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Antisense RNA ribozymes have intrinsic endonucleolytic activity to effect cleavage of the target RNA.
However, this activity in vivo is often controlled by the dominance of antisense or other double-
stranded RNA mechanism. In this work, we demonstrate the in planta activity of a hammerhead
ribozyme designed to target rep-mRNA of a phytopathogen Mungbean Yellow Mosaic India virus
(MYMIV) as an antiviral agent. We also found RNA-silencing is induced on introduction of catalyti-
cally active as well as inactive ribozymes. Using RNA-silencing suppressors (RSS), we demonstrate
that the endonucleolytic activity of ribozymes is a true phenomenon, even while a mutated version
may demonstrate a similar down-regulation of the target RNA. This helps to ease the confusion over
the action mechanism of ribozymes in vivo.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction hard to ignore. In the battle between the hosts and viruses, the lat-
The hammerhead ribozyme (hRz) is a class of catalytic RNA
with characteristic hammerhead-like secondary structural motif.
Though they were originally discovered in sub-viral plant patho-
gens, they have been recently shown to be associated with many
other genomes as well [1,2]. They are among the well-studied class
of ribozymes with known structure and catalytic chemistry [3–5].
The hRzs are relatively small in size with an ease of manipulation
to design a sequence specific trans-cleaving motif against the RNA
of interest containing ‘‘GUX’’ cleavage site [6]. These features have
made them attractive tools for varied biotechnological applications
including inhibition of viral genome replication. There are numer-
ous reports of applications against various plant and animal
viruses, including human immunodeficiency virus, hepatitis B
virus, hepatitis C virus, dengue fever virus, influenza virus, SARS
virus, herpes simplex virus, potyvirus, plum pox virus etc. [7–12].
Even though, other nucleic acid based anti-viral strategies, such
as RNA-silencing, has gained impetus, the impact of ribozymes is
ter species have evolved to encode for proteins or nucleic acids
with the potential to suppress RNA-silencing [13–15]. But in case
of ribozyme attack, no such counter-attack strategies from viruses
are known, thereby, attracting researchers to design ribozyme
based antiviral strategies [10–12,16–18].

The use of ribozymes as antiviral agents has been limited to
RNA viruses with only a little exploration of its effect on DNA
viruses. Infact, DNA viruses offer a greater opportunity for ‘Rz’s
to target the sub viral RNA species encoding the essential proteins
instead of the whole viral genome [10,19,20]. In our previous
report, we have designed a hammerhead ribozyme against Rep
protein encoding RNA of Mungbean Yellow Mosaic India virus
(MYMIV), a member of family geminiviridae [20]. The family
Geminiviridae is one of the largest and most important families of
phytoviruses. They have single-stranded circular DNA genomes
encoding genes that diverge in both directions from a virion strand
origin of DNA replication. The Geminiviral encoded proteins have
the potential to redirect host machineries and processes to estab-
lish a productive infection. These interactions reprogramme plant
cell cycle and transcriptional controls, inhibit cell death pathways,
interfere with cell signaling and protein turnover and suppress
defense pathways [21,22]. As a consequence, these group of viruses
cause huge agro-economical losses worldwide and hence special
attention for the development of antiviral strategy against them
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needs to be deployed .The ribozyme technology, as an antivirus
strategy, could be of major significance for the geminiviridae for
the following reasons. First, like most RNA viruses and some
viroids, DNA containing geminiviruses might induce eventual virus
resistance via RNA-silencing mechanism, and the additional
introduction of ribozyme could complement the host defense
[21–23]. Secondly, the geminiviruses, including MYMIV, encode
for RSSs that inhibit one or more distinct steps of RNA-silencing
pathways [24–26]. Thus ribozyme strategy might serve as second
line of defense in cases where the RNA-silencing strategy alone
might fail to restrict the virus.

In this work, we have demonstrated in planta activity of the
anti-rep ribozyme (Rz) as an antiviral strategy to MYMIV. We have
also addressed the issue whether the resultant down-regulation of
the target gene is mediated by the catalytic activity using the
catalytically mutant anti-rep ribozyme (mRz). The mutation
hampered the Mg2+ binding of Rz [20]. In this particular event, the
ribozyme activity was over-shadowed by the host RNA-silencing
activity. To unfold the true ribozyme activity, we used the RSS that
suppressed the endogenous RNA-silencing effect. To our best
knowledge, this is the first report that uses RSS to visualize ribo-
zyme activity. The designed anti-rep ribozyme could successfully
demonstrate antiviral activity in the presence of RSS.

2. Materials and methods

2.1. Plant growth

Tobacco plants (Nicotiana tabacum cv. Xanthi) were grown in
greenhouse under controlled condition of 25 �C and 16 h daylight.

2.2. Vector construction and transformation

The chemically synthesized oligonucleotides coding for ribo-
zyme and mutant ribozyme [20], were annealed and directly
cloned down-stream of CaMV-35S promoter in pRT100 and subse-
quently mobilized into a binary vector pCAMBIA1391Z at HindIII
restriction site, as an expression cassette. The plasmids were
designated as Rz, mRz and empty vector (EV) for pCAMBIA1391Z
ribozyme, mutant ribozyme and vector alone, respectively. Target
gene and viral amplicon was provided through Cam/VAAC2M/GFP
vector [25,27], a MYMIV (NCBI accession No. AF126406) based
mini-viral amplicon with a non-sense mutation at AC2 gene and
tagged with a reporter gene mGFP5 cloned in pCAMBIA1391Z
vector [detailed vector construction was described in ICGEB
activity report (2004), PhD thesis of M. N. Islam (2005)]. RSSs
were provided asMYMIV-AC2 orFHV-B2 ORFs cloned in pBI121
binary vector between 35S-promoter and Nos-terminator using
BamHI-SacI and XbaI-BamHI restriction sites, respectively. All
the constructed vectors were transformed into Agrobacterium
tumifaciens LBA4404 for agro-infiltrations.

2.3. Agrobacterium culture and co-infiltration

Agrobacterium constructs were grown in YEM broth under
kanamycin antibiotic selection (50 mg/ml) at 30 �C 250 rpm till
the OD reaches 0.8–1.0 at kmax 600. Cells were collected by centri-
fugation at 3000 rpm for 5 min followed by their resuspension in
fresh YEM broth without antibiotic. The homogenous cell suspen-
sion was infiltrated into the selected young leaves [25,28] (using
a 5 ml needleless syringes). The amount of cell suspension used
for double-co-infiltration with Cam/VAAC2M/GFP and Rz (or mRz
or EV) was mixed in a ratio of 1:2 and 1:2:1 for triple-co-infiltrations
with Cam/VAAC2M/GFP, Rz and RSS. All the agro-infiltrations were
carried out in wildtype tobacco cv. Xanthi leaves of 2 months old
plant. The infiltrated leaves were plucked from the plant 12 days
post infiltration (dpi).

2.4. RT-PCR and PCR analysis

Leaf samples were collected at 12 dpi total RNA was extracted
following trizol-RNA isolation protocol (Invitrogen) and semi-
quantitative RT-PCR analysis were carried out to monitor the levels
of MYMIV-rep mRNA [25]. Oligonucleotides used for the semi-
quantitative RT-PCR were as follow:

Repfwd: 50-TACGGTTCCCTTCCAGCAAAACGA-30

Reprev: 50-TCAATTCGAGATCGTCGAATTGCT-30

Genomic DNA was isolated from the 12 dpi leaf samples by
standard CTAB method and treated with DpnI restriction enzyme
for 6 h at 37 �C [25,29]. PCR methodology was used to semi-
quantify the amount of viral replicon in each infiltrated samples
[25,29]. Oligonucleotides used for the semi-quantitative PCR were
as follows:

GFPfwd: 50-GCTCTAGACCATGGCAAGTAAAGGAGAAG-30

Reprev: 50-TCAATTCGAGATCGTCGAATTGCT-30

The RT-PCR and PCR were carried out for 22 cycles with actin
gene as the internal control. The amplification products were sep-
arated on 1% agarose gels and the band intensities were quantified
using Quantity One (BioRad, USA) software.

2.5. Small RNA analyses by Northern blot

Small RNAs extracted from 12 dpi leaf samples were separated
on 7 M Urea-15% PAGE [25] and transferred to Hybond N+ mem-
brane (GE Healthcare, USA) by electroblotting in 1� TBE buffer at
0.32 mA cm�2 for 50 min [28]. The Northern blot was probed with
P32a-labeled dCTP MYMIV-rep prepared by nick translation of rep
template using Invitrogen kit. The bands emerged post hybridiza-
tion were estimated for relative intensities by densitometric
scanning using Typhoon 9210 scanner and analyzed by Image
Quant TL software (GE Healthcare, USA).

2.6. In vitro transcription and cleavage of rep transcript by ribozyme

The chemically synthesized oligonucleotides coding for Rz and
mRz were annealed and ligated to the double digested (SmaI and
BamHI) pSGI vector down-stream of T7 promoter, designates as
pSGI-Rz and pSGI-mRz [20]. Similarly, rep gene was cloned in
between the BamHI and HindIII sites of pET28a, denoted as
pET28a-rep. The constructs were linearized (pSGI-Rz/ pSGI-mRzwith
restriction enzyme BamHI and pET28a-repwith ClaI) to serve as
templates for the in vitro transcription. Riboprobe in vitro tran-
scription kit (Promega) was used to in vitro transcribe unlabeled
Rz (or mRz) and a32P-UTP (3000 Ci/nmol) radioactively labeled
rep transcript [20]. The rep and Rz (or mRz) were mixed and cleav-
age reaction was carried out under standard cleavage conditions
and analyzed on 6% denaturing PAGE to separate the target from
the products [20]. The gel was vacuum dried, exposed to X-ray film
(BIOMAX MS, Kodak, USA) and the autoradiographic bands were
quantified by Alpha Imager software (Bio-Rad).

3. Results and discussion

The hammerhead ribozyme (Rz) directed against the rep-mRNA
of MYMIV with in vitro endonucleolytic cleavage activity under
physiological Mg2+concentration and pH had been reported earlier
from our group [20]. The inhibitory effect of Rz on geminiviral DNA
replication was also observed in surrogate host Saccharomyces
cerevisiae [20]. This encouraged us to investigate the Rz activity
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in planta, an essential determining step in translating this technol-
ogy for field applicability.

In this report, in planta efficiency of the anti-rep-ribozyme was
investigated with agro-infiltration based transient bioassay in
wildype tobacco cv. Xanthi [25,30]. We have used a specially
designed MYMIV based vector Cam/VAAC2M/GFP that mimics viral
replication and expresses rep-RNA under its natural promoter
[25,29]. In addition, the tagged GFP reporter gene helps in easy
visualization of the Rz effect on the target rep-RNA and viral ampli-
con (the activity of the Rz will lead to a decrease in green fluores-
cence of GFP). The Cam/VAAC2M/GFP was co-infiltrated with Rz or
the empty vector (EV) in Nicotiana xanthi leaves and analyzed on
12 dpi. Under UV illumination, the control empty vector with
Cam/VAAC2M/GFP infiltrated patches showed green fluorescence
of GFP while the ribozyme encoding vector withCam/VAAC2M/GFP
did not show GFP fluorescence but showed only red colour [due
to chlorophyll auto-fluorescence (Fig. 1A)], suggesting the possible
in planta Rz activity. Since, Rz was designed for endonucleolytic
activity against rep-RNA, we measured the rep-RNA level. The
rep-RNA specific semi-quantitative RT-PCR analysis showed
around 40% reduction in the rep-RNA level (Fig. 1B: Lanes 1 and
3) compared to the EV co-infiltration. As the Rep protein is the
most essential component of MYMIV replication machinery, the
reduction in the level of rep-RNA should adversely affect the viral
amplicon accumulation level. Semi-quantitative PCR based strat-
egy was employed to determine the viral amplicon level and
�40% reduction in the accumulation of viral amplicon was
A

B C

Fig. 1. (A–C) Evaluation of in planta efficiency of ribozyme through agro-infiltration. (A) Leaf
Rz or mRz or empty vector (EV) over UV trans-illuminator. Each of the leaves was labeled
template prepared from the co-infiltrated samples with actin amplification as the loading
with their respective actin amplification as loading control. The density graphs in (B) and
loading control.
observed in Rz treated samples in comparison to the EV control
(Fig. 1C: Lanes 1 and 3). Thus, the results indicated that the Rz
down-regulated the target RNA rep and consequent the viral
amplicon accumulation in planta. However, in order to ascertain
that the observed reductions were due to the catalytic (endonu-
cleolytic) activity of ribozyme, the above-mentioned mini-viral
vector was also co-infiltrated with the catalytically inactive
ribozyme (mRz).

Ribozyme catalysis was disabled by altering the sequence at
two base pairs (T19 ? C; C37 ? T) in the catalytic core [20]. As
desired, mRz did not show in vitro cleavage activity even after pro-
longed exposure (Fig. 2A). The mRz also caused a reduction (�40%)
in rep-RNA and viral amplicon (Fig. 1) in planta. Therefore, Rz and
mRz activities against the target RNA and viral amplicon were
indistinguishable (Fig. 1). The catalytic activity appeared redun-
dant, suggesting that the observed in planta Rz activity was possi-
bly not a true ribozyme function. This behavior was completely
unexpected and ran contrary to our speculations. However, it
raised an important question to be addressed: What could be the
underlying mechanism behind the observed reduction mediated
by Rz and mRz? Therefore, we investigated possible involvement
of other RNA based anti-gene strategies in this process. The three
major forms of RNA based anti-gene mechanisms considered here
are those of ribozyme, RNA silencing and anti-sense constructs.

RNA-silencing is induced by transient dsRNA formation and
subsequent down-regulation of the target-RNA is caused by
target-RNA specific small interfering (si) RNA in presence of
pictures of wildtype tobacco cv. Xanthi leaves co-infiltrated with Cam/VAAC2M/GFP and
at the top for the infiltrated construct. (B) The RT-PCR amplification from the c-DNA
control. (C) The semi-quantitative PCR represents 21 cycles amplification of 1.6 Kb

(C) was plotted as relative value to EV infiltration (100%) after normalizing with the
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Fig. 2. In vitro cleavage reaction, structure prediction and siRNA analysis. (A)
Autoradiogram showing comparative cleavage potential against in vitro transcribed
10 fmol radiolabelled rep-RNA transcript (Lane 1) by 5 fmol mRz (Lane 2) and
5 fmol Rz (Lane 3) at pH 7.5 and 1 mM Mg2+ concentration. Arrows show the intact
and the cleaved rep transcripts, where substrate (520 nt rep transcript), product-1
(309 nt) and product-2 (211 nt). (B) Mfold predicted secondary structure of Rz and
mRz hybridized to rep-mRNA along with their respective DG-values. (C) Evaluation
of siRNA level corresponding to the rep-mRNA from the sample co-infiltrated with
Cam/VAAC2M/GFP/ + Rz or mRz alone (Lanes 1 and 2) and in presence of the MYMIV-
AC2 (Lanes 3 and 4) by Northern blot analysis. The density graph was plotted after
normalizing the band intensity of siRNA northern blot band (top panel) with their
respective EtBr-stained 5SRNA + tRNA bands as loading control and presented as
relative value considering the mRz infiltrated sample value as 100%.
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complex host machinery. The Mfold based bio-informatics
tool [31] predicted a stable dsRNA (thermodynamic value,
DG = �48.73 kcal/mol) secondary structure from the hybridization
of rep-RNA with Rz or mRz (Fig. 2B). In ribozyme the internal guide
sequence (IGS) recognizes and hybridizes with the target RNA to
generate transient dsRNA and the mutation in mRz was placed
only in the catalytic core (not a part of the hybridization structure).
Hence, similar secondary structure was obtained for rep-Rz and
rep-mRz (Fig. 2B). The dsRNA generated in this way could possibly
induce the host RNA-silencing mechanism. Interestingly, we
observed the 22 nt length small RNA against rep-RNA in the infil-
trated 12 dpi leaf samples in case of both Rz and mRz (Fig. 2C:
Lanes 1 and 2). The nature of siRNA was also confirmed by using
the MYMIV-AC2, which is a known RNA-silencing suppressor and
inhibits the biogenesis of siRNA [32]. A remarkable decrease in
small RNA formation was observed (Fig. 2C: Lanes 3 and 4),
upon agro-triple-infiltration of Cam/VAAC2M/GFP + Rz (or mRz) +
MYMIV-AC2. It was interesting to observe higher amount of siRNA
formation with mRz, the reason for this was not clear at the
moment. However, the durability of dsRNA formation with mRz
could be speculated and might cause this higher yield of siRNA.
Thus, RNA-silencing seems to be the probable mechanism
underlying the observed in planta activity of Rz and mRz.
Therefore, it would be interesting to determine the Rz and mRz
activity in a condition where RNA-silencing mechanism is deficient
or suppressed.

Yeast species, Saccharomyces cerevisiae, exhibits all RNA based
anti-gene principles except for RNA silencing. Interestingly, in host
system S. cerevisiae, we observed adverse effect against the
rep-RNA and viral amplicon, only with Rz [20]. Next, we created
a RNA-silencing suppressed system within the experimental plant
tobacco cv Xanthi by co-infiltrating a RNA silencing suppressor,
MYMIV-AC2 [27]. In the absence of RNA-silencing mechanism as
well, Rz retained its activity and led to loss of GFP fluorescence,
along with reduction in rep-RNA levels and viral accumulation by
almost 40% (Fig. 3A and B). However, mRz showed complete loss
of antigene activity in presence of MYMIV-AC2 and was equivalent
to the empty vector control (Fig. 3A and B). The above experiment
was also repeated in presence of another RSS of heterologous
origin, viz., the insect virus Flock House Virus (FHV) encoded B2
protein [14]. In presence of FHV-B2 as well, Rz showed inhibitory
activity against the target rep-mRNA and accumulation of the viral
amplicon while the mRz behaved like an empty vector control.
Therefore, the Rz mediated activity in this event was not due to
any RNA-silencing (Fig. 3) and could be primarily ascribed to its
endonucleolytic activity. Furthermore, the above observations
clearly indicated that the principal mechanism for the mRz activity
was only RNA-silencing.

Ribozyme technology despite various successful application is
often challenged as an allied RNA based anti-gene strategies [33].
Intriguingly, our initial results also led us to regard Rz activity as
a function of RNA-silencing (Figs. 1, 2B and C). However, the true
in planta ribozyme activity was unfolded upon application of RSS.
Thus, the RNA- silencing suppressor, which is essentially a
pathogenicity factor for the virus to counter-attack the host and
establish disease, could be used as a novel biotechnological tool
to uncover another biological mechanism. In addition, a survey of
past work in this field suggested to us that down-regulation caused
by catalytically mutated ribozyme is usually attributed to the
‘antisense effect’ [34]. Interestingly, mRz designed by us showed
no antisense effect (as no mRz activity was observed in S. cerevisiae,
an antisense proficient system [20]) but induced RNA-silencing to
down-regulate the targeted RNA.

Thus, the tested Rz showed in planta inhibitory potential against
the DNA virus MYMIV and might be developed as an antiviral
strategy. Although, in the recent past, RNA-silencing had been
developed as a very important and useful technology, the advan-
tage of ribozyme technology cannot be disregarded. Considering
most of the viruses have been found to encode RSS as a pathogenic-
ity factor, the ribozyme technology becomes further important. In
case of HIV, a report on comparison of siRNA and ribozyme
targeting the same region of HIV-1 pol gene appeared and the latter
was found to be more effective against the viral accumulation [35].
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Fig. 3. (A–C) Evaluation of in planta Rz and mRz results in presence of RSS. (A) Leaf pictures of wildtype tobacco cv. Xanthi leaves co-infiltrated with Cam/VAAC2M/GFP + EV or
Rz or mRz along with MYMIV-AC2, over UV trans-illuminator. Each of the leaves was labeled at the top for the infiltrated constructs. (B) Right panel represents the RT-PCR
amplification with rep-primers from the c-DNA template prepared from the co-infiltrated samples, with actin amplification as the loading control. Left panel represents the
semi-quantitative PCR of 21 cycles amplification of 1.6 Kb band with respective actin amplification as loading control. The density graph was plotted as relative value to EV
infiltration (100%) after normalizing with the loading control for both the right and left panels. (C) Viral amplicon titer determination by RT-PCR (right panel) and PCR (left
panel) form the co-infiltrated samples of Cam/VAAC2M/GFP + EV or Rz or mRz alone or with FHV-B2. Respective loading control of actin amplification has been presented in the
bottom panel.
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Thus, ribozyme technology may be valuable for its application as
antiviral strategy alone or in combinatorial approaches to compli-
ment and/or supplement the integrative virus management
strategies.
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