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Abstract

Background: B-cell chronic lymphocytic leukemia (CLL) is a common type of adult leukemia. It often follows an
indolent course and is preceded by monoclonal B-cell lymphocytosis, an asymptomatic condition, however it is not
known what causes subjects with this condition to progress to CLL. Hence the discovery of prediagnostic markers
has the potential to improve the identification of subjects likely to develop CLL and may also provide insights into
the pathogenesis of the disease of potential clinical relevance.

Results: We employed peripheral blood buffy coats of 347 apparently healthy subjects, of whom 28 were
diagnosed with CLL 2.0–15.7 years after enrollment, to derive for the first time genome-wide DNA methylation, as
well as gene and miRNA expression, profiles associated with the risk of future disease. After adjustment for white
blood cell composition, we identified 722 differentially methylated CpG sites and 15 differentially expressed genes
(Bonferroni-corrected p < 0.05) as well as 2 miRNAs (FDR < 0.05) which were associated with the risk of future CLL.
The majority of these signals have also been observed in clinical CLL, suggesting the presence in prediagnostic
blood of CLL-like cells. Future CLL cases who, at enrollment, had a relatively low B-cell fraction (<10%), and were
therefore less likely to have been suffering from undiagnosed CLL or a precursor condition, showed profiles
involving smaller numbers of the same differential signals with intensities, after adjusting for B-cell content,
generally smaller than those observed in the full set of cases. A similar picture was obtained when the differential
profiles of cases with time-to-diagnosis above the overall median period of 7.4 years were compared with those
with shorted time-to-disease. Differentially methylated genes of major functional significance include numerous
genes that encode for transcription factors, especially members of the homeobox family, while differentially
expressed genes include, among others, multiple genes related to WNT signaling as well as the miRNAs miR-150-5p
and miR-155-5p.
(Continued on next page)

* Correspondence: skyrt@eie.gr
†Equal contributors
1Institute of Biology, Medicinal Chemistry and Biotechnology, National
Hellenic Research Foundation, 48, Vassileos Constantinou Avenue, 11635
Athens, Greece
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Georgiadis et al. BMC Genomics  (2017) 18:728 
DOI 10.1186/s12864-017-4117-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-4117-4&domain=pdf
mailto:skyrt@eie.gr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusions: Our findings demonstrate the presence in prediagnostic blood of future CLL patients, more than
10 years before diagnosis, of CLL-like cells which evolve as preclinical disease progresses, and point to early
molecular alterations with a pathogenetic potential.
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Background
B-cell chronic lymphocytic leukemia (CLL) is the most
common adult leukemia in the Western world, accounting
for roughly 30% of all leukemias and with incidence rates in
different countries ranging between <1 and 5.5 cases per
100,000 [1]. It is characterized by the presence of large
numbers (>5000/μl) of clonal, mature B-cells with increased
proliferation and prolonged survival and expressing a num-
ber of specific surface markers, including CD5, CD19 and
CD23. The disease often follows an indolent course, with
many patients having no symptoms at diagnosis or sur-
viving for decades after diagnosis without any need for
treatment [2]. Nevertheless, despite great progress in
therapeutic protocols, CLL remains an incurable disease
whose etiology is largely unknown, and some patients have
recurrent relapses requiring several lines of treatment [3].
It is well established that CLL is preceded by monoclo-

nal B-cell lymphocytosis (MBL) [4], an asymptomatic
hematological condition characterized by the presence of
small clones of B-cells, whose prevalence in the general
population ranges from less than 1% to nearly 20%,
depending on the sensitivity of the detection methods
employed [5]. Τwo types of the MBL are recognized, a)
low-count MBL (<500 clonal B-cells /μl), which appears
to remain stable with near-zero risk of progression to
CLL, and b) high-count (or clinical) MBL (500–5000
clonal B-cells /μl), which is believed to be a precursor of
CLL with 1–2% of its carriers progressing to clinically
defined CLL per year. Currently it is not known what
causes some MBL carriers to progress to CLL, and the
number of clonal B-cells appears to constitute the best
marker predictive of such progression [6, 7]. A number of
biomarkers which are present in CLL cells and have prog-
nostic value in relation to the clinical progression or
therapeutic response of the disease (e.g. levels of expres-
sion of CD38 or ZAP-70, deletions in chromosomes 11,
13 and 17, trisomy 12, mutations in the IgG hypervariable
region, mutations in CLL driver genes such as NOTCH1,
BIRC3 or SF3B1) are also observed in MBL and help to
identify MBL patients who are more likely to ultimately
develop advanced CLL affecting survival [8, 9]. However
such markers of prognosis appear to be of limited value
with regard to the prediction of the risk of MBL subjects
making the transition to a CLL phenotype [10, 11].
During the past few years a number of studies re-

ported on the ability of various biomarkers measured in

the blood of apparently healthy subjects to predict the
risk of future diagnosis of CLL [12–16]. These predictive
biomarkers concern cell surface markers and mitochon-
drial DNA copy number and provide limited insight into
cellular processes that precede clinical disease. On the
other hand, we recently reported that a gene expression
profile measured in peripheral blood leukocytes could
identify with high accuracy individuals who were diag-
nosed with CLL 2–17 years later [17] and highlighted
genes whose expression was deregulated long before
disease diagnosis. In extended analyses we showed that
these gene expression profiles showed marked overlap
with expression profiles of clinical CLL samples [18]
suggesting that circulating cells long before diagnosis
harbor CLL-traits. A common limitation of these studies
lies in the lack of information regarding the hematological
status of the study subjects at recruitment, including the
presence or not of undiagnosed CLL. Here we report on
the genome-wide epigenomic (DNA methylation) and
miRNA expression profiles in peripheral blood leukocytes
of the same population as in our above-mentioned study
and the identification of prediagnostic epigenetic profiles
which predict with high efficiency the risk of future CLL.
Importantly, in the current study we utilized DNA methy-
lation profiles, obtained using the Illumina HumanMethy-
lation450 platform, to estimate for each subject the
proportions of different subpopulations of white blood
cells (WBC) and were therefore able to derive CLL risk-
associated profiles, including a revised genome-wide gene
expression profile, adjusted for WBC composition. The
results reported here offer insights into the evolution of
CLL and provide a basis for the development of improved
prediagnostic markers predictive of the risk of future
development of CLL.

Methods
Population
The study was conducted in the context of the European
EnviroGenomarkers project [19] and involved subjects
from the European Prospective Investigation into Cancer
and Nutrition study (EPIC-ITALY) and the Northern
Sweden Health and Disease Study (NSHDS) (Table 1).
Both studies used population-based recruitment with
standardized lifestyle and personal history question-
naires, anthropometric data and blood samples collected
at recruitment (1993–1998 for EPIC-ITALY; 1990–2006
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for NSHDS). Buffy coats were isolated from the collected
blood samples and placed in long-term cold storage.
Although the EnviroGenomarkers project was originally
designed as two nested case-control studies, one for B-cell
lymphoma and one for breast cancer [17], in the presently
reported study subjects who eventually developed disease
other than CLL were excluded, leaving 28 subjects who
developed CLL (cases) and 319 subjects who remained ap-
parently healthy until the end of the observation period
(controls). No participant was diagnosed with disease
within less than 2 years of blood sample collection and for
this reason all participants were treated as apparently
healthy at recruitment. In order to minimize the effects of
sample handling on the omic profiles, subjects were in-
cluded in the current study only if, at recruitment, the
processing of their blood samples and freezing of the buffy
coats had been completed within 2 h of collection [20].

Estimation of WBC from DNA methylation profiles
WBC composition was estimated using a published
algorithm [21] and DNA methylation data derived from
purified normal blood cell sub-populations (CD4-, CD8-,
T- and NK cells, monocytes, granulocytes) publicly avail-
able in the FlowSorted.Blood.450 k Bioconductor pack-
age, as previously described [22]. The applicability of
this methodology to the estimation of the WBC compos-
ition in CLL patients was recently confirmed [23]. To
evaluate further the reliability of this method with CLL
blood we applied it to published 450 k methylation data
of purified (>95%) CLL cells isolated from the blood of
139 patients as well as 26 samples of normal B-cells,
available from the International Cancer Genome Con-
sortium [24]. The proportions of B cells, as estimated via
DNA methylation, showed a single distribution as evalu-
ated by the maximum BIC criterion, with a mean value

of 88.5% (variance = 0.4%; SD 6.6%), while all other cell
types gave mean values below 1.8% except CD4 which
gave a mean value of 7.1% (results not shown). The ac-
curacy of these estimates is comparable to that exhibited
by the same methodology in normal blood [21].

Analytical procedures and data processing
RNA and DNA extraction from buffy coats, genome-wide
analysis of gene expression (Agilent 4 × 44 K human
whole genome microarray platform), CpG methylation
(Illumina Infinium HumanMethylation450 platform) and
miRNA expression profiling [Agilent Human miRNA
Microarray (Release 19.0, 8x60K), representing 2006 hu-
man miRNAs], were conducted as previously described
[17, 20, 25]. Methylation data were preprocessed initially
with GenomeStudio (version 2011.1) Methylation module
(version 1.9; Illumina). Subsequently, data normalization
to address the issue of unwanted technical variation was
performed, using scripts written and ran in MATLAB
environment (Mathworks, Release 2012b), making use of
the DNA methylation measured in multiple replicates of a
technical control sample randomly distributed among the
study samples and utilising procedure involving two suc-
cessive steps of intensity-based correction (a) within-chip
and b) across all probes) as previously described [26].
Probes with background signal (p < 0.01) in more than
10% of the samples were filtered out. Probes containing
SNPs at a distance less than 3 nucleotides from the inter-
rogated CpG cytosine and minor allele frequency > 10%
were also omitted as well as probes giving mean methyla-
tion for all samples in the range 0- 4% or 96–100%. Miss-
ing values imputation (k-nearest neighbor) was applied to
the resulting final number of 396,808 target CpG sites.
Methylation levels were expressed as M-values corre-
sponding to the logarithmic ratio of the methylated versus
the unmethylated signal intensities.
All unsupervised analyses (PCA, clustering) were per-

formed using the denoised signals, correcting for batch
effect (date of chip analysis for the epigenetics and date
of hybridization for transcriptomics), gender, cohort and
smoking status. Use of the batch removal processes built
in the Combat in R (version 3.0.2) and the ArrayStudio
(Omicsoft, Cary, NC, USA, version 8.0.1.32) software
packages gave very similar results, and consequently the
batch removal tool of Arraystudio was adopted for
further analyses.

Statistical analyses
Generalized linear models (GLM) using the batch-
corrected signals (date of chip analysis for the DNA
methylation and date of hybridisation for gene expres-
sion data), as well as Linear Mixed Models (LMM) using
as random variables those mentioned above, were ap-
plied using the ArrayStudio software package. M values

Table 1 Demographic characteristics of the study population.
DNA methylation profiles were available for all subjects, while
gene and miRNA expression profiles were available as indicated
in the Table

Total Cases Controls

Total (N) 347 28 319

EPIC Italy; N (% of total) 133 9 124

NSHDS; N (% of total) 214 19 195

Males; N (% of total) 135 18 117

Females; N (% of total) 212 10 202

Age; mean (SD) 52.3 (7.7) 52.0 (8.1) 52.3 (7.7)

BMI; mean (SD) 26 (4.1) 25.6 (3.3) 26.0 (4.1)

Smokers (%) 72 (2.1%) 2 (7.1%) 70 (2.2%)

Subjects with transcriptomic
profile (N)

307 25 282

Subjects with miRNA expression
profile (N)

111 11 100
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for DNA methylation or log2 intensities of mRNA or
miRNA expression were the dependent variables, CLL
status the independent variable, while as confounder
variables we included sex, age, BMI, cohort as well as
the six cell type fractions (CD4, CD8, NK cells, mono-
cytes, B-cells, granulocytes). GLM and LMM gave very
similar results and consequently, in order to reduce the
possibility of overfitting, the GLM was finally adopted
and five out of the total six of the cell type fractions (ex-
cluding granulocytes) were included as confounders.
The estimated adjusted effect sizes are expressed as the
least square means (LSM) (also known as EMM - esti-
mated marginal means) which, in an analysis of covari-
ance model, correspond to the group means after having
controlled for a covariate [27]. The LSM β values were
derived from the corresponding estimated LSM M
values and the equation β = 2M/(1 + 2M). Multiple test-
ing was accounted for with high stringency by using
Bonferroni or FDR Benjamini-Hochberg correction.
The selection of CpGs with minimal variation between

WBC subtypes was based on the data by Jaffe and
Irizarry [22], selecting sites which fulfill the following
criteria: a) p > 0.00012 (1000fold greater than the raw
p-value corresponding to Bonferoni-corrected p < 0.05)
and b) coefficient of variation (CV) <5% across all leukocyte
subpopulations (CD4-, CD8-, T- and NK cells, monocytes,
granulocytes). PCA was performed using the denoised
values of 1308 out of the 10,785 CLL risk-associated CpG
(FDR < 0.05) and 1308 CpGs with FDR >0.8 (control)
which fulfill the above mentioned criteria. The CV of the
CLL risk- associated CpG sites thus selected for the PCA
analysis ranged 0.13–5% (mean = 1.96%).
Non-negative matrix factorization (NMF) was per-

formed in Arraystudio using the default parameters
maximum iteration n = 100 and stopping rule 1X10−6,
specifying the number of clusters as 2–4.

Bioinformatics analysis
Gene functional classification analysis was performed
using the DAVID bioinformatics tool [28] (default DA-
VID values, low stringency criteria). Functional analysis
of genes associated with DM sites or DE probes was per-
formed using the BioinfoMiner web application, which
enables systemic, functional interpretation of omic datasets
through the exploitation of various biomedical ontologies,
extracting highly enriched gene sets that form cross-talking
functional clusters [29]. BioinfoMiner initially maps the
input omic data at the gene level and subsequently, through
a combination of advanced statistical and network topo-
logical criteria, probabilistically prioritizes the resulting
genes according to their functionality by comparison with
enrichments of random resamplings, thus facilitating the
identification and rejection of false positives. The non-
parametric, empirical nature of this prioritization approach

permits its generic, broad applicability even to classes of
statistical testing problems that deflect from traditional
hypotheses, as is the case for DNA methylation profiles,
ensuring robust performance. Pathway analysis with this
tool exploits variations of the StRAnGER and GOrevenge
algorithms [30], so that molecular information (functions,
processes, cellular compartments) is highlighted according
to multiple criteria (enrichment score, expression etc.)
while in addition regulatory hub genes which play a pivotal
role in the phenotype under study are identified. Dif-
ferentially methylated or expressed genes were used as
input to identify statistically significantly over-represented
terms from four different ontologies: Gene Ontology, Hu-
man Phenotype Ontology, MGI Mammalian Phenotype
Ontology, as well as Reactome pathways Ontology. For
the KEGG pathways analysis part the original StRAnGER2
web service was used [29].

ROC analysis
A variety of classification algorithms were tested for
their performance, including SVM with linear kernel,
SVM with Gaussian kernel, Bayesian generalized linear
regression, Naive Bayes classifier, random forest and k-
NN optimized in two different sets of k options. These
classifiers were trained on a subset of our data corre-
sponding to 50% of the study subjects (“training set”). To
eliminate the effect of the severely unbalanced training set
with respect to the proportion of classes (8.5% cases,
91.5% controls), we implemented the ROSE algorithm
from the ‘ROSE’ R package [31]. Thus we trained the clas-
sifiers using the ROSE-derived balanced data (consisting
of the same number of samples as the original training set,
but 46.4% cases and 53.6% controls). The performance of
the classifiers was assessed by the AUC value of the result-
ing ROC curves when the rest of the data (the other 50%
of the original dataset) were used as a “testing set”. For the
implementation of the methodology described above the
‘caret’ R package was used, choosing also a 4-fold cross-
validation scheme repeated 1000 times. Subsequently, a
recursive feature elimination algorithm, with maximum
number of predictors set to 40, was used to identify an op-
timal subset of predictors for each of 3 best-performing
classifiers chosen.

Results
CLL risk-related profiles
First we employed the genome-wide DNA methylation
profiles to estimate for each study subject the fraction of 6
major cell sub-populations (CD4-, CD8-, T- and NK cells,
monocytes, granulocytes) among all WBCs. The main
difference observed between case and control subjects
was a large (on average 3.1fold) increase in the fraction of
B-cells in cases (for details see Additional file 1: Text). As
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shown in Additional file 2 Table S1, a B-cell fraction >10%
was a strong predictor of increased relative risks and
shorter mean time to diagnosis, implying this group may
have included subjects with undiagnosed MBL or CLL at
recruitment. We also noted that the DNA methylation
and transcriptomic profiles (adjusted for WBC compos-
ition) of control subjects with B-cell fraction >10% differed
significantly from those of subjects with <10% and could
not exclude the possibility that they may have been car-
riers, at the time of recruitment, of small clones of altered
cells related to CLL (see Additional file 1: Text). Based on
these observations, we opted to exclude control subjects
with >10% B-cells from the derivation of all differential
profiles of CLL cases discussed below (unless otherwise
indicated) so as to ensure that the derived profiles reflect
to the maximum degree early and mechanistically in-
formative changes. A flowchart of the comparisons
conducted using different subgroups of subjects, some
of which are presented in detail in Supplementary, is
shown in Fig. 1, while the numbers of differential signals
obtained in the various comparisons are summarized in
Additional file 2: Table S2.

DNA methylation profile Comparison of the DNA
methylation profiles of the CLL cases and the controls,
with adjustment for WBC composition included in the
statistical model, resulted in the identification of 722
differentially methylated (DM) CpG sites significant at
Bonferroni-corrected p < 0.05 (corresponding to 494
unique genes), of which 534 showed loss of methylation
in cases (mean loss 4.9%, range 0.9–30.4%), while the
remaining showed methylation gain (mean gain 1.8%,
range 0.1–7.9%) (Table 2 and Additional file 2: Table S3;
for a discussion of the corresponding analysis without
adjustment for WBC composition, as well as an

assessment of the profile robustness across the two co-
horts, see Additional file 1: Text). Of the 722 DM CpG
sites, 530 (73.4%) overlap with 33,653 sites reported to dis-
tinguish CLL from normal B-cells [24] and show the same
direction of methylation change, indicating that the major-
ity of the DNA methylation changes which characterize
our pre-diagnostic CLL risk profile are among those which
accompany the transformation of normal B-cells to overt
CLL clones.
To explore the relationship of the CLL risk-related

DNA methylation changes with B-cells, from the
10,785 FDR-significant DM CpGs of the CLL risk-
related profile we selected those sites (1318) known
to show minimal variation between different WBC
subtypes [22] and performed principal component
analysis (PCA) using the corresponding signal levels
after denoising for batch effects, gender, cohort and
smoking status (see Statistical Analysis in Additional
file 1: Text). As can be seen in Fig. 2, the 28 cases
are separated not only from the controls but also
from each other according to their B-cell fraction. In
contrast, use of an equal number of CpG sites, se-
lected randomly from among those showing minimal
variation between WBC subtypes but not included in
our CLL risk-related profile, failed to yield analogous
distributions. This indicates that the CLL risk-related
DNA methylation signals arise in cells which carry
the epigenetic hallmarks of B-cells and probably represent
CLL-related B-cells.
A number of loci appear to serve as targets for extensive

epigenetic modification. Thus, 176 genes and 50 intragenic
CpG islands (CGIs) were represented by at least 3 (and up
to 16) DM CpG sites (FDR < 0.05) each and had an enrich-
ment (fraction of DM sites among the locus-associated
sites analysed on the microarray) of at least 20% (and up to

Fig. 1 Flowchart of data analyses
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66.7%). Furthermore, 8 of these 50 CGIs are located just
upstream of the TSS1500 region of some of the same 176
genes (Additional file 2: Table S4). Gene functional classifi-
cation analysis (see Bioinformatic Analysis in Additional
file 1: Text) showed that the most abundant functional
group among the 176 multiply DM genes consisted of 38
homeobox or homeobox-related genes, including those
present in the HOX and IRX gene clusters.

Transcriptomic profile
Comparison of the transcriptomic profiles of 25 of our
CLL cases, for which such profiles were also available,
with those of control subjects (with <10% B-cells),
yielded 16 differentially expressed (DE) probes, corre-
sponding to 15 unique genes (Bonferroni-corrected
p < 0.05; 117 probes/82 unique genes at FDR < 0.05)
(Table 3 and Additional file 2: Table S5). Eleven of the
Bonferroni- and 34 of the FDR-significant genes have
been reported [32, 33] to be differentially expressed in
B-cells isolated from CLL patients. Furthermore, 22
FDR-significant DE genes are among those found in
CLL, with the same direction of change (Additional
file 2: Table S5), in a meta-analysis of transcriptomic
profiles of CLL patients [18]. These observations fur-
ther support the suggestion that cells with changes
characteristic of clinical CLL were present in our

prediagnostic samples. As discussed in Supplementary,
omission of adjustment for WBC composition results in a
greatly increased number of significant signals, reflecting
the influence of varying cell sub-populations. Never-
theless, the top 6 DE genes shown in Table 3 are the
same as the top signals obtained without WBC cor-
rection (also previously reported by Chadeau-Hyam et
al. [17]) and show the same direction of change. On
the other hand, while the results obtained without
WBC correction showed overexpression in cases of
the vast majority of the significant signals, among the
117 DE signals obtained with WBC correction 51
were under-expressed in cases.

miRNA profile
For 11 CLL cases and 96 controls from the NHSDS cohort
we were also able to examine the miRNA expression pro-
file. We observed 2 significant signals (FDR < 0.05), miR-
155-5p and miR-150-5p, both overexpressed (2.3- and
2.2fold, respectively) in cases. miR155-5p was also observed
among the overexpressed genes in the transcriptomic pro-
file, and it is notable that this gene is undermethylated in 2
out of the 6 related CpG sites in the DNA methylation pro-
file. Both miRNAs have been reported to be overexpressed
in B cells from individuals with MBL, and even more so in
patients with CLL [34].

Table 2 Top 20 CLL risk-related DM CpG sites; based on comparison of all cases vs controls with <10% B-cells, with adjustment for
WBC composition

CpG site Gene symbol Raw p-value FDR BH LSM β, controls (%) LSM β, cases (%) Δβ = cases-controls (%)

cg05677184 <1E-99 1.11E-18 83.2 76.08 −7.12

cg10318725 RASA3 <1E-99 3.10E-17 87.09 79.18 −7.92

cg04308797 SEC14L1 <1E-99 2.10E-16 86.78 66.71 −20.07

cg20649847 ANKRD13B <1E-99 4.86E-15 88.38 57.93 −30.45

cg04099036 TBCD <1E-99 8.64E-15 87.7 74.77 −12.93

cg25212453 SLC43A2 <1E-99 8.64E-15 0.7 1.52 −10.46

cg15909319 1.06E-19 8.64E-15 87.88 77.42 0.82

cg09640070 ITPR2 <1E-99 8.33E-14 83.63 76.69 −6.94

cg19172447 EP400 <1E-99 8.33E-14 88.63 78.61 −10.01

cg06475633 P2RX1 <1E-99 3.60E-13 97.09 92.59 −4.51

cg07508446 <1E-99 4.83E-13 79.74 75.52 −4.22

cg08461425 KDM2B <1E-99 6.63E-13 80.63 73.99 −6.64

cg05698911 DUSP22 <1E-99 1.74E-12 81.93 74.79 −7.14

cg19907483 RFX2 <1E-99 2.89E-12 90.14 83.67 −6.46

cg01595262 2.22E-16 4.10E-12 82.37 76.17 −6.2

cg21394039 ATP9B 2.22E-16 4.10E-12 85.79 79.99 −5.79

cg01438467 SLC43A2 2.22E-16 6.00E-12 89.59 83.93 −5.66

cg03777414 TVP23A 4.44E-16 9.68E-12 79.21 67.17 −12.04

cg14972228 SIPA1L3 8.88E-16 1.57E-11 82.02 77.19 −4.83

cg26363196 ST6GALNAC3 8.43E-16 1.76E-11 2.53 3.75 1.22
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Taken together, the above results indicate that dis-
tinct epigenetic and gene expression changes, most of
which are known to be associated with clinically diag-
nosed CLL, were present in our prediagnostic sam-
ples. Significantly, as discussed in Additional file 1:
Text, we detected some of these signals also in the
sub-group of cases with B-cell fraction <10% (which
are less likely to have included subjects with undiag-
nosed CLL at recruitment) while the mean intensities
of the differential signals (after adjustment for the
number of B-cells) in this group were smaller than
those observed in the group which includes all cases,
suggesting a process of signal evolution as the size of
the CLL-like cell clones increased.

CLL risk profiles in CLL cases with <10% B-cells
In view of the evidence, discussed above, of presence in
blood samples of CLL cases of clones of cells related to
CLL or precursor conditions, we checked whether this
was also true for cases with B-cell fraction < 10%, who
are less likely to have been suffering from undiagnosed
MBL or CLL at recruitment. As indicated in Additional
file 2: Table S2, this subgroup (11 cases) could also be

differentiated in terms of CpG methylation from the
controls, although with a dramatically reduced number
of signals (4 and 45 CpG sites significant at p < 0.05
after Bonferroni or FDR correction, respectively). All but
one of these DM CpGs (Additional file 2: Table S6) are
among FDR-significant CpGs observed when all cases
were taken into consideration, while 25 are among those
reported to distinguish CLL from normal B-cells [24].
Turning to the transcriptomic profile (Additional file 2:
Table S6, lower part), 12 DE probes significant at
FDR < 0.05 (4 significant at Bonferroni-corrected
p < 0.05) were observed in low-B-cell count cases, of
which 7 were also found among signals (FDR < 0.05) ob-
served when all cases were considered, while 3 have
been reported to distinguish CLL from normal B-cells
[32]. No differences significant at FDR < 0.05 were
observed in the miRNA profiles.
Comparison of the p-rankings of DM and DE signals

observed in all cases and in those with B-cells < 10% (not
shown), as well as the denoised case-control methylation
differences (Δβ) or fold-change expression ratios showed
strong correlations, while the mean intensities of the
differences from the controls, after adjusting for B-cell

Fig. 2 Top: PCA based on 1308 CpG sites significant (FDR < 0.05) in CLL cases and with minimal variation between WBC sub-populations. Bottom:
similar analysis with 1308 CpG sites randomly selected from among those with FDR > 0.8 in CLL cases and with minimal variation between WBC
sub-populations. The signal intensities employed were denoised for various parameters, including B-cell content (see Methods). The numbers in
the Figures on the right indicate the fractional B-cell content of the samples. The Figures on the left show all subjects while those on the right
show only the CLL case subjects
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content, observed in low-B-cell cases are smaller than
those in all cases (Fig. 3). These observations suggest that
cases with B-cell fraction <10% contained clones of cells
related to CLL which evolved further towards the CLL
phenotype as the CLL-like cell clones grew larger.

Τime-To-diagnosis and CLL risk-related profiles
In view of the large variation in the time between the
donation of the biological samples and clinical diagnosis
of CLL (2.0–15.9 years), we derived risk-related profiles
separately for subjects with time to diagnosis (TtD) lon-
ger or shorter than the median of 7.4 years. It is noted
that diagnosis, as registered in the cohorts of the present
study, may have corresponded to disease at different
stages of progression for different case subjects, taking

place in some cases accidentally during routine examin-
ation in some cases, after the appearance of clinical
symptoms but not requiring treatment in others or coin-
ciding with treatment in other subjects.
We observed 238 and 937 DM CpGs (Bonferroni-cor-

rected p < 0.05) in the long and short TtD subgroups,
respectively, with most (181) of the former signals being
at least FDR-significant in the latter (Additional file 2:
Table S7). Similarly, there were 25 and 291 DE probes
(FDR p < 0.05) in the long and short TtD subgroups, re-
spectively, with an overlap of 8 signals. Of the 238 DM
CpGs observed in the long TtD sub-group, 168 (70.5%)
have been reported to be differentially modified in clinic-
ally diagnosed CLL [24]. Furthermore, of the 21 DE
genes significant in the same sub-group, 12 are among
2095 genes (hypergeometric distribution test p = 0.013)
reported to be differentially expressed in clinical CLL
[32, 33] and 9 are among those found significant in a
corresponding meta-analysis included in the report by
Vlaanderen et al. [18]. Finally turning to miRNA, exam-
ination of the limited number of subjects for which data
were available indicates that, while no significant
changes in miRNA expression could be detected in the
long TtD group, 3 miRNAs (miR-155-5p, miR-150-5p,
both overexpressed, and miR-4486, underexpressed)
were significant (FDR < 0.05) in the short TtD group.
The above observations indicate that epigenetic and gene

expression changes characteristic of CLL are already
present in subjects 7.4–15.7 years prior to clinical diagnosis
of the disease. On the other hand, comparison of the inten-
sities of CLL risk-related signals in control subjects and the
two sub-groups with different TtD suggests the occurrence
of progressive changes while approaching clinical mani-
festation and diagnosis of the disease. As shown in Fig. 4
(top panels), during this time the least squares means
(LSM, adjusted for B-cell content – see Statistical Ana-
lysis in Supplementary) of the methylation levels of the
top DM CpG sites obtained with all cases (Table 2)
change in a consistent manner (mainly loss of methyla-
tion for the top 20 sites) and independently of the size

Table 3 CLL risk-related DE signals, Bonferroni-corrected p < 0.05;
based on comparison of all cases vs controls with <10% B-cells,
with adjustment for WBC composition

Probe ID Gene symbol Raw p-value FDR BH Fold changea

A_23_P500400 ABCA6 7.07E-31 4.04E-26 −5.47

A_23_P26854 ARHGAP44 1.86E-20 4.65E-16 −5.78

A_32_P53234 CEACAM21 3.48E-14 3.59E-10 −2.02

A_23_P130158 WNT3 4.34E-11 4.24E-07 −3.82

A_23_P131024 ZBTB32 3.76E-10 2.69E-06 −2.43

A_23_P27332 TCF4 8.53E-10 4.41E-06 −1.80

A_24_P691826 1.55E-09 7.79E-06 −2.33

A_23_P124335 C1orf186 6.07E-09 2.16E-05 −1.73

A_24_P29733 CDK14 6.29E-09 2.16E-05 −1.75

A_24_P306214 TLDC1 2.49E-07 6.99E-04 1.50

A_23_P85250 CD24 5.14E-07 1.41E-03 −1.60

A_23_P23639 MCOLN2 6.53E-07 1.63E-03 −1.58

A_23_P30693 PLG 9.27E-07 2.34E-03 2.39

A_32_P108156 MIR155HG 1.08E-06 2.34E-03 −1.86

A_24_P149266 PACSIN1 1.32E-06 2.34E-03 1.39

A_24_P324838 IGHD 1.43E-06 2.86E-03 1.74
aPositive values refer to the ratio cases/controls and negative values the
ratio controls/cases

Fig. 3 Comparison of denoised case-control methylation differences (Δβ) (left) and expression differences (foldchange ratio) (right), obtained from
the comparison of all cases with controls with <10% B-cells (vertical axes) or with all controls (horizontal axes). The light lines show slope = 1
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of the B-cell clones. Additionally, a substantial increase
in the multiplicity of gene methylation is observed in the
shorter TtD group, with the average multiplicities of DM
genes with at least 20% enrichment in the short TtD sub-
group being 1.9 and 5.4 DM sites per gene in the long and
short TtD groups, respectively (Additional file 2: Table S8).
As regards the corresponding evolution of the gene expres-
sion signals (Fig. 4, bottom panels), while for most of the
16 Bonferroni-significant CLL risk-related DE signals ob-
served in all cases expression increases in the long TtD
subgroup and then remains relatively constant during the
later period coming up to diagnosis, changes in both direc-
tions appear to occur, at lower statistical significance, in a
large number of genes.

Functional analysis
Gene enrichment analyses were conducted for 494 DM
genes associated with DM CpGs (Bonferroni-corrected
p < 0.05) in the CLL risk-related profile, using the recently
developed BioInfoMiner web application [29] which is ap-
propriate for the functional analysis of DNA methylation
profiles (for more details see Bioinformatics analysis in
Methods). For the corresponding analysis of the transcrip-
tomic changes, in view of the small number of signals sig-
nificant at Bonferoni-adjusted p < 0.05 (16 transcripts, 15
genes; see Table 3) which does not permit the conduct of

functional analysis, we relaxed the significance criterion to
FDR < 0.1. In combination with the additional statistical fil-
ters applied at the functional analysis level, such relaxation
retains a strong overall statistical stringency and yields 163
DE genes. The over-represented terms thus obtained are
shown in Additional file 2: Tables S9-S10. We conducted
similar analyses also with the CLL risk-related gene profiles
of cases with long and short TtD (Additional file 2: Tables
S11-S12; no DE gene analysis was conducted for the long
TtD subgroup owing to the small number of genes in-
volved). The most notable observation is the predominance
among GO terms derived from DM genes, for all sub-
groups, of terms related to development and regulation of
transcription as well as B-cell differentiation and physi-
ology. Also of note is the presence of multiple DE gene-
derived terms (including pathways) related to DNA damage
response and WNT signaling.
In order to identify genes which play a central role in the

biological processes leading to CLL, we used the gene
prioritization module of the BioInfoMiner application to
identify hub genes which are linked to multiple ontology
terms, thus identifying 84 DM and 18 DE such genes
(Additional file 2: Table S13). DM hubs include numerous
genes that encode for transcription factors, especially
members of the homeobox family (PAX6, multiple HOX
genes, FOXP1, EN2, GSC, EVX1, BARHL2). DE hub genes

Fig. 4 Normalized least squares means (LSM) of DM and DE signal values in the controls and the two TtD groups. Top left: 238 DM signals Bonferroni-
significant in the short TtD subgroup; bottom left: 291 DE signals FDR-significant in the short TtD subgroup. Top right: top 20 DM signals observed in
all cases; bottom right: Bonferroni -significant DE signals observed in all cases. In the Figures on the right are named the genes associated with the 3
DM or DE signals with the largest changes in each direction (only 2 DM genes show increased methylation with decreasing TtD)
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include, among others, 4 genes related to WNT signaling
(WNT3, CTBP1, CTNNB1 and TCF4), while an additional
WNT pathway gene, CTBP2, is among the DM hub genes.
Examination, using the online resource Search Tool for the
Retrieval of Interacting Genes (STRING) [35], of the
protein-protein interaction network of the combined DM
and DE hubs reveals the existence of 2 major nodes, cen-
tered on the important epigenetic modification gene
HDAC1 and the WNT signaling pathway gene CTNNB1
(Fig. 5). The list of DM hub genes in the profile of long
and short TtD sub-groups was also dominated by
homeobox genes, while the corresponding DE genes
included two genes related to WNT signaling, WNT3
for the long TtD group and CTNNB2 for the short
TtD group (Additional file 2: Table S14).

ROC analysis and development of a DNA methylation-based
classification signature for predicting the development of
clinical CLL
We recently reported on the advantages of using the se-
mantics information included in the hierarchical nature
of ontologies as a primary feature selection tool for the
development of predictive profiles [36]. Based on this we
assessed the ability of prediagnostic DM CpG sites to
predict the future clinical manifestation of CLL among

all subjects (i.e. without excluding case or control sub-
jects with >10% B-cells) by focusing on 104 Bonferroni-
significant DM CpG sites annotated to the hub genes.
The reason for using here the profile obtained without
exclusion of any of the controls is to facilitate the deriv-
ation of a predictive signature which can be of use in the
general population. We employed as a training set a bal-
anced subset corresponding to 50% of the study subjects
and assessed the performance of a number of different
classifiers using the remaining 50% of the population as a
testing set (see ROC Analysis in Additional file 1: Text).
An AUC value of 0.94 was obtained when the SVM linear
model was used as a classifier. Subsequently, a recursive
feature elimination algorithm, with maximum number of
predictors set to 40, was used to identify an optimal subset
of predictors, achieving an optimal accuracy of 95% using
the Naïve Bayesian classifier and 12 predictors.

Discussion
B-cells with CLL-like DNA methylation and gene expression
features are present in the blood more than 10 years
before disease diagnosis
Using genome-wide gene expression and DNA methyla-
tion profiles observed in prediagnostic samples of whole
blood leukocytes of subjects who were diagnosed with CLL

Fig. 5 Interaction network of the DM + DE hubs (STRING)
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2–15.9 years later, we have derived WBC composition-
corrected differential profiles which are associated with the
risk of future diagnosis with CLL. Although the numbers
of differential signals detected after adjustment for WBC
composition are dramatically decreased relative to
those found without such adjustment (Additional file 2:
Table S2) [17], the majority of these signals (approx.
70% for both methylation and gene expression, both
miRNAs), are known to be similarly modified in clinical
CLL [18, 24, 32–34, 37]. The same holds for the signals
detected in the sub-groups of cases with B-cell fraction
<10% (Additional file 2: Table S6) and TtD > 7.4 years
(Additional file 2: Table S7), supporting the idea that
the differential risk profiles identified are unlikely to repre-
sent false findings resulting from residual confounding by
variations in WBC composition but are in fact associated
with the early phase of the pathogenesis of CLL. Further
support for this comes from the fact that mutations in 12
of the DM genes (FARP2, ACTA2, AcOXL, BCL2, BMF,
CLPTM1L, CPEB1, CSRNP1, IPCEF1, LPP, ODF1, SER-
PINB6, mostly overmethylated in cases, some at multiple
CpG sites), as well as in 1 DE gene (C11orf21, overex-
pressed in cases at FDR = 0.086, have been found in
GWAS studies to be associated with differential risk of
CLL [38–41].
It is notable that the lists of DE and DM genes lost

upon WBC adjustment overlap significantly (not shown),
suggesting that their detection without WBC correction
reflects variation in cell composition. Although the large
impact of such correction in the present case is likely to
be due to the large increase in the fraction of B-cells in
CLL cases, it does underline the importance of variation
in WBC composition being considered as a potential
confounder not only in methylation but also in expres-
sion profiling studies of mixed cell populations [42].
The top genes in the DM and DE profiles include mul-

tiple genes related to the transport of ions and other
small molecules (SEC14L1, SLC43A2, ATP9B, ABC6 and
MCOLN2), as well as genes with GTPase-related activity
(RASA3 and TBCD), however the role of these genes in
CLL pathogenesis is not known. On the other hand, the
top DE genes include 4 genes involved in WNT signaling
- WNT3, TCF4, CDK14, all upregulated in cases, and
CTNNB1, downregulated in cases (plus a fifth gene,
CTBP1, also upregulated in cases with a statistical sig-
nificance of FDR = 0.086), a key pathway in CLL (31).
The DE profile also includes 2 important B-cell associ-
ated genes, CD24, upregulated in cases, which regulates
B-cell growth, differentiation and activation and IGHD,
downregulated in cases, the main antigen receptor on B-
cells, involved in BCR signaling and the CLL-growth/
survival pathway [43].
Using the significance cut-off values of Bonferroni-

corrected p < 0.05 for DM and FDR < 0.05 for DE signals,

only 1 gene (FAM193A, of unknown relevance to CLL) was
found to be differentially both methylated and expressed in
the profile obtained with WBC adjustment, supporting pre-
vious suggestions that DNA methylation is not a primary
mechanism of gene regulation in CLL [24, 44].
We found two miRNAs, miR-150-5p and miR-155-5p

to be consistently overexpressed in CLL cases, including
the subgroups with long and short TtD. The latter gene
was also differentially undermethylated at 2 CpG sites in
cases. Both of these miRNAs are overexpressed in
clinical CLL, the first being the most abundant miRNA
in B-cells from CLL patients [34, 37]. A search on the
Targetscan and miRDB databases reveals 3 of the genes
which are differentially downregulated in cases to be
among the targets of miR-150-5p, specifically TLDC1
and GLDC, of unknown function in relation to CLL, as
well as the CTNNB1 gene which is related to WNT
signaling, underlining the importance of this pathway in
early stages of CLL pathogenesis.
To obtain a more global picture of the cellular pertur-

bations represented by the CLL risk-related profiles, we
searched for genes which are linked with multiple bio-
logical functions (hub genes) (Additional file 2: Table S13).
Among the DM hub genes we identified numerous
homeobox genes, including PAX6, multiple HOX genes,
FOXP1, EN2, GSC, EVX1 and BARHL2, many of which
(especially HOXA and HOXD) are targets for multiple
differential methylation events. HOX genes are involved in
normal and leukemic hematopoiesis and may contribute
to the mechanism of leukemic transformation [45–47],
while FOXP1 plays a particularly important role in B-cell
development and enhances B-cell signaling in CLL cells
[48, 49]. DE hubs include, among others, the CBX6 gene,
upregulated in cases, which is part of a polycomb complex
required to maintain the transcriptionally repressed state
of many genes (including HOX) during development [50].
Other DE hub genes include CTBP1, a transcriptional re-
pressor and a key downstream component of the WNT
signaling pathway and NOS2, upregulated in cases, which
regulates the levels of NO which enhances the synthesis of
pro-inflammatory mediators [51, 52]. The interaction net-
work of the DM and DE hubs involves two major nodes
centered upon HDAC1 and CTNNB1, with a direct chain
of interactions linking HDAC1, CTNNB1, SKI, CTBP1 and
FOXP1 (Fig. 5). HDAC1 is overexpressed in CLL [53] and
has been shown to be instrumental in the induction of
early epigenetic alterations and subsequent gene expres-
sion changes in a mouse model of CLL [54], while the SKI
gene, in addition to its oncogenic and oncosuppressor
functions, has been suggested to contribute to memory B
cell differentiation [55].
The picture emerging from the above observations sug-

gests the presence in our prediagnostic samples of epigen-
etic and expression perturbations in genes with a key role
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in B-cell development and differentiation. This is further
supported by the results of our functional analysis, which
identified GO terms which correspond mostly to cell pro-
liferation, differentiation, developmental and regulatory
processes. Of particular note is the identification of mul-
tiple ontology terms relate to B-cell physiology and
morphology, as well as abnormalities of immune system
physiology, such as immunodeficiency and agammaglobu-
linemia (Additional file 2: Table S10 and Additional file 3
Figure S1), which are characteristic clinical findings in
CLL [56]. Finally, pathway analysis revealed changes in
lipid and lipoprotein metabolism, Fc gamma and epsilon
receptor signaling, as well as NGF, VEGF, WNT, NOTCH
and B-cell signaling and DNA damage response pathways
(Additional file 2: Tables S9 and S10), all of which are
known to be perturbed CLL [57–62].

CLL-related risk profiles in prediagnostic samples evolve
as the B-cell clones grow and time to diagnosis decreases
The intensity of many of the early risk-related signals
discussed above (especially DNA methylation-related
signals) was lower in case subjects with B-cell fraction
<10%, relative to that observed in all case subjects, even
after adjusting for cell composition (Fig. 3). Furthermore,
and while it is recognised that the use of time-to-
diagnosis, rather than, e.g., time-to-first-treatment, has
the limitation that diagnosis may relate to disease at
varying stages of advancement, the intensity of such sig-
nals varied in a consistent manner as the time to clinical
diagnosis of the disease became shorter (Fig. 4), implying
that the perturbations of the cell clones in which these
signals were located evolved as disease pathogenesis pro-
gressed while still remaining in a subclinical phase.
Among the top risk-related epigenetic signals, DNA
methylation showed mainly a pattern of decreasing
levels throughout the observation period, while the top
gene expression signals showed initially mainly upregula-
tion followed by stabilization, however large numbers of
signals of both types showed a consistent trend towards
either over- or underexpression as the time to diagnosis
became shorter (Fig. 4). Of particular interest is the evo-
lution of WNT3 expression, a key gene in CLL, which
appeared to be upregulated in cases with long TtD and
subsequently remain unchanged as TtD decreases,
implying that an increase in WNT signaling may be an
early change in CLL.
The picture of an evolving preclinical profile is also

evident in the increasing multiplicity of DM CpG sites at
specific loci (Additional file 2: Table S11), including 2
members of the HOX and 3 members of the IRX families
which are located as clusters at different chromosomal
regions. Additional file 3: Figure S2 illustrates that the
tendency to accumulate increased levels of methylation
at shorter TtD holds for all clusters of these genes and

affects additional genes associated with these loci, such
as miR196b and the HOX paralog genes EVX1 and
EVX2, as well as associated CGIs.
Focusing on DM gene hubs which are associated with

long TtD (Additional file 2: Table S14) and therefore
may play a role particularly in the early stages of CLL
pathogenesis, the presence is noted of multiple develop-
mentally important homeobox genes and transcription
factors, implying developmental deregulation as an im-
portant part of early perturbations during CLL patho-
genesis, as also indicated by the GO terms identified
from the corresponding functional analysis (Additional
file 2: Table S11). These genes include, among others,
CSK which plays an important role in the regulation of
cell growth, differentiation, migration and immune re-
sponse and suppresses signaling by BCR [63], and CTBP1,
involved in WNT and NOTCH signaling [64].

A DNA methylation signature predictive of future CLL risk
We tested the ability of the set of 104 DM CpG sites
associated with CLL risk-related hub genes (i.e. genes
with major biological roles) to classify subjects with re-
gard to their future risk of being diagnosed with CLL,
using for this purpose a variety of classification algo-
rithms (see ROC Analysis in Methods). An excellent
predictive ability (AUC = 0.94) was obtained using all
104 of the above signals with a Naive Bayes classifier,
and a similar value (AUC = 0.95) was found when just
12 predictors were selected from the above set. A high
predictive ability was also observed when we used as the
test set all the control samples mixed with CLL cases
with <10% WBC (AUC = 0.86).

Conclusions
We have shown that changes in CpG methylation and
gene (including miRNA) expression similar to those ob-
served in clinical CLL are present in B-cells of apparently
healthy subjects 2.1–15.9 years before the diagnosis of
CLL and have provided evidence supporting the idea that
such changes evolve as the disease progresses from its
pre-clinical stage towards clinical diagnosis. We have also
shown that a CpG methylation-based signature can pre-
dict future CLL diagnosis with great accuracy. Relative to
other predictive markers also reported, this predictive
signature has the advantage of increased biological plausi-
bility since it is based on hub genes many of which are
known to be involved in the pathogenesis of CLL.
Although patients diagnosed with cMBL or early-stage
CLL do not required therapy, the great progress being
made in the characterization of the genetic and epigenetic
landscapes of these conditions [44, 65] raises the prospect
of the development of interventions which may slow
down or block progression towards full disease. In this
context, early disease biomarkers that define the patients
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that are likely to progress to symptomatic CLL and
could provide data for an individualized surveillance
program, with higher intensity for some patients. Also
if strong negative predictors could be defined, this
could identify patients that could be reassured and
not in need for follow up.
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