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Abstract

Background: A major stumbling block for researchers developing experimental models of
mechanotransduction is the control of experimental variables, in particular the transmission of the
mechanical forces at the cellular level. A previous evaluation of state of the art commercial
perfusion chambers showed that flow regimes, applied to impart a defined mechanical stimulus to
cells, are poorly controlled and that data from studies in which different chambers are utilized can
not be compared, even if the target stress regimes are comparable.

Methods: This study provides a novel chamber design to provide both physiologically-based flow
regimes, improvements in control of experimental variables, as well as ease of use compared to
commercial chambers. This novel design achieves controlled stresses through five gasket designs
and both single- and dual-flow regimes.

Results: The imparted shear stress within the gasket geometry is well controlled. Fifty percent of
the entire area of the 10 X 21 mm universal gasket (Gasket |, designed to impart constant
magnitude shear stresses in the center of the chamber where outcome measures are taken), is
exposed to target stresses. In the 8 mm diameter circular area at the center of the chamber (where
outcome measures are made), over 92% of the area is exposed to the target stress (£ 2.5%). In
addition, other gasket geometries provide specific gradients of stress that vary with distance from
the chamber inlet. Bench-top testing of the novel chamber prototype shows improvements, in the
ease of use as well as in performance, compared to the other commercial chambers. The design of
the chamber eliminates flow deviations due to leakage and bubbles and allows actual flow profiles
to better conform with those predicted in computational models.

Conclusion: The novel flow chamber design provides predictable and well defined mechanical
forces at the surface of a cell monolayer, showing improvement over previously tested commercial
chambers. The predictability of the imparted stress improves both experiment repeatability as well
as the accuracy of inter-study comparisons. Carefully controlling the stresses on cells is critical in
effectively mimicking in vivo situations. Overall, the improved perfusion flow chamber provides the
needed resolution, standardization and in vitro model analogous to in vivo conditions to make the
step towards greater use in research and the opportunity to enter the diagnostic and therapeutic
market.
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Background

Elucidation of cellular mechanisms of mechanotransduc-
tion is a critical step in uncovering physiologic mecha-
nisms of tissue generation and repair. The biochemical
and biophysical environment of virtually every cell in the
body is affected by transduction of mechanical forces and
chemical signals. Numerous research studies have used
flow chambers to study the transduction of mechanical
forces to cells, including those of the vascular endothe-
lium [1], bone [2-7], renal proximal tubules [8], and other
tissues [9-13]. However, a major stumbling block for
researchers developing experimental models of mechan-
otransduction is the control of experimental variables, in
particular the transmission of the mechanical forces at the
cellular level.

The current state of the art comprises the parallel-plate
flow chamber, where fluid perfuses across the specimen
between critically spaced plates that make up the top and
bottom of the chamber [2,3,14,15]. Variance in this basic
design stems from the plate spacing as well as gasket
geometry that constrains the fluid from inlet to outlet and
controls the expansion and contraction of flow. Numer-
ous redesigns and optimizations have been implemented
in recent years to tailor parallel-plate chambers for specific
cell experiments [16-19]. However, a recent study has
shown that several commercial chambers do not perform
well at imparting a known and controlled shear stress to a
cell monolayer. This lack in performance complicates and
compromises the validity of data comparison between
studies [20].

Furthermore, it is not clear to how well perfusion cham-
bers emulate aspects of physiologic flow regimes includ-
ing spatiotemporal control of stress magnitudes and
gradients. The common parallel-plate design found in
many chambers incorporates a one-sided shear stress
imparted to the cell monolayer. In typical experimental
use, cells are seeded on a coverslip that is placed on the
chamber floor; fluid moves over the apical surface of the
cells, subjecting them to shear stress via fluid drag. Physi-
ologically, cells may experience a more complex or multi-
dimensional stress. For example, in the context of
developing tissues (during development or engineering of
tissues), cells experience multidimensional stresses [21-
24]. In fully developed tissues, cells lining flow channels
that themselves dilate and contract are exposed predomi-
nately to flow along the apical surface and strain on the
basal surface. In contrast, cells within interstitial tissues
may experience flow on apical and basal surfaces. Thus,
cellular responses to flow regimes comprised of apical
stimulation alone or basal stimulation alone may not
accurately represent the physiologic environment within
tissues. This provides impetus for the development of an
experimental platform with the utility to "tune" experi-
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mentally applied stress regimes to better emulate the
physiologic environment of a given cell type.

The purpose of this study was to identify and address
weaknesses in current chamber designs by designing and
testing a novel flow chamber that provides a more physi-
ologic fluid environment for the study of cells in vitro.
Hence, we created a modular perfusion flow chamber for
transmission of fluid shear stress on either or both the api-
cal and basal surfaces of cells. In addition, we developed
and tested novel gasket geometries to improve upon cur-
rent chamber designs and to elicit controlled stress
regimes that mimic specific aspects of physiological flow
on cells.

Methods

In general, parallel plate flow chambers are designed to
provide controlled flow of fluid across a cellular monol-
ayer. Furthermore, flow profiles are generally controlled
by the mass flow rate into the chamber and by the geom-
etry of the channel through which the fluid flows. The
geometry of the channel is typically defined by the surface
of the substrate on which cells are seeded, bounded above
by a compliant gasket and to the sides by the walls of the
chamber and/or the gasket. We expand on this general
design principle to create a chamber, and in effect a fluid
geometry (via gasket design), that provides a physiologic
and controlled mechanical stimulus to cells. We set two
goals for the novel chamber, namely to construct a device
that provides either single- or dual-flow regimes across the
monolayer and to ensure controlled spatiotemporal dis-
tribution of shear stress on the cells through definition of
appropriate gasket geometries. In addition, we placed par-
ticular attention on design for ease of use, as tests with
commercial chambers had previously raised concerns
with regard to leakage, bubble production, and lack of
reproducibility of experimental conditions [20].

Chamber design

To use the dual flow modality, cells seeded within and/or
on one or both sides of a permeable membrane, or cells
seeded in a scaffold disc, or cells in situ (in a slice of tis-
sue), are interposed between the two gaskets and flow is
applied. For example, cells are seeded on a porous mem-
brane (0.2 micron Anapore membrane, Nunc Interna-
tional, Denmark) that is interposed between two gaskets.
The cell monolayer is interposed between two identical
fluid layers, each with an independent inlet and outlet
(Figure 1). The dual configuration provides relatively even
flow across both surfaces of the monolayer, where the thin
membrane (thickness is chosen by the user) between the
regimes suspends the specimen in a physiologic manner.
However, as mentioned previously, the membrane can be
interchanged with a variety of other substrates, depending
on the specific needs of the study, e.g. a layer in which cells
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Cells on porous
membrane insert

Figure |

Dual-flow profile schematic. The general schematic for
apical and basal flow used in the design of the novel flow
chamber, where the cell monolayer is housed between the
two fluid reservoirs on either a porous membrane or solid
substrate.

are seeded or embedded can be placed between the gas-
kets or a slice of tissue with cells in situ can also be inter-
posed between the gaskets. Furthermore, single-flow can
also be achieved with a solid coverslip in place of the
membrane.

Following the general flow design, the chamber itself con-
sists of an upper and lower reservoir that is dictated by
compressing rubber gaskets between two polycarbonate
cases (Figure 2). The solid cases are fabricated such that
the inlet and outlet channels are encased within the poly-
carbonate, in which the flow descends from the inlet
channel, into the upper reservoir (formed by the geometry
of the rubber gasket), and then exits via the polycarbonate
outlet channel. Aside from the inlet/outlet channels, the
flow regime, from the perspective of the cellular monol-
ayer, is completely governed by the rubber gasket geome-
try as well as a glass coverslip above the monolayer which
enables microscope visualization into the chamber. It
should be noted that single-flow is achieved by the replac-
ing the membrane with a glass coverslip, or by using a
glass plug which completely "fills" the lower reservoir,
decreasing the overall thickness of the chamber for ease of
use when single-flow is desired.

Gasket design

Five different gasket geometries are created (Figure 3) to
provide a variety of controlled stress fields to the cell mon-
olayer, depending on the desired application,. Each gasket
is compatible with the general parallel plate configura-
tion; geometric differences control the specific spatial var-
iation of shear stress imparted to the cell. In gasket I the
geometry is designed to provide a constant shear stress to
the majority of the cellular monolayer. In this case, the
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geometry contains zones of widening and tapering geom-
etry that surround the parallel walls near the chamber
midplane. In gasket II and III, the gasket geometry con-
tains symmetric and asymmetric wide flow zones, whose
walls taper immediately and linearly as they approach the
outlet. Thus, the geometry provides specific gradients of
stress to a monolayer. Finally, the last two gasket designs
are designed to provide planar jet like flow, where zones
with geometries that widen and taper abruptly define two
different flow geometry lengths. Again, the geometry is
created such that specific gradients of stress would be
imparted to the cells, as opposed to the constant stress
environment of gasket I.

Computational fluid dynamics

Computational models are created for each design to pre-
dict the fluid environment and imparted shear stress in
each gasket. The inlet and outlet geometries do not change
within the polycarbonate sections of the chamber. Hence,
it is assumed that the entering and exiting flow are identi-
cal for each case and only the geometry within the rubber
gaskets is modelled. Furthermore, the chamber design can
accommodate a variety of gasket thicknesses. For the com-
putational fluid dynamics (CFD) study, all gaskets are cre-
ated with a thickness of 250 pum for comparison with
previous predictions for commercial chambers [20]. In
addition, gasket I is modelled for both 250 pm and 500
pum thicknesses to demonstrate flow variation attributable
to gasket thickness. Gasket I is also modelled for single-
and dual-flow scenarios, where the membrane is given a
porosity of 50% and permeability of 10-1¢ m2. All other
gaskets are modelled in single-flow mode. Inter-geometric
variations in dual flow mode can be inferred from gasket
I simulation results. In all cases, the cells are not included
in the gasket fluid geometry; the effect of flow on cells has
been reported previously [20]. For each flow model (gas-
kets I-V), the number of volumes were 89760, 117130,
117130, 179380, and 189180, respectively. The mesh
density was increased until grid independence was
achieved for each gasket (average finite volume = 10-13
m3).

The fluid environment is simulated for each model using
a computational solver (CFD-ACE software package,
Huntsville, AL) that calculates the velocity, pressure, and
shear stress distribution. Flow is induced via a pressure
gradient for each model to achieve a target wall shear
stress at the exposed surface of the cell (at the interface
with the flow channel's lower surface) is 1 dyn/cm? [23-
25,7]. Also, no-slip conditions are enforced on the walls
of each gasket. For all models, the continuity equation (1)
and Navier-Stokes equations (2) are solved using a 2nd
order upwind-discretization scheme in three dimensions,
and the wall shear stress is calculated from the wall strain
rate (3).
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(13 thumb screws, (2) upper case, (3) inlet/outlet,
4y glass coverslip/substrate, (5) gasket, (6) glass
plug, (7) lower case

Figure 2

Novel flow chamber design. Flow geometry is dictated by the rubber gasket(s), where two polycarbonate cases are used to
deliver flow as well as to compress and seal the fluid space. Nylatron thumb screws are used to tighten the chamber, and cir-

cular glass coverslips are used to seal flow and provide microscope visualization. Flow is administered through inlet and outlet
tubing connected to the barbed inlets/outlets, placed orthogonal to the chamber surface for ease of use with the microscope

stage. Left: fabricated flow chamber in use for endothelial studies. A mouse embryonic stem cell line E14Tg2a is pre-differenti-
ated on cover-slips coated with 0.1% gelatin, and then exposed to shear stress of 1.5 — 5 dyn/cm?2 to induce endothelial differ-
entiation. Typical experiments are carried out for 1-2 days (courtesy of Professor Horst von Recum). Right: technical drawings

of design in dual and single mode.

V-u=0 (1)
p(u-Vu) =-Vp + uVau (2)
Tyant = HY 3)

where u is the velocity vector, p is the fluid density, p is the
pressure, y is the fluid viscosity, 7 is shear stress, and ¥ is
the strain rate. In all cases, the fluid is assumed to be sim-
ilar to water and given a viscosity = 0.001 kg/ms and den-

sity = 1000 kg/m3. Flow is simulated for steady conditions
with a local convergence criterion of 0.0001, where con-
servation of mass is used to validate each solution. It is
important to note that, while simulations are calculated to
achieve a target shear stress of 1 dyn/cm?, the results of
these simulations can be scaled up for flow regimes in the
laminar range (appropriate assumptions for flow regimes
up to and beyond 20 dyn/cm?, i.e. regimes commonly
applied for mechanotransduction research).
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Figure 3

Gasket designs. (I) Designed to impart constant shear stress to the cell monolayer; (Il) symmetric expansion, linear contrac-
tion zone for specific stress gradient; (lll) asymmetric expansion, linear contraction zone for specific stress gradient; (IV) planar
jet geometry for specific stress gradient; (V) shortened planar jet geometry.

Chamber testing

In order to evaluate the chamber design in a realistic lab-
oratory setting, bench-top testing is performed to deter-
mine ease of use and performance. During testing, both
strengths and weaknesses are noted in comparison to the
previously evaluated commercial chambers [20]. Ease of
use testing consists of assembling the chamber for fluid/
cell experiments, with emphasis placed on the choice of
the materials and geometry for each design and how the
chambers interface with standard laboratory equipment
used in flow/cell studies (i.e. tubing, microscope, syringe
pump, etc.). However, performance testing consists of
actual flow through the assembled chamber, where prob-
lems associated with leaking, bubbling, visualization, etc.
are the main areas of interest. In both modes, the novel
design is compared with existing designs, providing a
basis to evaluate improvement over the current state-of-
the-art.

Results

Gasket |

For the first gasket geometry, the maximum velocity and
wall shear stress are calculated for three cases: (a) 250 um
gasket thickness, (b) 500 pm thickness, and (c) dual-flow
250 um thickness (each layer). The maximum velocity in
each case is highest near the inlet/outlet, with a nearly
constant magnitude throughout the rest of the geometry
(displayed within the plane) (Figure 4). As the thickness
or gasket height is doubled from 250 to 500 pm, the max-
imum velocity (at the center height) increases proportion-
ally. However, when the 250 um gasket is used in dual-
flow mode, the maximum velocity increases by 20% as
compared to the single-flow setup (Figure 5). In all cases
the calculated velocity is designed to impart a target wall
shear stress of 1 dyn/cm? on the chamber bottom (at the
cell monolayer location). Here, the shear stress distribu-
tions are similar for the three cases (Figure 6). As seen in
midplane and centerline plots, the shear stress achieves

the target magnitude near the middle-third of the geome-
try. The imparted stress is nearly constant over the mid-
plane, where over 95% (9.5 mm) achieves the target stress
within 5% (Figure 7). In addition, nearly 45% (8.2 mm)
of the centerline (inlet to outlet distance) attains the target
stress within 5%, thus 47% of the total gasket area experi-
ences a shear stress within 5% of the target value (Figure
8). If an 8 mm region of interest is considered, centered on
the chamber floor, in order to compare to commercial
chambers, it is found that 60% of the region is within 1%
of the target stress, over 92% is within 2.5% of the target,
and the entire region is within 10% of the target stress. As
the allowable range of shear stress (within the target)
increases, the area of the gasket that feels this imparted
stress increases as well.

Velocity Velocity
m/s . m/s
0.015 0.030
0.014 0.025
0.01

0.01 0.020
0.00 0015
0.00 0.010
0.004

0.002 0.005
0.00 0.000

A B

Figure 4

Gasket | velocity in single-flow. Maximum axial velocity
plane, center of gasket height, for gasket thickness of (A) 250
pum and (B) 500 um.
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Figure 5

Gasket | velocity in dual-flow. (A) Maximum axial velocity
plane in dual-flow setup, upper gasket; (B) Velocity profiles
for upper and lower gaskets in dual-flow, at intersection of
centerline and midplane.

Gasket Il

For the second gasket, the instantaneous widening and
subsequent gradual tapering of the walls yield a unique
velocity and stress distribution (Figure 9). As flow enters
the wide zone, the velocity dissipates immediately, similar
to planar jet flow. However, due to the subsequent taper-
ing walls of the gasket, the maximum velocity is almost
sustained along the centerline (within the expansion
zone), approaching zero in the outer regions of the gasket.
This distribution corresponds to defined gradients of
shear stress imparted to the chamber floor, again for a tar-
get of 1 dyn/cm2. The shear stress reaches a maximum
near the entrance to the widening and tapering zones.
Between the zones of fluid "expansion" and "contraction"
(corresponding to widening and tapering of the flow
channel walls), varying gradients of stress are found
within the gasket. Focusing on three different locations
within the gasket, initially a sharp gradient in stress is
found between the gasket center and walls (Figure 10).

_ Shear Stress

0\ dyn/em?
1.10
1.08
1.06
1.04
1.02
1.00
0.98
0.96
0.94
0.92
0.90

Figure 6

Gasket | shear stress. Wall shear stress on bottom wall of
chamber, at location of cell monolayer, for (A) single-flow
250 um gasket, (B) single-flow 500 um gasket, and (C) dual-
flow 250 um gasket.
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Figure 7

Gasket | shear stress plots. Wall shear stress plotted
along chamber midplane (top) and centerline (bottom) for
the three cases.

However, moving away from the entrance to the "fluid
expansion" zone, the shear stress decreases at the center
and increases near the walls, essentially smoothing the
stress distribution. Thus, the shear stress and local varia-
tion in stress are dependent on their location along the
centerline.

Gasket 11l

Gasket III is the asymmetric version of the previous gasket
design, where only one half of the fluid expansion zone
(where the channel area widens) is created. Here, the
velocity again appears similar to planar jet flow due to the
widening geometry. However due to the asymmetry and
the no-slip condition, the velocity decreases sharply as it
approaches the "centerline" wall (Figure 11). Again, this
distribution causes defined gradients in shear stress on the
chamber floor, where the maximum stress is found 0.75
mm from the "centerline" wall (Figure 12). The largest
gradient is stress is found near the entrance to the widen-
ing channel, where the imparted stress is smoothed with
increasing distance from the entrance. However in all
cases, a sharp gradient of shear stress is found near the
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Gasket | area and shear stress range. The percentage of
area that is within the specified range of the target shear
stress for (a) entire gasket area and (b) an 8 mm region of
interest.

"centerline" wall, providing unique and defined stress dis-
tributions within the gasket.

Gasket IV

The fourth gasket imposes the most abrupt widening and
tapering geometry, where the resulting fluid regime paral-
lels planar jet flow (Figure 13). The maximum velocity is
found in the smaller sections of the gasket, near the inlet
and outlet, where the magnitude dissipates within the
widened flow area. Here, flow near the walls of the wid-
ened area has a velocity of nearly zero along the entire

Velocity Shear Stress
m/s dyn/cm?
0.025

0.020

0.015
0.010
0.005

0.000

o |-
Figure 9

Gasket Il velocity and shear stress. Maximum axial
velocity plane (left), and wall shear stress on chamber bot-
tom (right) with three sampling locations for shear stress
profile.
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Figure 10

Gasket Il shear stress plots. Wall shear stress for the
three sampling locations, plotted from the chamber center-
line to the wall. High gradients of shear stress are found near
the entrance to the expansion zone (line ), where the
imparted stress smooths with increasing distance from the
entrance (near midplane).

length of gasket. This profile causes an increased shear
stress near the gasket centerline, with values decreasing
with increasing distance from the center. At a location
near the entrance to the widened area, the shear stress is
nearly constant near the centerline, where a dramatic gra-
dient is found roughly 1 mm from the center (Figure 14).

Velocity .

m/s Shear Stress

dyn/cm?
1.0
0.9
0.8
0.7
0.6

0.020

0.018
0.016
0.014
0.012

0.010 05
0.008 04
0.006 03

f\ 0.004 0.2
’ 0.002 0.1
@ 0.000 0.0

Figure 11

Gasket Il velocity and shear stress. Maximum axial
velocity plane (left), and wall shear stress on chamber bot-
tom (right) with three sampling locations for shear stress
profile.
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Figure 12

Gasket Ill shear stress plots. Wall shear stress for the
three sampling locations, plotted from the chamber center-
line to the wall. Similar to Gasket Il, however sharp gradients
of stress are found near the centerline or left wall of the gas-
ket.

As flow moves away from the entrance, the gradient in
wall shear stress (from the center to walls) is decreased
and a nearly constant stress is found at the midplane. This
gasket geometry induces the largest change in stress
between the widening entrance and the midplane, again
providing unique and defined stress distributions.

Gasket V

Finally, Gasket V is a variation of the planar jet geometry
of the previous gasket, where the length of the widened
area is decreased. As a result, the required velocity
decreases from that of Gasket IV in the inlet/outlet chan-

Shear Stress
dyn/cm?

Velocity
m/s

0.030 2.0
1.8
0.025 16
0.020 14
1.2
0.015 1.0
0.8
0.010 06
0.4

0.005
0.2
0.000 | 0.0

Figure 13

Gasket IV velocity and shear stress. Maximum axial
velocity plane (left), and wall shear stress on chamber bot-
tom (right) with three sampling locations for shear stress
profile.
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Figure 14

Gasket IV shear stress plots. Wall shear stress for the
three sampling locations, plotted from the chamber center-
line to the wall. High gradients of shear stress are found near
the entrance to the expansion zone (line |), with nearly con-
stant profiles near the midplane (lines 2, 3).

nels and near the transition zones to the widened channel
area (Figure 15). The subsequent tapering of the area
causes the change in shear stress between the entrance to
the widened geometry and the midplane to be less dra-
matic than the previous geometry (Figure 16). The maxi-
mum shear stress at line 1 is again found at the centerline,
however for a 33% reduction in the length of the
expanded area (from Gasket IV), the maximum shear
stress at this location is reduced by 29%. In addition, the
centerline shear stress at lines 2 and 3 are similar to Gasket
IV, however the decrease in stress near the gasket walls is
greater for this geometry. Thus, the gradient of shear stress

Velocity g

m/s

Shear Stress
dyn/em?

14
1.2
1.0
0.8
0.6

0.025

0.02

0.015

0.010

0.4
0.2
0.0

0.005

Figure 15

Gasket V velocity and shear stress. Maximum axial
velocity plane (left), and wall shear stress on chamber bot-
tom (right) with three sampling locations for shear stress
profile.
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Figure 16

Gasket V shear stress plots. The magnitudes in stress are
decreased from Gasket IV, where the midplane stress (line 3)
is more variable as well.

at the midplane is greater from the centerline to the wall
due to tapering of the flow area.

Chamber testing

Bench-top testing of the novel chamber prototype shows
improvements, in the ease of use as well as in perform-
ance, compared to other commercial chambers (Table 1).
The chamber is relatively easy to assemble, using a gasket
compression design with four thumb screws, where sili-
con grease is used to ensure proper sealing and eliminate

http://www.biomedical-engineering-online.com/content/6/1/46

leakage found in other chambers. However, in conditions
where sterility is crucial, assembly is more difficult, and
the novel prototype requires comparable assembly times
to the commercial chambers. In performance testing, the
novel prototype reduces leakage and bubbling, up to flow
rate of 60 mL/min which is a rate 10 times higher than
that at which the commercial chambers show leakage and
bubbling. Overall, the strength of the novel prototype
chamber lies in its compression design, which eliminates
flow deviations (leakage, bubbles) and allows actual flow
profiles to better conform with those predicted computa-
tionally.

Discussion

Cell perfusion chambers provide a tool to probe and elu-
cidate changes in cell physiology in response to mechani-
cal and biochemical stimuli and can be implemented for
cytotoxicity and pharmacokinetic studies as well. A given
chamber's utility hinges upon its capacity to provide a
controlled and known mechanical force that can also
emulate aspects of the cell's physiologic environment.
Numerous chamber designs have been implemented in a
variety of in vitro studies; however a recent analysis of
chamber performance has shown that several commercial
chambers deliver spatially varying and unexpected shear
stress distributions [20]. Current commercial chambers
have been found to impart mechanical stresses that differ
from the target magnitude. Even when the desired stress
level is achieved, the area in which the target stress is
achieved varies in size and location (between chambers)
and is difficult to predict. These shortcomings not only
increase the difficulty in making comparisons across stud-

Table I: Bench-top testing. Bench-top testing comparison for ease of use and performance between commercial and proposed

chamber designs.

Chamber type

Oligene FCS

Bioptechs FCS2

Warner RC-30

ProFlow™

Ease of Use

Performance

Major Strength

Major Weakness

* Straightforward assembly

* Retaining ring difficult to
position

* Persistent leakage

« Difficult to envision in use
in sterile environment

* Good for optical imaging

= Convenient connection to
syringe pump

* Issues with sealing

* 0.25-2 ml/min flow without
leaking

* Leakage at higher flow rates
* Leakage between inlet and
chamber body

Straightforward assembly

Leakage, no heating
apparatus included

* Difficult assembly

* Stage adaptor fit both Zeiss
and Leica scopes with ease

* Many parts, "over
engineered"

* Tubing easily connected to
syringe pump

* Bottom coverslip extremely
fragile

* Major leakage unless extra
spacer used

* Needed much silicon grease
to insure sealing, but then no
leakage up to >36 ml/min

* Numerous & persistent air
bubbles and pockets formed
inside chamber

Stage adaptor increases
flexibility

Leakage, bubbles

« Difficult assembly

* Polymer gasket difficult to
manage

¢ Chamber fits together well
« Difficult to seal chamber —
leakage

* Tubing poorly sized and too
stiff

* Major leakage problems

* Max flow ~1—12 ml/min

* No sealing possible without
grease, contrary to
instruction manual

« Significant bubble formation

Chamber fits together well

Leakage, bubbles

* Relatively easy to assemble
* Vacuum grease needed to
seal well but grease is never
in contact with cells

* Ease of use diminishes
under sterile conditions

* No leakage problems once
cover slip sizing issue
addressed

* Flow rates up to 60 ml/min

No leakage, No bubbles

No heating apparatus
included

Page 9 of 12

(page number not for citation purposes)



BioMedical Engineering OnLine 2007, 6:46

ies (e.g. between studies using different chambers, and/or
between different experiments using the same chamber)
but also provide the potential for misinterpretation of cel-
lular response to flow. Thus, there is a need to improve the
current state-of-the-art flow chambers and provide a
device to that can accurately impart mechanical stress for
in vitro cell studies.

The dual-flow chamber design presented in this study
addresses many of the issues associated with previous
chambers, and is able to impart a variety of controlled
mechanical environments through five gasket designs as
well as both single- and dual-flow regimes. Using Gasket
I, a constant shear stress is applied over the majority of the
chamber area, where 95% of the chamber midplane and
50% of the entire chamber is within 5% of the target stress
for both the single and dual-flow setup. Furthermore, if a
region of interest is considered where cellular response is
likely to be observed, an 8 mm circle at the chamber
center, over 92% of the region is within 2.5% of the target
stress. This gasket design shows an improvement in both
achieving the target stress as well as yielding a predictable
location of the desired stimulus. Furthermore, the other
gasket designs in this study have specific geometry that
allow for precise gradients of shear stress to be applied to
a cell monolayer, where the desired gradient can be
achieved by observing cellular response at the appropriate
distance from the gasket inlet. These stress distributions
provide for application of "tunable" mechanical regimes
appropriate for modelling a variety of physiological sce-
narios. In all cases, the imparted shear stress distributions
are accurate for both modes of flow (single and dual) as
well as standard gasket thicknesses of 250 pm and 500
pm.

As this study provides a design and analysis of a cell per-
fusion chamber using computational methods, certain
limitations can occur. All three-dimensional flow simula-
tions have been checked for accuracy using variations of
known analytical solutions, where possible. In addition,
results are shown for a target shear stress of 1 dyn/cm?,
however as the flow regimes are laminar, the predictions
shear stresses are scalable to incorporate a wide range of
commonly used stress magnitudes (0.1 - 20 dyn/cm?).

An understanding of the interplay between cells and their
enviroment is critical to elucidating mechanisms of phys-
iological and pathophysiological processes. All life on
Earth originated from water and fluids comprise at least
part of the environment of every cell in every organism on
Earth. Throughout a human's lifespan, every cell in the
body is bathed in fluid and is hence subjected to devia-
toric shear stresses resulting from fluid flows over apical
and/or basal surfaces due to pressure gradients arising
from breathing, pumping of the heart, and weight bearing

http://www.biomedical-engineering-online.com/content/6/1/46

in a gravitational environment. These flows may be super-
imposed with dilatational tensile and/or compressive
stresses that occur when a tissue is deformed during
breathing, pumping of the heart, and weight bearing. The
relative contribution of dilational and deviatoric stresses
varies widely depending on the location of the cell within
a given tissue, the location of the tissue within the organ-
ism, as well as the time in the lifecycle of the organism.
For instance, prior to development of the heart in utero
(which precedes the development of the circulatory sys-
tem and the musculoskeletal system), forces associated
with cell proliferation, epithelial-mesenchymal transfor-
mations, patterning and morphogenesis dominate the
mechanical environment of a cell [21,22].

The novel prototype presented here lends itself particu-
larly for cell mechanotransduction studies [26,27] as well
as cytotoxicity and pharmacokinetic studies when used to
deliver spatiotemporally controlled concentration gradi-
ents of molecules to cells seeded within. A new uniaxial
strain module is in development, to deliver strains basally
in combination with apical flows or concomitant to basal
flows. Temporal variation in mechanical stresses and/or
molecular concentrations is achieved through specifica-
tion of flow velocities and/or temporally varying flows
and/or strains driven by function generators in combina-
tion with programmable syringe pumps. Combined with
the gaskets, which provide flow regimes designed to
mimic flows typical in lymph vessels, brain, proximal
tubules, and blood vessels [28-36], the delivery of spatio-
temporally defined molecular gradients to the apical and
basal surfaces of cells and tissue slices is an application
that is currently being reduced to practice.

Conclusion

The perfusion flow chamber technology described in this
manuscript overcomes several major drawbacks that are
currently associated with existing perfusion flow cham-
bers on the market. Firstly, the flow regime in the novel
chamber mimics physiologic conditions, which facilitates
the development and translation of cell experiments to
clinically relevant scenarios. The new design allows for
both the quantification and measured control of the shear
stress on cells, as opposed to existing designs, which have
unknown or variable shear stress. Carefully controlling
the stresses on cells is critical in effectively mimicking in
vivo situations. Overall, the improved perfusion flow
chamber provides the needed resolution, standardization
and in vitro model analogous to in vivo conditions to make
the step towards greater use in research and the opportu-
nity to enter the diagnostic and therapeutic market.
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