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ABSTRACT
Background: Hepatocellular carcinoma (HCC) is the fifth most common cancer world-
wide and the third most common cause of cancer-related death. Cirrhosis is a major
contributing factor, accounting for over 90% of HCC cases. With the high mortality
rate of HCC, earlier detection of HCC is critical. When added to magnetic resonance
imaging (MRI), artificial intelligence (AI) has been shown to improve HCC detection.
Nonetheless, to date no cost-effectiveness analyses have been conducted on an AI
tool to enhance earlier HCC detection. This study reports on the cost-effectiveness of
detection of liver lesions with AI improved MRI in the surveillance for HCC in patients
with a cirrhotic liver compared to usual care (UC).
Methods: The model structure included a decision tree followed by a state-transition
Markov model from an Italian healthcare perspective. Lifetime costs and quality-
adjusted life years (QALY) were simulated in cirrhotic patients at risk of HCC. One-way
sensitivity analyses and two-way sensitivity analyses were performed. Results were
presented as incremental cost-effectiveness ratios (ICER).
Results: For patients receiving UC, the average lifetime costs per 1,000 patients were
e16,604,800 compared to e16,610,250 for patients receiving the AI approach. With a
QALY gained of 0.55 and incremental costs of e5,000 for every 1,000 patients, the
ICER was e9,888 per QALY gained, indicating cost-effectiveness with the willingness-
to-pay threshold of e33,000/QALY gained. Main drivers of cost-effectiveness included
the cost and performance (sensitivity and specificity) of the AI tool.
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Discussion: This study suggests that an AI-based approach to detect HCC earlier in cir-
rhotic patients can be cost-effective. By incorporating cost-effective AI-based approaches
in clinical practice, patient outcomes and healthcare efficiency are improved.

1. Introduction

According to the Global Cancer Observatory, hepatocellular carcinoma (HCC) is the fifth most common
cancer worldwide and the third most common cause of cancer-related death1. Cirrhosis, caused by
excessive alcohol consumption, hepatitis B and C infections, obesity, and diabetes2, contributes to over
90% of HCC cases3 and increases the mortality rate further4. With cirrhosis present, the HCC incidence is
about 5% per year in Italy5.

With only 68% of cirrhotic patients surviving the first year after HCC diagnosis, earlier detection of
HCC is critical5,6. Furthermore, unless diagnosed in a presymptomatic stage, HCC has a 5-year survival
rate of less than 20%7. However, if found earlier, curative options remain, including radiofrequency
ablation, surgical resection, and/or liver transplantation8. Biannual surveillance of small tumors in cir-
rhotic patients using abdominal ultrasounds has become common practice as it has been associated
with earlier tumor detection and increased curative treatment intent and has shown to be cost-
effective compared to no surveillance8–10. Nonetheless, ultrasounds can still miss one-third of early-
stage HCC due to its suboptimal sensitivity often leading to other expensive diagnostic techniques
(i.e. computed tomography (CT), magnetic resonance imaging (MRI), and liver biopsy) being
required10. With additional imaging or invasive techniques, sensitivity is improved, but false positives
remain in 20% of patients, with some patients undergoing repeated CT or MRI screening or invasive
techniques such as liver biopsy11.

Considering the high mortality rate of HCC and the lack of earlier HCC detection by the current
diagnostic tools, artificial intelligence (AI) has the potential to improve lesion detection, patient qual-
ity-of-life, and efficient healthcare resource allocation. AI has already demonstrated favorable results,
with AI models consistently outperforming clinicians in the interpretation of ultrasounds, CT, and MRI
scans12. When added to MRI, AI could anticipate better sensitivity and specificity and make it more
likely to identify small lesions (< 1 cm), ultimately leading to less usage of unnecessary invasive diag-
nostic techniques, in this case liver biopsies, or more extensive treatment due to delay in diagnosis.
Nonetheless, AI is paired with additional costs, and it is therefore important to investigate whether
the additional costs are worth the additional benefits when implementing AI in assessing diagnostic
imaging results. However, to our knowledge, no cost-effectiveness analyses have been published on
AI tools used to enhance earlier HCC detection12.

Addressing this gap in knowledge on the economic impact of AI tools used to enhance earlier HCC detec-
tion is critical to limit false positive rates and the need for invasive diagnostic techniques, ultimately ensuring
appropriate implementation of AI in health care within cirrhotic patients who have or will have developed
HCC throughout their lifetime. To address this gap, a cost-effectiveness analysis will be performed to provide
evidence-based guidance on whether AI-enhanced MRI should be integrated into routine HCC surveillance
strategies for cirrhotic patients. Given the complexity of healthcare decision-making, model-based economic
evaluations enable simulating lifelong effects and costs when comparing the implementation of AI in health-
care compared to the usual care (UC). This study is part of the European Cancer Image Platform Linked to
Biological and Health Data for Next-Generation Artificial Intelligence and Precision Medicine in Oncology
(EuCanImage) that represents a unique coalition of expertise developing a GDPR-compliant integrated plat-
form for large scale cancer imaging that can significantly enhance the potential of AI in oncology13.

2. Methods

2.1. Patient group

Our model evaluated the cost-effectiveness of implementing an AI-assisted MRI tool for more accur-
ate HCC detection in patients who have been diagnosed with cirrhosis in the past and are adherent
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to biannual screening appointment for possible HCC. Only cirrhotic patients at risk of developing
HCC and who are adherent to the biannual screening procedures were considered. It is important to
note that, throughout this article, more accurate HCC detection refers to the assumption that higher
specificity and sensitivity of a diagnostic tool can lead to earlier detection of HCC. Earlier detection
should not be confused with early-stage cancer. More specifically, earlier detection refers to the time
when cancer is found whereas early-stage cancer describes how advanced the cancer is at diagnosis.
While earlier detection can lead to diagnosing early-stage cancer, some cancers are detected earlier
but already at an advanced stage. The Italian Medicines Agency’s National guidelines for conducting
economic evaluations was used14. The Consolidated Health Economic Evaluation Reporting Standards
for Interventions That Use Artificial Intelligence 2024 (CHEERS-AI) was used to report our study (see
Supplementary Table 1)15. A health economic plan was developed prior to data analysis (see
Supplementary Table 2).

2.2. AI tool and setting

Based on the NICE digital health categories, the AI tool is classified as tier 3b as the AI tool aims to
improve HCC diagnosis16. The AI tool was intended to be non-directive, retaining the healthcare profes-
sional’s autonomy to make care decisions. The impact of the AI tool on the outcomes was determined
through open discussion with the EuCanImage consortium clinical experts and AI engineers, which were
noted down via field notes and validated with CCM, LA, and MH. The training dataset used to develop
the AI tool was based on real-world cases from four clinics in Europe (Poland, Italy, Lithuania, and
Spain). Due to limited country-specific data from most of these countries, data sources used to develop
the economic model were based on existing literature on patient populations from Italy.

In summary, cirrhotic patients attended their biannual screening appointment, where they
received an ultrasound. Additional diagnostic tools including a CT, MRI, or biopsy, were used,
respectively, if needed based on the sensitivity and specificity of the previous imaging technology.
Once diagnosed with HCC, care was based on the Barcelona Clinic Liver Cancer (BCLC) staging sys-
tem17 that classifies HCC based on tumor characteristics and liver function. For early-stage HCC, sur-
gical resection or liver transplantation is recommended. If HCC is already at a progressive stage,
transarterial chemoembolization (TACE) and systemic therapies like sorafenib are typically involved.
The AI tool was developed to optimize MRI imaging reading by enhancing the conventional sensi-
tivity and specificity of MRI semi-qualitative interpretation. However, no changes were made to the
diagnostic and treatment patient management pathway. Figure 1 summarizes the comparison of AI
to the usual care pathway.

Static models for segmentation and classification were based on 969 patients, each one containing
imaging of T1 post-contrast and T2 MRI sequences (1,211 images in total). Performance evaluation was
based on a held-out cohort of 30% of the total sample (363 images from 290 patients), stratified accord-
ing to patient ID (so that images belonging to a certain patient were either used only for training or
only for testing), center, gender, presence of chronic hepatitis or liver cirrhosis, and diagnosis (benign
lesions or HCC). This study was part EuCanImage project under the European Union’s Horizon 2020
Research and Innovation Programme, grant agreement No 952103.

Figure 1. Comparison arms explained. UC, usual care; AI, artificial intelligence; CT computed tomography; MRI, magnetic
resonance imaging.
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2.3. Model structure

The model structure included a decision tree followed by a state-transition Markov model from a health-
care perspective using a lifetime horizon, in line with the Italian Medicines Agency’s National guidelines
for conducting economic evaluations14. The BCLC management guidelines were used as a foundation
for our model. The model structure and patient management were further verified via semi-structured
interviews with at least one clinician of each EuCanImage clinic. Due to availability constraints of the
clinics, some clinicians opted for a digital questionnaire for model verification.

A decision tree with consecutive Markov models were employed to perform simulations based on
existing literature. The decision tree provides information on the short-term effects of implementing an
AI tool during HCC screening, including total screening costs, cancer detection rates, and rates of false
and true positive or false and true negative HCC diagnosis. The two branches of the decision tree
reflected whether patients received the AI tool or UC. The Markov models simulate then the long-term
lifetime quality-adjusted life-years (QALYs) and costs of implementation of such an AI tool compared to
standard of care. The analyses were conducted using R Studio version 2.4.3.

2.3.1. Decision tree model
The decision tree describing the possible outcomes is shown in Figure 2. Following initial screening via
ultrasound, where it was assumed that all patients were adherent to the screening procedure, patients
received additional diagnostic imaging techniques depending on the presence or size of the lesion.
Patients either had a presence or absence of cancer, which was detected or missed by the imaging tech-
niques (ultrasound, CT, MRI, biopsy). The need for multiple diagnostic imaging techniques was deter-
mined based on the sensitivity and specificity of their prior imaging scans. The patients entering the
decision tree have the chance of entering one of four scenarios for their diagnosis: true positive, false
negative, false positive, or a true negative diagnosis for HCC. All input variables are presented in
Table 1. These variables were derived from a targeted review of published literature. Searches were con-
ducted in PubMed and Google Scholar using keywords and search terms related to cost-effectiveness in
cirrhosis and HCC. Articles were included if they reported on an original article reporting on either clin-
ical outcomes, costs, utilities, cost-effectiveness analyses, or mortality rates relevant to the model

Figure 2. Decision tree structure that provides four possible scenarios for the state-transition Markov model. UC, usual
care; AI, artificial intelligence.
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structure. The final parameters were selected based on relevance, data quality, and alignment with the
model’s requirements.

2.3.2. Markov models
To simulate lifelong effects in HCC diagnosis and following the decision tree, patients entered a Markov
model. Each cycle consisted of 6months, aligning with the biannual screening intervals and previous
studies5,8, with a maximum end age of 100 years old or death. Health states included cirrhosis, diag-
nosed cancer, cancer progression, remission, and death. No distinction was made between BCLC staging.
Within each state, patients received treatment and were considered stable. Remission refers to cancer
patients having received successful curative treatment. All patients entered the Markov model in either
the diagnosed cancer or cirrhosis health state. Depending on whether their cancer detection was a true
positive result or a false negative, patients would start in the diagnosed cancer health state and stayed
there or transitioned to either the remission or cancer progression health state. Patients with a true
negative or false positive result would start in the cirrhosis health state and had the possibility to stay
here or still develop HCC in their lifetime, transitioning to the same possible health states as stated
above, depicted in Figure 3. Patients in the false negative scenario started in the diagnosed cancer
health state and received biannual screening during this state, due to the lacking information on transi-
tion rates to cancer progression, only the mortality rate and costs were adjusted for these patients.
More specifically, patients with a false negative diagnosis had a higher mortality rate in the first year of

Table 1. Input parameters.
Parameters Parameter values Literature

Patient probabilities and diagnostic accuracy
HCC prevalence 0.56 18

Starting age 50 10

Sensitivity ultrasound 0.70 33

Sensitivity MRI 0.76 34

Sensitivity CT 0.63 34

Sensitivity biopsy 0.89 34

Sensitivity AI tool 0.90 –
Specificity ultrasound 0.94 33

Specificity MRI 0.78 34

Specificity CT 0.82 34

Specificity biopsy 0.93 34

Specificity AI tool 0.90 –
Transition and mortality rates
Transition rate cirrhosis to diagnosed cancer 0.05 9

Transition rate diagnosed cancer to remission 0.26� 35

Transition rate remission to diagnosed cancer 0.19 36

Transition rate diagnosed cancer to cancer progression 0.15�� 37

Mortality rate cirrhosis (6-year) 54% 20

Mortality rate HCC (1-year) 68% 6

Mortality rate undiagnosed HCC (1-year) 56% 22

Hazard ratio remission versus cirrhosis 0.95 21

Costs (2023 e)
Ultrasound 57 38

MRI 238 38

CT 184 38

Biopsy 242 38

AI tool 300 –
Cirrhosis (yearly) 1950 5

False positive diagnosis (yearly) 1817 29,39

HCC cancer (yearly) 7638 27

False negative diagnosis consequences (yearly) 14865 31,40

Cancer progression (yearly) 7227 27

Remission (monthly) 195 28

Utilities
Utility cirrhosis health state 0.78 1

Utility diagnosed cancer health state 0.64 18

Utility cancer progression health state 0.40 19

Disutility remission 0.13 24

Disutility extra screening false positive 0.01 1

Abbreviations: HCC, hepatocellular cancer; MRI, magnetic resonance imaging; CT, computed tomography.�The average was taken between male and female reported data.��Transition rate was taken from intermediate stage HCC cancer to advanced stage HCC cancers.
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the Markov model and contained additional costs due to late HCC diagnosis in the diagnosed cancer
health state. Patients in the false positive scenario were different from true negative patients due to dis-
utility and extra costs in the cirrhosis health state due to additional screening needed to determine the
false positive diagnosis. Patients who entered the Markov model with a false negative diagnosis were
assumed to have been correctly diagnosed with having HCC within 6months after initial screening.
Patients who entered the Markov model with a false positive diagnosis were assumed to have been cor-
rectly ruled out form having HCC within 6months after initial screening. Once cancer progression
occurred, no further improvement in survival was assumed. Patients in this health state were not consid-
ered eligible for remission at any point, and only stabilization of disease was deemed possible for which
case they would remain in the cancer progression health state until death. Compared to patients in the
diagnosed cancer health state, patients classified with cancer progression had higher costs and a lower
quality-of-life score. Upon transitioning into the death state, all patients remained in this state
indefinitely.

2.4. Model input data

2.4.1. Patient sample
The starting age was 50 years old, and no difference was made in gender as clinical, cost, and effective-
ness profiles within HCC do not significantly vary by gender and limited data could be found on input
parameters stratified by gender. The prevalence of HCC was 56%18 and the annual HCC incidence for
patients with cirrhosis is about 5%5. The prevalence was aligned with previous studies, the consideration
that the Italian population has higher rates of HCC risk factors such as chronic hepatitis C, hereditary
hemochromatosis, and metabolic syndrome, and their higher levels of longevity and therefore possibility
of risk accumulation over their lifetime19.

2.4.2. Mortality
Mortality rates were calculated by health state. The cirrhosis mortality rate was based on the 6-year sur-
vival rate of Italian cirrhosis patients being 54%20 (depicted in Table 1). Mortality rates for diagnosed
cancer and cancer progression were assumed to be the same, with a 1-year mortality rate for Italian
patients being 68%6, and were appropriately converted using standard exponential formulas. The mor-
tality rate for patients in the cancer remission health state was calculated based on the mortality rate of
cirrhosis and the hazard ratio of death in remission versus cirrhosis21. For patients with a false negative
cancer diagnosis, the first-year mortality rate was assumed to be similar to undiagnosed HCC patients22.

2.4.3. Utility
Utility was based on several studies based on Italian populations8,23, with remission being based on cir-
rhosis with a disutility adjustment of 0.12724. An additional disutility was used for false positive diagnosis
due to additional screening or diagnostic testing required during the first cycle8. All utility values were
calibrated to the 6-month cycle length.

2.4.4. Performance of diagnostic techniques
Performance of the imaging techniques included the ultrasound (sensitivity: 0.70, specificity: 0.94), CT
(sensitivity: 0.63, specificity: 0.82), MRI (sensitivity: 0.76, specificity: 0.78), and biopsy (sensitivity: 0.89,

Figure 3. Markov model structure for true positive and false negative scenarios (left) and false positive and true nega-
tive scenarios (right).
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specificity: 0.93)8. Due to the fact that the AI tool was not yet developed within the study’s timeframe,
the performance (sensitivity and specificity) of the AI tool was aligned with previous estimates of Koh
et al.12 and validated by the EuCanImage developers of the AI tool. Several sensitivity analyses were con-
ducted on the sensitivity and specificity of the AI tool. It was assumed that all patients were adherent to
the screening procedures.

2.4.5. Diagnostic and treatment costs
All costs were based on the Italian Medicines Agency’s National guidelines for conducting economic
evaluations and adjusted to 2023 euros based on the consumer price index14 and were calibrated to the
6-month cycle length. The additional per-patient cost of the AI tool was set at e300 based on the will-
ingness-to-pay for diagnostic technologies and expert opinion from radiomics.bio25. Health state costs
were based on cost studies based on Italian populations and adjusted for inflation to 2023 euros.
Cirrhosis health state costs included inpatient and outpatient visits, diagnostic and laboratory testing,
medications, and procedures. Diagnosed cancer health state costs were based on patients newly diag-
nosed with HCC and included all healthcare resource utilization costs such as pharmacy fills, inpatient
stays, and health services which required hospital assistance, including surveillance appointments, phar-
macy refills, and outpatient services26. Cancer progression costs included diagnosed cancer health state
costs and additional progression costs (e.g. diagnostic exams, visits, hospitalization)27. The AI tool was
solely used in the first cycle during the initial screening. Due to lacking information on costs based on
the Italian national health service, the costs of patients in remission were based on Lillini et al.28

Additional costs due to a false negative diagnosis were assumed to be associated with higher hospital-
ization costs29,30, reflecting the increased resource utilization observed in cases where diagnostic delays
lead to more advanced disease stages requiring intensive treatment. While specific data for HCC were
limited, studies have demonstrated that diagnostic discrepancies can result in significantly longer hos-
pital stays and increased healthcare costs28. Due to lacking information on estimated cost differences
between true positive and false negative diagnoses, additional hospitalization costs were accounted for
in patients with a false negative diagnosis due to late diagnosis. No costs were associated with death.

2.5. Analysis

To estimate the total costs of AI and UC, costs from the short-term and long-term disease costs were
combined. The decision tree provided information on short-term diagnostic scenarios. The state-
transition Markov model provided life-time simulation of cirrhotic and HCC patients. The overall results
of the base-case analysis were presented as per patient average lifetime costs, accumulated quality-
adjusted life years (QALYs), incremental costs and QALYs between the two arms, and the incremental
cost-effectiveness ratio (ICER). The willingness-to-pay (WTP) threshold in Italy is not a set value, instead
the average Italian WTP threshold/QALY gained was used of e33,000/QALY gained31.

2.5.1. One-way sensitivity analyses to characterize parameter uncertainty
To characterize parameter uncertainty and explore potential differences across healthcare systems in
Europe, several sensitivity analyses were performed. One-way sensitivity analyses included changing the
following variables: (i) proportion of cirrhotic patients undergoing initial HCC surveillance 50% and 75%;
(ii) discount rate for cost and benefits 0% and 5%; (iii) HCC prevalence ±25% and −50%; (iv) transition
rates ±25%; (v) mortality rates ±25%; (vi) utility ±25%; (vii) costs diagnostic techniques ±25%; (viii) costs
health states ±25%; (ix) costs AI tool ±25%; (x) false negative first-year HCC mortality rate ±25%; (xi)
extra costs false negative ±25%; (xii) false positive disutility ±25%; (xiii) extra costs false positive ±25%;
and (xiv) starting age 60, 70, and 80. Finally, a one-way sensitivity analysis was performed incorporating
fixed costs associated with AI implementation in health care, including costs related to staffing, equip-
ment, storage, and training resource utilization (312,400 euro)32. Although the reference study focuses
on AI implementation in the United States, this intended to provide a preliminary estimation rather than
precise cost projections.

JOURNAL OF MEDICAL ECONOMICS 1029



2.5.2. Two-way sensitivity analyses
To explore potential differences in disease management within other healthcare systems, several two-
way sensitivity analyses were conducted. These included (i) diagnostic and health state costs ±25%; (ii)
performance (sensitivity and specificity) of all usual care diagnostic techniques ±25%; (iii) performance
(sensitivity and specificity) of MRI, CT, and biopsy, ±25%; (iv) performance (sensitivity and specificity) of
the AI tool at 0.80 and 0.85, respectively. Additionally, variation in screening costs (±25%) and variation
in health state costs (±25%) were analyzed with each possible combination, as well as variation in per-
formance (sensitivity and specificity) of the AI tool (±25%) and variation in costs of the AI tool (±25%)
were analyzed with each possible combination.

3. Results

3.1. Diagnostic outcomes

The decision tree estimated the proportion of patients who received the different diagnostic scenarios
in the UC arm compared to the AI arm. The AI arm had 0.1% more true positive and 0.1% less false
negative cases, with an estimated cost difference of þe25 per patient for the AI arm. Additionally, the AI
arm presented 0.004% less false positive and 0.004% more true negative cases, with a cost difference of
þe3 for the AI arm (see Supplementary Table 3).

3.2. Overall outcomes

The base-case analysis (see Table 2) revealed a marginal increase in both costs and QALYs for the AI
arm compared to UC. For patients receiving UC, the average lifetime costs for every 1,000 patients were
e16,604,800 compared to e16,610,250 for patients receiving the AI approach. With an incremental QALY
of 0.55 (2,226 vs. 2,227) and incremental costs of e5,450, the ICER was e9,888 per QALY gained, indicat-
ing cost-effectiveness with the average Italian WTP threshold of e33,000/QALY gained.

3.3. Sensitivity analyses

3.3.1. One-way sensitivity analyses
Most variables had limited impact on ICER values. For example, varying the discount rate between 0%
and 5% demonstrated ICERs of e9,189 and e10,380, respectively (depicted in Table 3). Most variation in
ICER values was seen in mortality rates, specific first-year mortality adjustments due to false negative
diagnosis, and additional costs for the AI. More specifically, increasing and decreasing mortality rates by
25% presented variation in ICERs of e15,076 and e2,731, respectively. When adjusting solely the one-
year higher mortality rate in patients with a false negative diagnosis, a 25% decrease and increase
demonstrated an ICER value of −e643 and e13,767, respectively. The cost of the AI tool significantly
influenced its cost-effectiveness, showing incremental cost-savings of −e135 with a 25% decrease in AI
costs and an increase in incremental costs of e19,911 with a 25% increase in AI costs. An additional
cost-saving scenario was when the performance of the UC diagnostic techniques decreased by 25%.
Scenarios that did not lead to the AI-based approach being cost-effective were where the performance
(sensitivity and specificity) of the AI was below 0.85 or the performance of the UC diagnostic techniques
(ultrasound, MRI, CT) increased by 25% (performance of 0.85: e35,084, performance of 0.8: e123,359).

Table 2. Average lifetime costs, accumulated QALYs, incremental costs and QALY per 1,000 patients, and ICER of base-
case analysis.

UC AI Incremental

Costs e16,604,800 e16,610,250 5,450 e

QALYs 2,226.7 2,227.3 0.55
ICER – – 9,888 e

Abbreviations: UC, usual care; AI, artificial intelligence; QALY, quality-adjusted life-years; ICER, incremental cost-effectiveness ratio.
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Table 3. One-way and two-way sensitivity analyses, incremental costs and QALY per 1,000 patients, and ICER.
Parameters Parameter alterations Incremental costs Incremental QALYs ICER

Base case 5,450 e 0.55 9,888 e

One-way sensitivity analysis
Proportion of cirrhotic

patients undergoing
initial surveillance

50% 3,962 e 0.28 14,308 e

75% 7,753 e 0.80 9,710 e

Discount rate (cost and
benefits)

0% 5,584 e 0.61 9,189 e

5% 5,380 e 0.52 10,380 e

HCC prevalence −25% 7,753 e 0.80 9,710 e

−50% 3,962 e 0.28 14,308 e

þ 25% 11,269 e 1.33 8,482 e

Transition rates −25% 4,243 e 0.56 7,564 e

þ 25% 6,409 e 0.54 11,879 e

Mortality rates −25% 1,525 e 0.56 2,731 e

þ 25% 8,034 e 0.53 15,076 e

Starting age 60 5,446 e 0.55 9,887 e

70 5,446 e 0.55 9,887 e

80 5,442 e 0.55 9,890 e

Costs AI tool −25% −74 e 0.55 −135 e

þ 25% 10,966 e 0.55 19,911 e

False negative mortality
rate in the first year

−25% −205 e 0.32 −643 e

þ 25% 10,425 e 0.76 13,797 e

False negative extra
hospitalization costs

−25% 9,692 e 0.55 17,598 e

þ 25% 1,199 e 0.55 2,177 e

False positive disutility −25% 5,446 e 0.55 9,894 e

þ 25% 5,446 e 0.55 9,882 e

False positive extra costs −25% 5,463 e 0.55 9,918 e

þ 25% 5,429 e 0.55 9,857 e

Performance AI Sensitivity/specificity: 0.8 19,392 e 0.16 123,359 e

Sensitivity/specificity: 0.85 12,419 e 0.35 35,084 e

Costs all diagnostic
techniques

−25% 7,117 e 0.55 12,922 e

þ 25% 3,775 e 0.55 6,854 e

Costs health states −25% 7,933 e 0.55 14,405 e

þ 25% 2,958 e 0.55 5,371 e

Utility all health states −25% 5,446 e 0.41 13,173 e

þ 25% 5,446 e 0.69 7,914 e

Per patient AI costs and
fixed costs

e300 þ e312,400 22,999,000 e 0.55 41,759,286 e

Two-way sensitivity analysis
Performance of all usual

care diagnostic
techniques

Sensitivity/specificity: − 25% −8,207 e 1.53 −5,340 e

Sensitivity/specificity: þ25% 7,881 e 0.13 59,364 e

Performance and cost MRI Sensitivity/specificity:
− 25%

Costs: −25% −908 e 0.79 −1,154 e

Sensitivity/
specificity: þ25%

Costs: þ25% 12,275 e 0.31 39,008 e

Performance and cost CT Sensitivity/
specificity: −25%

Costs: −25% 7,340 e 0.69 10,661 e

Sensitivity/specificity:
þ 25%

Costs: þ25% 3,765 e 0.41 9,114 e

Performance and cost
biopsy

Sensitivity/specificity:
þ 25%

Costs: þ25% 3,518 e 0.69 5,110 e

Sensitivity/specificity:
þ 25%

Costs: þ25% 7,373 e 0.41 17,850 e

Performance and cost AI Performance: 0.8 Costs: −25% 13,370 e 0, 16 85,051 e

Performance: 0.85 Costs: −25% 6,648 e 0,35 18,780 e

Performance: 0.9 Costs: −25% −74 e 0.55 −135 e

Performance: 0.8 Costs: þ25% 25,414 e 0,16 161,667 e

Performance: 0.85 Costs: þ25% 18,190 e 0,35 51,388 e

Performance: 0.9 Costs: þ25% 10,966 e 0.55 19,911 e

Diagnostic and health state
costs

Diagnosis: −25% Health states: −25% 9,605 e 0.55 17,439 e

Diagnosis: −25% Health states: þ25% 4,629 e 0,55 8,405 e

Diagnosis: þ25% Health states: −25% 6,262 e 0,55 11,370 e

Diagnosis: þ25% Health states: þ25% 1,287 e 0.55 2,337 e

Abbreviations: ICER, incremental cost-effectiveness ratio; HCC, hepatocellular cancer; AI, artificial intelligence; MRI, magnetic resonance imag-
ing; CT, computed tomography.
In bold, scenarios that do not lead to cost-effectiveness.
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3.3.2. Two-way sensitivity analyses
Combining changes in performance and costs of AI presented significant variability in ICER values. For
example, a reduction in performance (sensitivity and specificity) of 0.85 with a reduction of AI costs by
25% resulted in an ICER of e18,780, however a performance of 0.80 with increased costs resulted in an
ICER of e161,667. Two-way sensitivity analyses on varying diagnostic costs and costs by health state
demonstrated marginal changes in ICER values but demonstrated the obvious compounding effect on
ICER values when decreasing or increasing both variables (e2,337 vs e17,439), depicted in Table 3. An
additional cost-saving scenario included when the cost of the AI tool decreased by 25% and its perform-
ance increased to 0.9.

4. Discussion

This study pioneers in presenting the economic impact of AI as a tool for more accurate and, therefore,
earlier detection of HCC in cirrhotic patients. Although there is a marginal impact on QALYs, the results
of this study indicate that, even in a progressive disease like HCC where mortality rates are high, an AI
tool for earlier detection is cost-effective. The small incremental benefits observed in this study suggest
that cost-effectiveness of AI in this context may be limited by broader systemic factors, such as the spe-
cific imaging technique that the AI is designed for, and at which stage this imaging technique is used.
For example, having an AI that is designed for the first imaging technique used would have a greater
clinical and economic impact than an AI designed for an imaging technique that is usually used as a
last approach. Although this study demonstrated little benefits of the AI tool, it is important to note the
secondary synergistic effects of AI on usual care. For example, a radiologist using an AI tool as a first or
second reader achieves higher accuracy compared to one who does not utilize an AI tool41.

While the AI tool was demonstrated to be cost-effective, the marginal differences in QALYs highlight
an important consideration. Due to the progressive nature of HCC and the high mortality rate in the first
year of diagnosis, the burden of HCC may not be substantially mitigated solely by earlier detection42.
Further advancements in therapeutic options and strategies to improve utilization rather than in improv-
ing performance of diagnostic tools alone might provide greater potential for improving patient out-
comes43. Therefore, the AI’s benefit might be more pronounced in other stages of the treatment
pipeline or in diseases with lower mortality rates. Moreover, this AI tool was specifically developed for
integration with MRI, a costly diagnostic technique that is typically reserved for cases where ultrasound
and CT yield inconclusive results. In this case, the AI’s impact is further limited by its confined role and
narrow patient subset. As the analysis of economic impact was performed after the AI was developed,
the alignment with economic opportunities during the design phase might have been overlooked44.
Besides the high mortality rate, our study demonstrated that the cost of AI was another pivotal eco-
nomic driver within earlier detection of HCC. By solely fluctuating the cost of AI by 25%, although cost-
effective, the ICER varied from being cost-saving to e19,911/QALY. This emphasizes the importance of
optimizing AI development and application costs to ensure economic feasibility. Lastly, it is important to
note that the variation of HCC occurrence within cirrhotic patients varies between countries45. For
example, a French and Belgian cohort observed an annual HCC incidence of 2.9%46, while the Italian
incidence rises to 5%5. The Italian population further distinguishes itself due to its large proportion of
patients having risk factors that significantly impact the chance of developing HCC, namely chronic
hepatitis C, hereditary hemochromatosis, and metabolic syndrome and the higher levels of longevity,
further elevating the accumulated risk. For example, for patients who have cirrhosis due to hereditary
hemochromatosis, a 5-year cumulative HCC risk of 21% has been reported47.

Besides providing information to policymakers on the feasibility and value of an AI tool for HCC
detection in cirrhotic patients, the results of this model shed light on several broader implications. First,
due to the marginal benefits demonstrated in this study and assessing literature, the controversial dis-
cussion on the focus of improving earlier detection rather than other strategies such as increasing
screening utilization is further confirmed in this study42. Second, this study highlights the importance
and need of robust economic evaluations of AI in healthcare and the currently disproportionally low
numbers of economic evaluations on AI applications in healthcare settings compared to the research
published on AI developments for clinical use48,49 with the number of trials on AI having more than
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doubled since 202150. A crucial point highlighted by our study is the importance of health economic
involvement in the early stages of AI development to more effectively guide the impact of AI and ensure
alignment with economic and clinical considerations needed to maximize AI’s value in clinical applica-
tion. Last, this study pinpoints the areas where AI development should be improved. Shifting the
perspective on economic evaluations from proving a summative judgement in the form of expected
cost-effectiveness to utilizing economic evaluations for the purposes of exploring possible costs and out-
comes in the form of informative guidance could revolutionize healthcare resource allocation51.

This study holds several limitations. First, due to limited gender-specific utility and cost data, the
model did not incorporate more elaborate disease stages such as in-depth adjustments of transition
rates, mortality rates, costs, and utility based on the Barcelona classification (stages 0, A, B, C, D) or
based on gender. Including these stages or gender differences could provide a more nuanced under-
standing of the economic and clinical impact of AI-based HCC detection. Additionally, due to the study’s
timeframe, the effect of risk factors that impacts the chance of developing HCC, such as chronic hepatitis
C, hereditary hemochromatosis, and metabolic syndrome, were not included in this study. Second,
assumptions made within the false negative diagnostic scenario might have led to under- or overesti-
mation of benefits. An additional cost was attributed to late detection of HCC within this scenario, gen-
erally due to the higher hospitalization rate and need for more intensive care for these patients.
Nonetheless, one-way sensitivity analyses did not demonstrate a significant impact on the overall cost-
effectiveness conclusions drawn from the model. Third, the model is also not directly translating to other
European countries due to the reliance on country-specific data needed for this model. For example,
other countries require an additional societal perspective, which was not included in this study.
Furthermore, although a probabilistic sensitivity analysis would have tested the uncertainty of our model
to a greater extent, due to lacking information on the parameter confidence intervals and the conse-
quent need to rely heavily on assumptions, a probabilistic sensitivity analysis was not performed in this
study. Nonetheless, the two-way sensitivity analyses aim to provide general information for application
in other countries with, for example, higher patient costs or lesser performance of tools. Fourth, an
important equity consideration is that MRI access is limited to more privileged healthcare settings. The
added benefit is that AI-enhanced MRI may therefore preferentially impact patient populations with bet-
ter access to advanced imaging and thereby potentially widen existing disparities in disease surveillance
and diagnosis. It is further important to note that the costs of the AI were solely the per-patient cost for
usage. These costs did not include fixed implementation costs such as software integration, staff train-
ing, and infrastructure, which may represent significant expenses during initial implementation. By
including fixed costs published by Afshar et al. in 202532, our sensitivity analyses show that the AI would
not be cost-effective under these conditions. The impact of fixed costs could particularly affect smaller
centers where fewer patients are scanned annually, potentially diminishing the cost-effectiveness of the
AI tool due to limited ability to benefit from economies of scale.

Specifically, within the field of HCC, future research should entail robust cost calculations of HCC
healthcare costs based on disease progression. Additionally, uncertainty on mortality rates of HCC pro-
gression should be further investigated to increase the reliability of this analysis. Future research should
assess the cost-effectiveness of the AI tool based on risk factors such as chronic hepatitis C, hereditary
hemochromatosis, and metabolic syndrome through, for example, a microsimulation model. Lastly, add-
itional attention should be paid to the geographic and socioeconomic disparities in access to surveil-
lance and follow-up treatment which influence disease progression and surveillance effectiveness.
Furthermore, our model assumes that all cirrhotic patients who receive the screening invite undergo sur-
veillance. Future research could explore the comparative cost-effectiveness of AI-based improvements in
diagnostic performance compared to interventions designed to improve adherence to existing surveil-
lance protocols. On a broader perspective, further research should focus on exploring different applica-
tions of AI, such as treatment prediction and response monitoring, aiming to understand the full
potential impact of AI when integrated into clinical care. Expanding the application to different stages in
the patient’s trajectory, diverse disease context, and screening modalities could create a more compre-
hensive understanding of the AI’s role on patient outcomes and healthcare efficiency, which may also
help reduce disparities in detection by increasing access in under-resourced settings.
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Conclusion

The findings of this study demonstrate that an AI-based approach to earlier detection of HCC in cirrhotic
patients is cost-effective at e10,000/QALY at a willingness-to-pay threshold of e33,000/QALY gained. The
findings further highlight important considerations for integrating AI into clinical practice. Although it
remains cost-effective despite varying key economic drivers, such as AI cost and mortality rates, the
value of AI may be constrained by the mortality-driven and progressive nature of HCC. Additionally, inte-
grating health economic evaluations in the early stages of AI development can ensure that its applica-
tions are aligned with areas that provide most substantial economic and clinical benefits for patient and
society. Future research should focus on analyzing different applications of AI.
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