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INTRODUCTION 
 

Thrombopoietin (TPO) is a primary regulator of 

megakaryopoiesis and thrombopoiesis and is a ligand 

for the receptor c-Mpl [1, 2]. TPO was first purified in 

1994, and since then, much has been learned about its 

structure, functions, and clinical uses [3, 4]. TPO 

promotes megakaryocyte lineage differentiation [5] and 

platelet production [6, 7]. TPO is also essential for bone 

marrow hematopoietic stem cell (HSC) maintenance. 

When TPO was deleted from hepatocytes in TPODsRed-

CreER knock-in mice, bone marrow HSCs were depleted 

[8]. In addition, TPO protects endothelial cells from 

apoptosis [9, 10]. We have also reported that TPO has 

an antiapoptotic effect in cardiomyocytes [11]. 

However, the mechanism by which TPO is protective  

is not well understood. In a previous study, we 

demonstrated that megakaryocytes and neurons  

possess common antigens, such as MAP2, GFAP, Tau, 

5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as 

dopamine D1 and D2 receptors [12–14]. Notably, the 

TPO receptor c-Mpl is also expressed in the central 

nervous system (CNS) [15, 16]. Thus, TPO may protect 

the murine CNS. 

 

In this study, we demonstrate that c-Mpl is expressed in 

human CNS neurons. We also show that TPO protects 

the neonatal brain by suppressing apoptosis and that this 

antiapoptotic effect is mediated through the Bcl-2/BAX 

axis. 
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ABSTRACT 
 

Thrombopoietin (TPO) is a growth factor for the megakaryocytic/platelet lineage. In this study, we investigated the 
expression of TPO and its receptor, c-Mpl, in the human central nervous system (CNS) and their roles after a neural 
insult. Our results demonstrate that both TPO and c-Mpl are expressed in the neurons of the human CNS. TPO was 
also detected in human cerebrospinal fluid. TPO was found to be neuroprotective in hypoxic-ischemic neonatal rat 
brain models. In these rat models, treatment with TPO reduced brain damage and improved sensorimotor 
functions. In addition, TPO promoted C17.2 cell proliferation through activation of the PI3K/Akt signaling pathway. 
Via the Bcl-2/BAX signaling pathway, TPO exerted an antiapoptotic effect by suppressing mitochondrial membrane 
potentials. Taken together, our results indicate that TPO is neuroprotective in the CNS. 
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RESULTS 
 

Expression of TPO and c-Mpl in human CNS 

 

To investigate the effect of TPO on CNS damage, we first 

determined its expression in the human CNS. TPO 

mRNA was detected in the human cerebral hemisphere 

and cerebellum (Figure 1A). TPO mRNA expression in 

the cerebellum was found to be higher than that in the 

cerebral hemisphere. Furthermore, TPO protein was also 

detected in human cerebrospinal fluid (CSF) (n = 10) and 

blood plasma (n = 10) (Table 1). The TPO level in CSF 

(27.75 ± 4.27 pg/mL) was significantly lower than that in 

blood plasma (341.33 ± 83.86 pg/mL). However, there 

was no correlation between the TPO levels in CSF and 

blood plasma in the same patient (Figure 1B, r = –0.09). 

 
Next, we determined whether TPO levels were different 

in patients with acute cerebral infarction compared with 

controls. Patients with acute cerebral infarction (n = 16) 

had significantly higher levels of serum TPO (296.22 ± 

32.32 pg/mL) compared to the control group (n = 45; 

192.26 ± 19.40 pg/mL, P < 0.01, Figure 2); however, 

there were no significant changes in blood cell count 

(Table 2).  

 

c-Mpl is a major receptor that mediates the response to 

TPO; thus, we also measured c-Mpl expression in human 

CNS tissues and cell lines. c-Mpl mRNA expression was 

found in human cerebral hemispheres, cerebellum, and 

C17.2 cells (Figure 3A). More importantly, we detected 

c-Mpl protein expression in neurons in human cerebral 

hemispheres, hippocampus, cerebellum, brain stem, and 

spinal cord (Figure 3B). Hippocampal neurons had the 

highest levels of c-Mpl protein.  

 

Effect of TPO in neonatal hypoxic-ischemic rat 

model  
 

After we confirmed TPO and c-Mpl expression in the 

human CNS and found that TPO expression was 

increased in patients with acute cerebral infarction, to

 

 
 

Figure 1. Expression of thrombopoietin (TPO) mRNA in human cerebral hemisphere and cerebellum. There was no correlation 
between the TPO levels in blood plasma and cerebrospinal fluid (CSF). (A) TPO mRNA expression in human cerebral hemisphere and 
cerebellum was detected by RT-PCR, n = 3. (B) Scatter plot of TPO levels in blood plasma and CSF, r = –0.09, P = 0.80, n = 10.  
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Table 1. TPO levels in human CSF (n = 10) and plasma (n = 10) by ELISA. 

0BCases CSF (pg/mL) Plasma (pg/mL) 

1 9.58 281.36 

2 20.63 342.28 

3 29.32 401.37 

4 23.44 995.54 

5 56.91 218.83 

6 34.42 123.51 

7 34.26 499.45 

8 24.19 337.62 

9 11.68 97.44 

10 33.21 115.93 

Mean ± SEM 27.75 ± 4.27 341.33 ± 83.86 

 

further investigate TPO’s effect in pathologies, we 

established a neonatal rat model of hypoxic-ischemic 

brain damage. The mortality rates of rats in the vehicle-

treated and TPO-treated groups were 12.0% and 11.0%, 

respectively (n = 16). These rats died either during 

surgery or from hypoxia. Among the surviving rats in 

the treatment and sham-operated control groups, no 

difference in total body weight was seen, with a mean 

range of 23.3-24.4 g at 1 week and 96.4-100 g at 3 

weeks after surgery. No discernable physiologic or 

behavioral changes due to toxication were observed. 

These results indicate that a successful model was 

established. 

 

Brain injury was estimated using the percentage of 

weight reduction in the ipsilateral cerebral hemisphere 

compared to the contralateral hemisphere. At both 

assessment time points (1 and 3 weeks after hypoxic-

ischemic treatment), the weights of the ipsilateral 

hemisphere (hypoxic-ischemia side) of the vehicle 

group decreased significantly compared with those in 

 

 
 

Figure 2. TPO levels in patients with acute cerebral 
infarction were higher than those in normal people. TPO 
levels in patients (n = 16) and normal people (control group,  
n = 45) were detected by ELISA. ** P < 0.01. 

the sham group (Figure 4). Pups treated with TPO for 9 

or 16 days had significantly higher weights in the 

ipsilateral hemisphere compared with those in the 

vehicle group (P < 0.05). Similar effects were observed 

in total brain weight at 3 weeks after surgery (P < 0.05). 

The contralateral brain weights of all groups were 

similar at both time points. The neuroprotective effect 

of TPO was consistent at these two time points when 

brain damage was determined by the reduced weight  

of the ipsilateral hemisphere compared with the 

contralateral hemisphere (P < 0.01, TPO vs vehicle 

group).  

 

Next, we examined brain morphology at 3 weeks after 

surgery. Vehicle-treated animals displayed severe 

atrophy in the ipsilateral hemisphere (Figure 5B). In 

contrast, TPO treatment reversed the ipsilateral atrophy, 

as determined by the morphology of the right 

hemisphere, which was similar to that of the sham-

operated control (Figure 5C). Neuron-specific enolase 

(NSE) staining of coronal sections also showed that 

vehicle-treated hypoxic-ischemic pups suffered from 

gross deformation and severe neuronal loss in the 

ipsilateral hemisphere, especially in the outer layer of 

the cerebral cortex (Figure 5A, 5B, 5D). In contrast, 

treatment with TPO decreased brain injury and 

improved neuronal damage (Figure 5C, 5D). The 

hemispheric structure of the TPO-treated group 

remained intact despite a slight reduction in size 

compared to the sham-operated pups (Figure 5C).  

 

Next we examined whether TPO treatment resulted in 

recovery of brain function and mobility in the hypoxic-

ischemic pups by performing the postural reflex test. 

Vehicle-treated pups exhibited abnormal postural reflex 

response; 16 of these pups had scores of 1 and 2  

(P < 0.05), whereas all of the sham-operated pups had 

scores of 0 (n = 12) (Figure 5E). TPO treatment 

improved postural reflex, as demonstrated by the 

increased proportion of pups with a score of 0 and the 
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Table 2. TPO levels and blood cell count in patients with acute cerebral infarction. 

Group TPO (pg/mL) WBC (×109/L) PLT (×109/L) RBC (×1012/L) 

Acute Cerebral 

Infarction (n=16) 
296.22 ± 32.32 7.53 ± 1.39 220.94 ± 26.48 4.64 ± 0.31 

Control (n=45) 192.26 ± 19.40 7.35 ± 1.49 217.38 ± 32.89 4.52 ± 0.37 

TPO, thrombopoietin; WBC, white blood cell; PLT, platelet; RBC, red blood cell. 
 

reduced proportion with scores of 1 or 2 (n = 16, P < 

0.05). However, TPO treatment did not result in full 

recovery of brain function to the level of that in sham-

operated pups. 

 

Effect of TPO on neural cells in vitro 
 

We demonstrated that TPO treatment decreases 

neuronal death and facilitates brain function recovery in 

a neonatal hypoxic-ischemic rat model. To determine 

the cellular mechanisms of TPO, we conducted 

experiments with the C17.2 cell line, an immortalized 

mouse neural progenitor cell line, because we 

previously determined that C17.2 cells express the TPO 

receptor c-Mpl (Figure 3A). TPO has a dose-dependent 

effect on the growth of C17.2 cells, as demonstrated by 

an MTT assay (Figure 6A). Previous studies have 

shown that TPO promotes cell survival through the 

AKT pathway [17–19]. In line with these observations, 

we found activation of the AKT pathway in TPO-treated  

 

 
 

Figure 3. c-Mpl mRNA and protein were expressed in neural cells and tissues. (A) c-Mpl mRNA expression in human cerebral 
hemisphere, cerebellum, and C17.2 cells was detected by RT-PCR, n = 3. (B) c-Mpl protein expression in human cerebral hemispheres, 
hippocampus, cerebellum, brain stem, and spinal cord was detected by immunohistochemistry. 
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cells (Figure 6C). To confirm that TPO promotes cell 

survival via the AKT pathway, we pretreated the cells 

with the PI3K inhibitor LY-294002 before  

TPO addition. The results showed that LY-294002 

pretreatment suppressed the TPO-induced AKT 

activation and abolished the prosurvival effect of TPO 

(Figure 6B). These results confirm that TPO promotes 

cell survival via the PI3K-AKT pathway. 

 

In addition, we investigated the antiapoptotic effect of 

TPO on C17.2 cells. Annexin V assays showed that 

TPO treatment (50 ng/mL) reduced the percentage of 

cell deaths (annexin V+/PI+) and apoptotic cells 

(annexin V+/PI–) (P < 0.05) in serum-free culture 

conditions (Table 3). These results indicate that TPO 

promotes survival of C17.2 cells. TPO treatment 

consistently led to increased levels of Bcl-2 and 

decreased levels of BAX in a time-dependent manner (0, 

5, 15, 30, and 60 mins) in C17.2 cells cultured in serum-

free media (Figure 7A, 7B), which indicates that the 

antiapoptotic effects of TPO on neural cells may be 

related to Bcl-2/BAX. 

 

Next, we determined the ability of TPO to protect 

against CoCl2-induced cell injury in PC12 cell lines. 

The 24-hour survival rate of PC12 cells decreased 

significantly in a dose-dependent manner (Figure 8A).  

Based on this result, 500 μmol/L of CoCl2 was chosen 

as the appropriate concentration to establish the 

chemical hypoxia model in subsequent experiments. A 

cell viability test showed that the protective effect of 

TPO on chemical hypoxia in PC12 cells was dose 

independent at the range of 50 to 200 ng/mL (Figure 8B). 

In addition, an apoptosis assay showed that TPO 

treatment significantly reduced the proportion of CoCl2-

induced apoptotic cells. However, TPO treatment did 

not significantly reduce the number of apoptotic cells in 

the control PC12 cells (Figure 8C). In addition, CoCl2-

induced hypoxia significantly increased the 

mitochondrial membrane potentials of PC12 cells, but 

TPO treatment reversed this effect (Figure 8D). Thus, 

TPO might protect mitochondrial function during 

hypoxic-ischemic conditions. 

 

DISCUSSION 
 

In clinical studies, we have found that plasma TPO 

levels in patients with acute cerebral infarction are 

significantly increased, indicating that TPO may play an 

important role in CNS injury. To validate this 

hypothesis, we first sought to determine the basal level 

of c-Mpl and TPO in neurons of the CNS of humans 

and mice. To investigate the effects of TPO in the CNS, 

we established a neonatal rat model of hypoxic- 

 

 
 

Figure 4. TPO demonstrated a neuroprotective effect in a neonatal hypoxic-ischemic rat model. Brain injury was estimated using 
the percentage of the weight reduction in the ipsilateral cerebral hemisphere compared to the contralateral hemisphere. Brain weights of 
ipsilateral cerebral hemisphere and contralateral hemisphere were measured in the sham-operated, vehicle-treated, and TPO-treated rats at 
1 and 3 weeks of hypoxia-ischemia, n = 16. ** P < 0.01. 
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Figure 5. Brain morphology, histology, NSE staining of cortical neurons, and postural reflex test in sham-operated, vehicle-
treated, and TPO-treated pups 3 weeks after surgery. Brain morphology and histology were examined at 3 weeks after surgery. 
Cortical neurons in the ipsilateral hemispheres were detected using NSE staining. (A) Normal external brain morphology and histology of 
sham-operated pups. (B) Brain morphology and histology of vehicle-treated pups. (C) Brain morphology and histology of TPO-treated pups. 
(D) The numbers of cortical neurons in the ipsilateral hemispheres of sham-operated, vehicle-treated, and TPO-treated pups, n = 3.  
(E) Postural reflex test scores in sham-operated (n = 12), vehicle-treated (n = 16), and TPO-treated pups (n = 16). * P < 0.05. 

 

 
 

Figure 6. TPO promoted cell proliferation and activated the PI3K/AKT signal in C17.2 cells. C17.2 cells were treated with TPO for 
72 h. These data were expressed as means ± SEM. Cell viability was detected by MTT. (A) Cell viability of C17.2 cells with different TPO 
concentrations, n = 3. (B) Cell viability of C17.2 cells that were treated with the PI3K inhibitor (LY294002, 50 μM) prior to TPO treatment,  
n = 8. (C) Levels of phosphorylated AKT (p-AKT) at different time intervals. (D) Levels of AKT and p-AKT in the groups treated with TPO and 
TPO+LY294002. * P < 0.05, ** P < 0.01. 
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Table 3. Antiapoptotic effect of TPO on C17.2 cells (n = 5; mean ± SEM). 

Group Control TPO (100 ng/mL) 

Total cell death (annexin V plus PI) 35.2 ± 8.8% 18.1 ± 6.2% 

Early cell death (annexin V) 17.0 ± 7.4%* 8.2 ± 5.7%* 

*Control group versus TPO-treated group by Student’s t-test, P < 0.05. 
 

ischemic brain injury induced at postnatal day 7 [20]. In 

our study, rat pups treated with TPO before the 

induction of hypoxia-ischemia for 9 days (2 days prior 

to surgery plus 1 week) or 23 days (2 days prior to 

surgery plus 3 weeks) demonstrated a remarkable 

recovery of the ipsilateral hemispheres in all studied 

parameters. TPO treatment reduced atrophy of the right 

hemisphere, which was almost returned to its normal 

size and morphology. In addition, treatment with TPO 

significantly increased the number of neurons. More 

significantly, animals treated with TPO performed 

better on functional testing when compared to the 

vehicle-treated group. These data suggest that TPO 

provides histopathologic and behavioral protection 

against neonatal hypoxic-ischemic brain injury in vivo. 

 

Our findings raise the question of how TPO protects 

the brain from hypoxic-ischemic injury. To answer this 

question, we performed experiments in two neural cell 

lines: C17.2 and PC12 cells [21, 22]. TPO has been 

shown to inhibit apoptosis in these two cell lines. Our 

results demonstrate that TPO activates AKT signaling, 

which may represent a critical step in suppressing 

apoptosis, and improves the ratio of Bcl-2/BAX on the 

apoptotic axis. TPO inhibited apoptosis of C17.2 cells 

by increasing antiapoptotic Bcl-2 expression and 

decreasing proapoptotic BAX expression [23, 24]. The 

PI3K-AKT signal transduction pathway is also 

important for promoting cell survival [25]. Activation 

of AKT results in the inhibition of several cellular 

factors that lead to the suppression of apoptosis [26]. 

Moreover, TPO protects PC12 cells from hypoxic 

damage by inhibiting the increase of mitochondrial 

membrane potentials. Changes in mitochondrial 

membrane potentials affect apoptosis [27]. 

Mitochondrial dysfunction has been shown to induce 

apoptosis and has even been suggested to be central in 

the apoptotic pathway [28]. Taken together, these 

results suggest that TPO protects neural cells by 

activating PI3K-AKT and Bcl-2-BAX.  

 

 
 

Figure 7. Effect of TPO on Bcl-2 and BAX of C17.2 cells at different time intervals. Cells were stimulated for the selected times with 
100 ng/mL of TPO. Bcl-2 and BAX were detected by Western blot. (A) Levels of Bcl-2 and BAX at different time intervals. (B) Semiquantitative 
evaluation of TPO for antiapoptotic effects via Bcl-2/BAX. * P < 0.05, ** P < 0.01. 
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The genomic structures of TPO and erythropoietin 

(EPO) are highly similar at most segments of their 

coding regions and exhibit significant homology in their 

receptor binding domains [29, 30]. Both the EPO 

receptor and the TPO receptor come from the same 

cytokine receptor superfamily [31, 32]. EPO is the main 

hematopoietic cytokine that regulates the formation of 

red blood cells in the process of hematopoiesis [33]. 

EPO activates red blood progenitor cells by stimulating 

cell growth, differentiation, and antiapoptosis [34]. 

Recent findings indicate that EPO is neuroprotective 

and facilitates brain repair [35, 36]. EPO protects 

neurons from glutamate toxicity in vitro and has 

neurotrophic effects in global and focal cerebral 

ischemia [37]. Thus, TPO may have similar 

neuroprotective mechanisms as EPO. 

 

Other studies have indicated that TPO is 

neuroprotective during brain injury. In a rat model of 

severe infarction and swelling after stroke induced by 

middle cerebral artery occlusion reperfusion, TPO 

significantly reduced both the infarct and the swelling in 

a dose-dependent manner [38]. When 0.1 μg/kg of TPO 

was administrated immediately or 2 hours after 

reperfusion, the infarct and swelling were significantly 

improved, and other stroke-related neurologic deficits 

were also ameliorated [38, 39]. Treatment with TPO 

also reduces stroke-induced cortical MMP-9 and TIMP-

1 expression and enzymatic activity. Our study provides 

corroborative evidence that TPO protects neural cells 

from apoptosis and reduces brain damage in neonatal 

models.  

 

The neuroprotective mechanism of TPO requires 

further investigation to fully understand its role in the 

CNS. However, studies in other systems may help to 

shed light on the underlying mechanism. Our previous 

data from a rat model demonstrated that TPO reduces 

damage to heart tissues caused by doxorubicin-induced 

cardiotoxicity and reduces myocardial infarction 

damage [11, 40]. TPO also protects against iron 

overload–induced apoptosis by inhibiting oxidative 

stress and suppressing mitochondrial pathways in 

cardiomyocytes [41] and protects H9C2 cells from 

excessive autophagy and apoptosis in doxorubicin-

induced cardiotoxicity [11, 42]. TPO also confers 

immediate protection to human cardiomyocytes 

against injury from hypoxia/reoxygenation by 

 

 
 

Figure 8. TPO demonstrated a protective effect in a CoCl2-induced PC12 cell injury protection model. Cell viability was detected 
by MTT. Cell apoptosis and mitochondrial membrane potential were detected by flow cytometry. (A) Effect of different concentrations of 
CoCl2 on viability of PC12 cells. Cells were treated with CoCl2 for 24 h, n = 3. (B) Protective effect of different concentrations of TPO on CoCl2-
induced (500 μmol/L) PC12 cells. Cells were treated with TPO for 48 h, n = 3. (C) Protective effect of 100 ng/mL of TPO on CoCl2-induced  
(500 μmol/L) PC12 cells. (D) Protective effect of 100 ng/mL of TPO on mitochondrial membrane potential of CoCl2-induced (500 μmol/L) PC12 
cells. ** P < 0.01. 
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decreasing necrotic and apoptotic cell death in a 

concentration-dependent manner, with an optimal 

concentration of 1.0 ng/mL [43]. In addition, TPO 

activates endothelial cells and induces an angiogenic 

response by enhancing expression of vascular 

endothelial growth factor (VEGF) in primitive 

hematopoietic cells through induction of HIF-1 [10, 44].  

 

This study demonstrates that TPO protects neural cells 

from apoptosis, further elucidates the role of TPO in the 

CNS, and provides insight on possible clinical uses of 

TPO.  

 

MATERIALS AND METHODS 
 

Cell lines  

 

The mouse neural progenitor cell line C17.2 was a gift 

from Dr. David Walsh (Department of Anatomy, 

University of New South Wales, Sydney, Australia). 

PC12 cells were obtained from the Sun Yet-Sen 

University School of Medicine. C17.2 cells were 

cultured in Iscove’s Modified Dulbecco’s Medium 

(IMDM) (Gibco; Thermo Fisher Scientific, Waltham, 

MA) supplemented with 10% (v/v) fetal calf serum 

(FCS) (Gibco), and PC12 cells were cultured in Roswell 

Park Memorial Institute (RPMI) 1640 Medium with 

10% (v/v) fetal bovine serum (FBS) (Gibco) in an 

atmosphere of 5% CO2/95% humidified air at 37°C.  

 

Human brain tissues and cerebrospinal fluid 
 

Human brain tissues were obtained from the Department 

of Anatomical and Cellular Pathology at the Prince of 

Wales Hospital, associated with the Chinese University 

of Hong Kong. Human cerebrospinal fluid (CSF) and 

plasma were obtained from children with acute 

lymphocytic leukemia in the Department of Pediatrics at 

the Prince of Wales Hospital. Patients with acute 

cerebral infarction were treated as a case group, and 

those with healthy physical examination at the same time 

were treated as a control group (Luohu People’s 

Hospital, Shenzhen). Informed consent was obtained 

from the patients and their families for all blood and 

tissue collections, and the study was approved by the 

Ethics Committee for Clinical Research of Sun Yat-sen 

University. 

 

RT-PCR for TPO and c-Mpl mRNA expression  
 

Total cellular RNA was extracted, and reverse 

transcriptase polymerase chain reaction (RT-PCR) was 

performed as previously described [45]. The RNA pellet 

was resuspended in 50 μL of DEPC-treated water. The 

first-strand cDNA was synthesized from total cellular 

RNA using SuperScript II reverse transcriptase (Gibco). 

RT-PCR was performed using primers specific for  

the TPO and c-Mpl sequence: TPO forward primer  

5′-CTGCTTCGTGACTCCCATGTC-3′ and reverse 

primer 5′-CGCACCTTTCCTCGGAGCAG-3′, c-Mpl 

forward primer 5′-CTAGCTCCCAAGGCTTCTTC-3′ 

and reverse primer 5′-GGCTCCAGCACCTTCC 

AGTCC-3′. 

 

Immunohistochemistry for c-Mpl on human CNS  

 

The human brain was removed from the skull, placed in 

10% neutral formaldehyde overnight at room temperature, 

and processed for paraffin histology. The brain was cut 

into 5-μm sections and deparaffinized in xylene and 

graded alcohol before immersion in citrate buffer (pH 7.6) 

for antigen retrieval in a microwave oven. The sections 

were placed in 3% hydrogen peroxide for 20 min to block 

endogenous peroxidase and then incubated in 5% rabbit 

serum (Dako, Glostrup, Demark) for 10 min. Sections 

were stained with primary fluorescent monoclonal 

antibody against c-Mpl (1:100 dilution; BD Pharmingen, 

San Diego, CA) and imaged by confocal microscopy. The 

nonfluorescent primary monoclonal antibody against  

c-Mpl (1:200 dilution; BD Pharmingen) was added onto 

the sections, which were then incubated overnight at room 

temperature. The sections were further treated with a 

biotinylated rabbit antimouse antibody (1:1000 dilution; 

Dako, Glostrup, Demark) for 40 min before incubation 

with horseradish peroxidase (HRP; Zymed, San 

Francisco, CA) for 45 min. Color development was 

performed in 3,3′-diaminobenzidine tetrahydrochloride 

(Sigma-Aldrich, St. Louis, MO) solution for 10 min. After 

staining, the sections were washed, and coverslips were 

applied with Permount (Fisher Scientific, Loughborough, 

UK). 

 

ELISA assay for TPO: TPO levels were measured with 

an enzyme-linked immunosorbent assay (ELISA) kit 

(R&D, Minneapolis, MN). The assay was done as per 

manufacturer’s instructions. A monoclonal antibody 

specific for TPO was precoated onto a microplate. 

Standards and samples were pipetted into the wells, and 

any TPO present was bound by the immobilized 

antibody. After washing away unbound substances, an 

enzyme-linked polyclonal antibody specific for TPO 

was added to the wells. After a wash to remove any 

unbound antibody-enzyme reagent, a substrate solution 

was added to the wells and color developed in 

proportion to the amount of TPO bound in the well. The 

optical density of each well was measured at 450 nm by 

a microreader (BioTek Instruments, Winooski, VT). 

 

MTT assay 
 

C17.2 cells were seeded onto 96-well culture plates at 

5000 cells per well. After being cultured in IMDM with 



 

www.aging-us.com 7406 AGING 

10% FCS overnight, the cells were washed twice with 

PBS and then incubated without serum [20, 46]. 

Escalating doses of TPO (Pepro Tech, Rocky Hill, NJ; 0, 

1, 10, 50, 100, and 200 ng/mL) were added to each well 

and incubated for 72 hours. C17.2 cells were pretreated 

with 50 µM of LY294002 (Calbiochem, Darmstadt, 

Germany), followed by 100 ng/mL of TPO, and then 

incubated for 72 hours. For the MTT proliferative 

activity assay, cells were incubated with 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

(MTT; Sigma-Aldrich) for 4 h. After 4 h, the supernatant 

was discarded, and DMSO (200 μL) was added to each 

well. The suspension was placed on a microvibrator for 5 

min, and the absorbance (A) was measured at 570 nm 

with a microplate spectrophotometer (μ-Quant 

Microplate Spectrophotometer; BioTek Instruments). 

Cell viability was calculated using the following formula:  

 

% Cell viability = Experimental MTT (OD570)/Normal 

MTT (OD570) 

 

Assessment of cell survival and apoptosis  

 

A total of 1.0 × 106 C17.2 cells treated with TPO (100 

ng/mL), as described earlier, were examined for 

apoptosis using an annexin V-FITC detection kit  

(BD Biosciences, San Diego, CA) according to 

manufacturer’s instructions. Briefly, cells were counted 

and resuspended in 500 μL of cell culture medium, and 

annexin V-FITC plus a binding enhancer were added 

directly to the cells for 20 min. Propidium iodide  

(PI) was added as described earlier, and the cells  

were analyzed with a FACScan cytometer (BD 

Immunocytometry Systems, San Jose, CA) [45]. The 

cells were kept on ice (approximately 30-60 min) until 

the FACScan analysis was completed. 

 

Western blot 

 

For AKT, p-AKT, Bcl-2, and BAX immunodetection, 

cells were plated at initial densities of 5.0 × 105 cells in 

35-mm diameter plates and serum-starved overnight. 

When needed, a 30-min preincubation step with the 

PI3K inhibitor LY294002 was included before 

stimulation. Cells were stimulated for the selected times 

with the indicated TPO treatment of 100 ng/mL. Then, 

they were rinsed rapidly in ice-cold PBS and lysed in a 

buffer containing 2% sodium dodecyl sulfate (SDS; 

Sigma-Aldrich) and 125 mM Tris (pH 6.8) buffer. 

Lysates were sonicated, and protein was quantified 

using the DC Protein Assay from Bio-Rad (Hercules, 

CA). Cell lysates were resolved by SDS-polyacrylamide 

gel electrophoresis. Membranes were blocked with Tris-

buffered saline with Tween 20, 20 mM Tris–HCl (pH 

7.4), 150 mM NaCl, and 0.05% Tween 20 containing 

5% nonfat dry milk for 1 h at room temperature. 

Membranes were probed with the appropriate primary 

antibodies (1:1000; Santa Cruz Biotechnology, Dallas, 

TX) overnight and subsequently incubated for 1 h  

with the appropriate peroxidase-conjugated secondary 

antibodies (1:1000) at the dilutions recommended by 

the manufacturers. Blots were finally developed with an 

ECL (Amersham Biosciences, Little Chalfont, UK) 

Western blotting detection system [45]. 

 

Animal protocols  
 

All procedures were carried out in accordance with 

guidelines approved by the Animal Ethics Committee of 

the Chinese University of Hong Kong. Sprague-Dawley 

rat pups were kept with their dams in the Laboratory 

Animal Service Center with a light:dark cycle of 12:12 

h and allowed food and water ad libitum. 

 

Induction of hypoxia-ischemia in neonatal rats  
 

Hypoxic-ischemic brain damage was induced in rat 

pups (weighing 12-15 g) on postnatal day 7 [47, 48]. At 

this stage of development, the rat brain is histologically 

similar to that of a 32- to 34-week gestation human 

infant. The rat pups were anesthetized using ether. The 

right common carotid artery was exposed and ligated 

with size 4-0 surgical sutures. The entire procedure was 

completed in less than 10 min. After carotid ligation, 

the pups were returned to their dams and allowed to 

recover for 2 h. Hypoxia was then induced by exposing 

the animals to a humidified gas mixture containing 8% 

oxygen in nitrogen at 37°C for 2 h. The pups were 

returned to their dams after hypoxic exposure. Sham-

operated pups underwent the same surgical procedure 

but did not receive carotid ligation or exposure to 

hypoxia.  

 

Administration of TPO 

 

The rat pups were randomly allocated to one of three 

groups: sham-operated group (n = 12), vehicle-treated 

group (PBS; n = 16), or TPO-treated group (n = 16). 

TPO (Pepro Tech) was administered daily by 

intraperitoneal injection at a dose of 1 μg/kg/d 

beginning on postnatal day 5 (2 days prior to surgery) 

for 9 or 23 days, and the animals were killed at 1 or 3 

weeks after surgery with ketamine (0.05 mL/kg)  

and xylazine (0.01 mg/kg) (Alfasan, Woerden, the 

Netherlands).  

 

Brain weight 

 

The cerebral hemispheres, brain stem, and cerebellum 

were removed from the skull. The hemispheres were 

separated by a longitudinal midline incision, and each 

hemisphere was weighed on a high-precision digital 
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balance (sensitivity ± 0.001 g). The difference in 

weights between the ipsilateral (right) and contralateral 

(left) brain was calculated using the following formula:  

 

% Damage = (C – I)/C × 100,  

 

where C and I denote weights of the contralateral and 

ipsilateral hemispheres, respectively.  

 

Histology  
 

Rat brains at 3 weeks postsurgery were fixed in 10% 

neutral formaldehyde and kept at 4°C. Coronal blocks (2 

mm thick) were cut from the brain, with the most frontal 

cut being 2 mm from the frontal pole of the intact 

hemisphere. The tissue blocks were dehydrated in 70% 

ethanol, embedded in paraffin wax, and sectioned into 5-

μm slices. Sections were stained with hematoxylin and 

eosin and examined under light microscopy [49].  

 

Counting of cortical neurons in the sensorimotor 

area of the forelimb 

 

Three weeks after surgery, rats were anesthetized with 

ketamine (0.05 mL/kg) and xylazine (0.01 mg/kg) and 

then transcardially infused with 0.9% saline followed by 

10% ice-old neutral formaldehyde (Sigma, St. Louis, 

MO). Their brains were removed, placed in 10% neutral 

formaldehyde overnight at room temperature, and 

processed for paraffin histology. Then, 5-μm sections 

were stained with neuron-specific enolase (NSE) using 

the method described earlier. The cortical neurons in the 

sensorimotor area of the forelimb were counted in five 

randomly selected frontal sections by investigators who 

were blinded to the allocation of treatment groups. 

These neurons were identified by their location, size, 

and NSE staining. The neuron density of each group 

(three animals) was expressed as the mean number of 

neurons per 10,000 μm2.  

 

Functional test  

 

A standard postural reflex test was performed to 

evaluate the extent of neural recovery in rat pups 3 

weeks after surgery [50, 51]. The investigator had no 

prior information on the treatment of the rats. The pup 

was held by the tail 50 cm above a table. Normal rat 

pups extended both forelimbs toward the table (score 0). 

Pups with brain damage flexed the forelimb 

contralateral to the damaged hemisphere (score 1). The 

pup was then put onto the table, and a lateral pressure 

was applied behind the shoulder until the forelimbs slid. 

A reduced resistance to this lateral force toward the left 

side (contralateral to the brain damage) was considered 

abnormal (score 2). Results are presented as the 

percentage of rats in each of the functional groups.  

Statistical analysis 

 

All values are presented as mean ± SEM. Statistical 

analysis was performed using a two-tailed unpaired 

Student’s t-test or analysis of variance (ANOVA) for 

multiple comparisons. P < 0.05 was considered 

statistically significant. 

 

Ethics, consent, and permissions 

 

The Animal Research Welfare Committee of Sun Yat-
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