, the RMSE in upward-downward
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rotations estimated from lower sensor positioning was consistently
inferior with respect to the upper sensor (supraspinal) positioning
in all the movements performed, while the RMSE in anterior-
posterior tilt rotations was significantly different only in abduc-
tion and in shrug movements, and no differences were found in
intra-extra rotation. These findings demonstrate that clinically ac-
curate quantitative evaluation of scapular motion may be obtained
in multiple planes of scapular motion with the Showmotion device
and confirm the suitability for use in clinical settings, as previously
demonstrated in other papers.7,8,12,51 Information derived from this
method of assessment could potentially add meaningful contribu-
tions regarding scapular motions to the currently available
methods of clinical assessment of scapular roles in shoulder in-
juries, including rotator cuff injuries,43,50 labral injuries,3,4 as well
as instability and acromioclavicular joint injuries.6,14,23,61 The
contribution to clinical use is related to the additional information
the methodology brings. Beyond the numerical data associated



Figure 6 Mean and standard deviation of the RMSE over the entire range of abduction. *Supraspinal sensor placement (over) had significantly more error compared to the
infraspinal sensor placement (under). RMSE, root mean square error.
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Figure 7 Mean and standard deviation of the RMSE over the entire range of shrug.
*Supraspinal sensor placement (over) had significantly more error compared to the
infraspinal sensor placement (under). Where not shown, the p value is not available.
RMSE, root mean square error.
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with the specific degrees of freedom of the scapula (usually the
evaluation is limited to the maximum reached value), we can
describe dynamic information that continually tracks the scapula
movement from resting position to the peak of movement and vice
versa. This dynamic information is of fundamental importance to
assess because it can potentially provide clinicians insights into
muscle activation sequencing throughout a range of motion and
therefore, provides useful information for treatment decision-
making. In other words, the ability to quantify scapular motion
allows for more accurate identification of alterations, thus leading
to more specified treatment programming and individualized care.
The contributions of this study are important since the multiple
methods of assessment of alterations in scapular motion that have
been described have several limitations. Qualitative observational
methods, utilizing specific criteria to create a “yes” (presence of
dyskinesis) or “no” (absence of dyskinesis) framework, have been
advocated,21 can be helpful on initial evaluation but are imprecise
regarding delineation of which specific scapular planes of motion
may be altered,42,55,56 and are too general to allow meaningful re-
evaluation during treatment or to accurately document change in
determining outcomes. Quantitative methods have been hampered
by their inability to be used in clinical settings, by being limited to
2-dimensional or single-plane motion assessments,33 or by poor
reliability of the sensor data due to excessive skin motion. Errors
from skin sensors have been reported to be as high as 10�.32,46

Despite these shortcomings, multiple attempts to objectively
track the scapula have been made, evidencing the need to expand
the current clinical capacity. Inertial and magnetic measurements
have been proposed to assess tridimensional alterations, but their
applicability has not been completely established.33 The combined
use of cameras and electromyography signals have also been used
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to evaluate the scapular kinematics and the related muscle activity,
but this was performed in nonclinical cohorts.1,2 Some early at-
tempts to implement sensors used in the clinical setting showed to
be promising,51 while others highlighted the use of computed to-
mography in mapping dyskinetic movements of the scapula.59

Electromagnetic trackers have been used to evaluate scapular ki-
nematics associated with a rotator cuff tear.43 In all instances, the
methodologies employed to assess scapular motion did not
compare their results to the gold standard of bone pin insertion. As
such, we attempted tomeasure the error of wireless sensors against
the gold standard of bone pin insertion as a foundational step prior
to carrying out human-based studies.

In this study, the accuracy in tracking scapula motion using the
Showmotion system was assessed by comparing the kinematic
output generated by Showmotion scapular sensors, placed over the
skin, with the kinematic output generated by the data collected by a
gold standard sensor that was pinned to the scapula. This com-
parison could identify errors in scapula kinematic measurement
introduced by soft tissue artifacts. The RMSE errors over the entire
range of scapular motion as the arm moved from 0� to maximum
elevation in flexion, abduction, and shrug were 2.5�-5�. These error
values are smaller than previously reported17,36,46 and represent a
small percentage of the total possible scapular motion capability in
each of the planes of motion.

RMSE was also evaluated in each segment interval of humerus
elevation in flexion, abduction, and shrug, and they show an in-
crease in error with the increase in humerus elevation, for both
scapular spine positionings and in all the planes of motion. In the
first 60� of humerus elevation in all planes, the errors in scapula
kinematic estimation are very small, and the error values at 90�

were greater but still small percentages of the entire motion
capability in each plane. This is felt to be due to the precision of the
anatomical coordinates resulting from the static calibration pro-
cedure performed at the beginning of each session of acquisition
and the relatively smaller amount of bone movement under the
skin and smaller muscle activations in the early phases of scapular
motion. The high level of accuracy at lower levels of arm elevation is
felt to be important in clinical practice because most current
opinion suggests that stabilization of the scapula in the early
phases of scapulohumeral rhythm is key to coordinated function
throughout all the scapulohumeral rhythm motion, so precise
evaluation of this key time in scapulohumeral rhythm is of high
clinical importance.11,24,57

The data regarding the positioning of the sensor on the scapular
spine showed no statistically significant difference in the RMSE
error in the overall motions, and the pattern of the change in the
amount of the error within each segment interval during increased
arm elevation in each plane is consistent across each of the mo-
tions. However, over the entire range of motion and in the indi-
vidual segment interval of each motion, the infraspinal position
consistently demonstrated the lowest error, especially at the higher
levels of arm elevation. For these reasons, infraspinal positioning is
considered the position of choice.

Limitations

There are several limitations to this study. The first is the
number of cadaver specimens. The “N” of 5 may lead to insuffi-
cient data to report all statistically significant differences.
Although an increase in the number of cadaveric specimens would
possibly increase the external validity by accounting for the basal
metabolic index variability, the sample did allow the investigation
to satisfy the power analysis requirements. Second, the arm mo-
tions were all passive, with no muscle activation to motor or guide
the scapular motions. This may introduce some bias into the
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individual scapular planes of motion or movement of the skin.
Finally, the motions were all in single planar patterns along
specific axes, so while the data reflects motion in multiple planes,
not all possible 3-dimensional motions were represented in the
data collection.

Conclusions

This method of quantitative assessment of scapular motion is
shown to have good accuracy and a low error between the sensor
measurements and actual bone movement in multiple planes of
scapular motion, both over the entire range of motion and in its
individual segment intervals. The least amount of error in scapular
motion achieved when using this specific technology will occur
when positioning the scapular-based sensors below the scapular
spine, abutting the bony landmark from the inferior aspect.
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