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Weighted p‑norm distance t kernel 
SVM classification algorithm based 
on improved polarization
Wenbo Liu1,2*, Shengnan Liang1,2 & Xiwen Qin3

The kernel function in SVM enables linear segmentation in a feature space for a large number of linear 
inseparable data. The kernel function that is selected directly affects the classification performance 
of SVM. To improve the applicability and classification prediction effect of SVM in different areas, 
in this paper, we propose a weighted p-norm distance t kernel SVM classification algorithm based 
on improved polarization. A t-class kernel function is constructed according to the t distribution 
probability density function, and its theoretical proof is presented. To find a suitable mapping 
space, the t-class kernel function is extended to the p-norm distance kernel. The training samples 
are obtained by stratified sampling, and the affinity matrix is redefined. The improved local kernel 
polarization is established to obtain the optimal kernel weights and kernel parameters so that 
different kernel functions are weighted combinations. The cumulative optimal performance rate is 
constructed to evaluate the overall classification performance of different kernel SVM algorithms, and 
the significant effects of different p-norms on the classification performance of SVM are verified by 
10 times fivefold cross-validation statistical comparison tests. In most cases, the results using 6 real 
datasets show that compared with the traditional kernel function, the proposed weighted p-norm 
distance t kernel can improve the classification prediction performance of SVM.

In the 1990s, Vapnik systematically introduced statistical learning theory and proposed the SVM algorithm1. 
Due to its excellent performance in the field of text mining2 and fault diagnosis3, SVM gradually became the 
mainstream technology of machine learning methods and directly promoted the climax of statistical learning 
development. The study of the kernel method was officially initiated based on the great success of SVM, and 
SVM promoted the rapid popularization and application of the kernel method. The kernel method has gradu-
ally expanded into many fields of machine learning, such as pattern recognition4, feature selection5, and deep 
learning6,7. The kernel function directly determines the performance of the SVM classification algorithm8 and 
various kernel methods because a proper kernel function can map samples to an appropriate feature space. In 
an appropriate feature space, similar samples are close together and different samples are far apart. A kernel 
function is introduced to greatly improve the accuracy, recognition rate, and dimension reduction efficiency of 
machine learning algorithms.

Subsequently, many methods based on the kernel technique have been proposed. Schkopf9 et al. proposed 
a kernel trick so that principal component analysis could be utilized as a nonlinear dimension reduction tech-
nique. As a result, nonlinear mapping from high-dimensional space to low-dimensional space can be achieved 
and the performance of the learner is improved. Mika10 introduced the kernel function into linear discriminant 
analysis (LDA), which is also known as KLDA. KLDA can address the nonlinear data analysis problem and can 
achieve higher accuracy than LDA. Si proposed a new and improved kernel partial least squares method to 
address nonlinear characteristics in industrial processes11. Some kernel functions have been proposed for specific 
fields. For example, Huma12 et al. proposed the application of a string kernel in natural language processing to 
improve the efficiency of text classification. Bernhard13 et al. studied the application of kernel methods in the 
field of bioinformatics.

The above methods are only based on a single kernel. Because different kernel functions have different char-
acteristics, the performance of kernel functions varies greatly in different application scenarios. When the sample 
size is large, the multidimensional data are irregular or the data are not evenly distributed in the feature space. 
Therefore, it is not reasonable to map the training set directly by a single kernel14,15. To improve the flexibility and 
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applicability of the kernel function, multiple kernel functions are combined, i.e., multiple kernel learning. Multi-
ple kernel learning has been a long-standing, well-known and practical research direction in machine learning. 
Gone16 provided a taxonomy and review of several multiple kernel learning (MKL) algorithms. They concluded 
that multiple kernel learning is useful in practice and that a better MKL algorithm could be devised for improved 
accuracy and decreased complexity and training time. In recent years, many multiple kernel methods have been 
proposed to solve specific problems. Rakotomamonjy17 proposed a simple MKL algorithm. In the weighted 
2-norm regularization form, an additional 1-norm constraint is applied to the multikernel weight coefficients, 
which provides a new idea for multiple kernel learning based on mixed norm regularization. Fan18 proposed a 
multiple random empirical kernel learning machine (MREKLM), which adopts the random projection idea to 
map samples into multiple low-dimensional empirical feature spaces with lower computational complexity. Li19 
proposed the multiple kernel learning support vector machine particle swarm optimization model to identify 
pulmonary nodules and obtained better recognition efficiency. Gao20 proposed a multiple kernel learning method 
with the Mahalanobis distance to classify hyperspectral images. Based on the linear weighted combination of 
the Mahalanobis basic kernel, the hyperspectral data are mapped to a feature space with a smaller intraclass 
distance and larger interclass distance, and then they are classified to improve the prediction accuracy. Wang21 
proposed a new model parameter selection method for support vector machines based on adaptive fusion of 
multiple kernel functions and realized adaptive selection of the multiple kernel function weighted coefficient, 
kernel parameters and regression parameters. Ergul22 proposed a multiple composite kernel extreme learning 
machine for hyperspectral images, and the obtained results were presented comparatively along with state-of-
the-art standard machine learning.

The multiple kernel model has better applicability and flexibility than the single kernel model. The above 
works have proven that the interpretability of the decision function can be enhanced and the performance of the 
learner can be boosted by using multiple kernels instead of a single kernel. In the multiple kernel framework, 
the convex combination of several single kernels,

∑M
i=1 ωiκi ,

∑M
i=1 ωi = 1 is the most common form. The key 

to multiple kernel learning is the selection of a basic kernel and the calculation of weight coefficients. We can 
use the existing kernel as the basic kernel or create a new kernel according to kernel construction theory to use 
as the basic kernel23. There are two main ways to calculate the weight coefficients: heuristic algorithms24 and 
optimization models. The former needs to be associated with the performance of subsequent classifiers, so it is 
too time-consuming, while the latter has strict theory and lower computational complexity. Examples of typi-
cal optimization models are described as follows. Lanckriet25 obtained the weighted kernel matrix from data 
based on a semidefinite programming idea and solved the optimal weight coefficient. Sonnenburg26 rewrote the 
convex quadratic constrained quadratic programming in reference25 into a semi-infinite linear programming 
problem to solve the kernel weight. The gradient descent method was always adopted to optimize the weight by 
some researchers27,28.

Obviously, the multiple kernel model consists of several basic single kernels. The expression of the single 
kernel function often determines the multiple kernel performance. Single kernel functions have the advantage of 
simple expression and fewer parameters over multiple kernel functions and can solve specific domain problems. 
Their deficiency lies in the fixed expression form, which results in poor universality. To solve this problem, a 
more flexible multiscale kernel was introduced29,30. In addition, according to distance metric learning theory, 
samples are mapped from the original space to the feature space so that the performance obtained in the feature 
space is better than that in the original space31. Obtaining a suitable space is essentially determining the proper 
distance metric. Therefore, the t class kernel function with multiscale form is constructed. To obtain a suitable 
distance metric, the t kernel is generalized to the p-norm t kernel.

In this study, a weighted p-norm distance t kernel (WpNDtK) SVM classification algorithm based on 
improved polarization is proposed for solving basic kernel construction and weight coefficient computation 
in a multiple kernel model. The main contribution of this paper is as follows. We construct a t-class kernel and 
provide a theoretical proof. To map the sample to a more suitable feature space, we generalize the t-class kernel 
as a weighted p-norm t-class kernel and give its properties. We define the affinity matrix and build an objective 
function of weight coefficients and kernel parameters according to local kernel polarization. The objective func-
tion is solved by the local gradient and the generalized Lagrange multiplier algorithm. The cumulative optimal 
performance rate is constructed to measure the overall classification performance of SVM algorithms with dif-
ferent kernels. The significance of the p-norm distance on SVM classification performance is verified based on 
the paired data t test with 10 times fivefold cross-validation. Through a large number of experiments on 6 real 
datasets, the results show that SVM classification prediction can appropriately improve performance when using 
WpNDtK compared with the traditional kernel function.

This paper is organized as follows. In "Introduction" section, we introduce the development and application 
of the kernel method and the optimal solution of weight coefficients in multiple kernel learning. The basic SVM 
model with multiple kernels is introduced in "Kernel support vector machine" section. In "t Class kernel and 
its generalization: section, we describe the construction of a weighted p-norm distance t kernel and provide a 
theoretical proof. In "Establishment and solution of the multiple kernel model" section, we describe the con-
struction of the optimal model of weight coefficients and kernel parameters. The flow of the weighted p-norm t 
kernel SVM classification algorithm is shown in Weighted p-norm t kernel SVM classification algorithm" section. 
Our experimental studies and an evaluation of the performance of the proposed WpNDtK SVM algorithm are 
presented in "Experimental results and analysis" section. The paper is concluded in "Conclusions" section and 
suggestions for future work are provided.
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Kernel support vector machine
A support vector machine is a classification algorithm for binary classification problems and is based on the 
theory of structural risk minimization. Of course, SVM can also be extended to multiclass classification learn-
ing problems. The basic SVM model is a maximum interval linear classifier defined in the feature space. By 
introducing the kernel function, SVM essentially becomes a nonlinear classifier. The basic principle of kernel 
SVM is given as follows.

Given the training dataset T = {(xi , yi)
∣

∣xi ∈ Rd , yi ∈ {+1,−1} , i = 1, 2, ..., n} , where xi is the d dimensional 
input vector and yi is its class label. SVM can be formalized into the following convex quadratic programming 
problem.

where ω indicates the normal vector of the classification hyperplane, C is a predefined positive trade-off parameter 
between model simplicity and classification error, ξi is the vector of slack variables, φ(x) is the feature vector 
mapped from x , and b is the bias term of the separating hyperplane. The goal of SVM is to maximize the interval 
2/‖ω‖.

The dual formulation of Model (1) is generally used when solving SVM

where κ(xi , xj) = φ(xi) · φ(xj) is the kernel function and αi is the Lagrangian multiplier. The bias term b can be 
solved by the support vector in the training dataset. Its specific form is as follows:

where xs is the support vector and ns is the number of support vectors.
The final SVM classifier is

For kernel SVM, the selection of the kernel function is the key to the classification performance of SVM. 
If the kernel function is not properly selected, the sample is mapped to an inappropriate space, which leads to 
a poor classification effect. To improve the performance, it is necessary to constantly explore the new kernel 
functions. Since different kernels are applicable to different areas, the most straightforward idea is to combine 
several different kernels to integrate the advantages of different kernels.

The simplest and most common way to construct a multiple kernel model is to directly combine some single 
kernels into convex combinations, and the basic form of this concept is as follows.

where κi(x, y) is the basic kernel function, ωi is the kernel weight and 
∑M

i=1 ωi = 1 . We can combine existing 
kernels or construct new classes of kernels. For the determination of kernel weight, a heuristic algorithm or 
optimization model can be used to solve the weight. The optimization model is used in this work to solve ωi . 
Section "The optimization of kernel weight and kernel parameter" provides more details.

According to Model (2), the dual formulation of SVM with multiple kernels is as follows.

(1)
min
ω,b,ξ

1

2
�ω�2 + C

n
∑

i=1

ξi

s.t. yi

[

ω
T
φ(xi)+ b

]

≥ 1− ξi , ξi ≥ 0, i = 1, 2, . . . , n,

(2)

max
α

1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjφ(xi) · φ(xj)−

n
∑

i=1

αi

= max
α

1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjκ(xi , xj)−

n
∑

i=1

αi

s.t.

n
∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, ..., n

(3)b =
1

ns

(

ns
∑

s=1

ys −

n
∑

i=1

αiyiκ(xi , xs)

)

(4)

f (x) = ω
T
φ(x)+ b

=

n
∑

i=1

αiyiκ(x, xi)+ b.

(5)

κ(x, y) = ω1κ1(x, y)+ ω2κ2(x, y)+ ...+ ωMκM(x, y)

=

M
∑

i=1

ωiκi(x, y)
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t Class kernel and its generalization
In many practical tasks, samples are often linearly indivisible. Therefore, it is necessary to select the appropriate 
kernel function to map the samples to an appropriate feature space so that the samples are linearly separable in 
the feature space. If the kernel function is not properly selected, the sample cannot be linearly segmented in the 
feature space, resulting in poor SVM classification performance. Therefore, kernel functions directly determine 
the performance of SVM classification. This encourages us to construct new types of kernel functions to adapt to 
different fields. Inspired by the t distribution probability density function, a t class kernel function is constructed. 
For this kernel to have better flexibility and applicability, it is extended to the p-norm distance t kernel, and a 
reasonable distance measurement can be obtained by adjusting the norm.

p‑norm t kernel.  Theorem  1  [32] Suppose that f : X → R is a bounded continuous integrable function. 
Then, k(x − x′) = f (x − x′) is a kernel function if and only if f (0) > 0 and its Fourier transform.

Theorem 2  When n → +∞ , the t distribution probability density function.

 is the kernel function, where Ŵ(·) is the gamma function.

Proof  Let |x| = t2, x ∈ (−∞,∞) , Eq. (5) is transformed into.

and f (0) = Ŵ(
n+1
2 )

√
nπŴ( n2 )

> 0.

where e−
|x|
2  is the Laplacian kernel function. According to Theorem 1,

Therefore,

When n → ∞ , the function

 is the kernel function.

(6)

max
α

1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj

(

M
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ωkκk(x, y)

)

−

n
∑

i=1

αi

s.t.

n
∑
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(7)f̃ (ω) =

∫ +∞

−∞

f (x)e−iωxdx ≥ 0.
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|x|

n
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2
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∫

X

lim
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∫ +∞
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√
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Theorem 2 shows that when the sample size is sufficiently large, the probability density function of the t 
distribution can be used as the kernel function. The number of n 1 that should be taken is often determined by 
experimental analysis. For the convenience of kernel function application, Corollary 1 is given as follows.

Corollary 1  When n=1 , Eq. (6) is equivalent to

Then, Eq. (10) is the kernel function.
By generalizing the kernel function in Corollary 1, Corollary 2 is obtained as follows.

Corollary 2  Let

where c > 0, 0 < v ≤ 1; then, Eq. (11) is the kernel function.

Proof  When, 0 <
1

1+|x| ≤ 1, c > 0, 0 < v ≤ 1 , we have

Therefore, f (x) = c
(

1
1+|x|

) v
 is the kernel function. � □

The kernel parameter in Corollary 2 ranges from 0 to 1. We can consider expanding the range of v to increase 
the applicability of the kernel function.

Theorem 3  33X ⊂ Rn, f : (0,∞) → R,κ is the function defined on X × X and κ(x, z) = f (�x − z�2) . When f  is 
completely monotone, κ(x, z) is a positive definite kernel.

Corollary 3  When c > 0, v > 0,

 is the kernel function, where x > 0.

Proof 

When c > 0, v > 0 and (−1)nf (n)(x) ≥ 0 , f (x) is completely monotone. According to Theorem 3, f (x) is the 
kernel function. � □

According to the complete monotonicity of the function, Corollary 3 expands the range of kernel parameters 
on the basis of Corollary 2, which provides more choices for us to use the kernel function.

In practical applications, Eq. (12) is in the following form:

where the number 2 indicates the 2-norm. To find an appropriate distance measure in the mapped feature space, 
the Euclidean distance in Eq. (10) is generalized to the p-norm distance, and we can obtain

where p is the p-norm. Equation (14) is called the p-norm distance t class kernel for the short p-norm t kernel.

(10)f (x) =
1

π(1+ |x|)
.

(11)f (x) = c

(

1

1+ |x|

) v

c

(

1

1+ |x|

)

≤ c

(

1

1+ |x|

) v

0 ≤

∫ +∞

−∞

c

1+ |x|
e
−iωx

dx ≤

∫ +∞

−∞

c

(

1

1+ |x|

) v

e
−iωx

dx

(12)f (x) = c

(

1

1+ x

) v

f (n)(x) = (−1)ncv(v + 1)...(v + (n− 1))(1+ x)−(v+n)

(−1)nf (n)(x) = (−1)2ncv(v + 1)...(v + (n− 1))(1+ x)−(v+n)

= cv(v + 1)...(v + (n− 1))(1+ x)−(v+n)

(13)κ(xi , xj)=

(

c

1+
∥

∥xi − xj
∥

∥

2

)v

(14)κ(xi , xj)=
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c
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p
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The properties of the kernel function.  Since the kernel function constructed in "p-norm t kernel" sec-
tion is eventually extended to the form of Eq. (14), the corresponding properties are given in this section. We 
also discuss whether this kernel function is reasonable.

Property 1  When c > 0, v > 0 , f (x) = c
(

1
1+x

) v
 is a decreasing function of x , and.

dij =
∥

∥xi − xj
∥

∥

p
 is the p-norm distance of any two samples. According to Property 1, the closer the sample 

is, the larger the kernel value is, and vice versa. When x= 0 , the kernel function is at its maximum value. This 
shows that the kernel function can describe the similarity between samples well. The larger the kernel value is, 
the higher the similarity between samples.

Property 2  The function f (x) = c
(

1
1+x

) v
 has multiscale characteristics, where c and v are the scale 

parameters.

Property 2 is illustrated by function graphs, which are drawn by fixing c= 1 and v = 1 , as shown in Fig. 1.
When the scale parameters c and v are small, the kernel function can adapt to the samples with drastic 

changes, and when the scale parameters are large, the kernel function can adapt to the samples with gentle 
changes34 so that it has better adaptability in processing complex data. Similar to the Gaussian kernel function, 
the constructed kernel function in Eq. (14) is also a typical multiscale kernel.

Establishment and solution of the multiple kernel model
Weighted kernel function.  Because different kernel functions have different characteristics, their perfor-
mance will be significantly different for different types of datasets. To make the kernel function more flexible in 
application, the multiple kernel learning model is formed by kernel combination. Using multiple kernels instead 
of a single kernel can enhance the interpretability of the decision function and result in better performance than 
a single kernel35.

When the p-norm t kernel constructed in "p-norm t kernel" section is combined, we can obtain the combina-
tion kernel as follows.

Under the framework of a multiple kernel learning model, the representation of original samples in feature 
space is transformed into basic kernel selection and the calculation of weight coefficients. Each basic kernel cor-
responds to a basic feature space and how to fuse these basic feature spaces to obtain a suitable combined feature 
space. That is, the data can be better represented in the combined feature space to improve the classification 
prediction performance. Obtaining the combined feature space is essentially a problem of optimal calculation 
of weight coefficients.

(15)
M
∑

s=1

ωs

(

c

1+
∥

∥xi − xj
∥

∥

p

)vs

Figure 1.   p-norm distance t-kernel value under different scale parameters.
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Currently, there are two main methods to calculate the weight coefficient: a heuristic algorithm and an opti-
mization algorithm. In this work, an optimization method that has a more rigorous theory is adopted to solve 
the weight coefficients. The key step to establish the optimization model is to give the objective function. In this 
study, the objective function is established based on kernel target alignment, and the optimal solution should 
maximize the target value. Kernel target alignment only relies on training samples and is unrelated to subsequent 
classifiers, so the implementation of this strategy is simple and has attracted a large amount of attention. Since 
the kernel function contains hyperparameters, the value of the kernel parameters also has a significant impact on 
the performance of the classification prediction results. Therefore, how to select the appropriate hyperparameters 
is also a key consideration. A direct approach is to put the kernel parameters and the weight together into the 
objective function for optimization.

Kernel target alignment.  Kernel target alignment is a parameter optimization criterion established based 
on matrix alignment. This type of method only relies on training samples and is unrelated to the learning per-
formance of subsequent classifiers. Therefore, the algorithm is simple and quick to implement, and its basic 
principle is as follows.

Given the training dataset D = {x1, x2, . . . , xn} and class label y = {y1, y2, ..., yn} , yi ∈ {1, 2, ..., k} shows that 
the dataset has k classes, and K = (κ(xi , xj))n×n is the kernel matrix. Then, Y = yyT = (yij)n×n is the class label 
matrix and is also called the ideal kernel matrix, where.

.
The goal of the kernel target alignment is to maximize the cosine value between the kernel matrix and the 

ideal kernel matrix, and its expression is as follows.

where < ·, · >F is the Frobenius inner product and � · �F is the Frobenius norm. Reference36 proves the reliability 
and practicability of the kernel target alignment and the boundedness of the generalization error of the kernel 
classifier. On the basis of Eq. (15), Baram proposed kernel polarization inspired by physics37. It is defined as the 
Frobenius inner product.

where P(K) only takes between-class separability into account but neglects the preservation of within-class local 
structures; therefore, Wang proposed local kernel polarization (LKP)38, which is defined as.

The affinity coefficient is defined as

where t > 0 is the adjusting parameter. From Eq. (19), the affinity coefficient Aij is defined by the Gaussian kernel 
function. Certainly, there should be some other more appropriate manners of defining the affinity coefficient. 
Therefore, we redefine the affinity coefficient in "The optimization of kernel weight and kernel parameter" sec-
tion to obtain better results.

The optimization of kernel weight and kernel parameter.  Based on the basic idea of the LKP, an 
improved local kernel polarization model is constructed to obtain the optimal kernel weights and kernel param-
eters. The improved part is reflected in the redefinition of the affinity coefficient in the LKP. The specific optimi-
zation model is as follows.

By redefining the affinity coefficient, we obtain.

yij =

{

1, yi = yj

−1, yi �= yj

(16)A(K,Y) =
< K,Y >F

�K�F�Y�F
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n
∑
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n
∑
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∥

2
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For Model (20), an optimization algorithm combining the local gradient and generalized Lagrange multiplier 
is adopted39. The gradient form of the model is as follows:

To facilitate calculation, the parameters in Eq. (20) can be specified in advance, and for convenience c = 1.
Equation (20) only contains the weighted p-norm t kernel. However, according to different field applications, 

the p-norm t kernel can also be combined with other types of kernel functions to obtain better classification 
performance.

Weighted p‑norm t kernel SVM classification algorithm
According to the construction principle of the p-norm t-kernel and the establishment and solving process of the 
multiple kernel model, the basic flow of the weighted p-norm t kernel SVM classification algorithm is as follows.

Input: Train = {(xi , yi)
∣

∣xi ∈ Rp , yi ∈ Y , i = 1, 2, ..., n} , where Y = {1, 2, ..., l} is the class label.
Output: The predicted class ŷi of Test = {x′i

∣

∣x′ ∈ Rp } , i = 1, 2, ..., n′.
Step 1: The dataset is divided into a training set and a test set by k-fold cross stratified sampling.
Step 2: A specific kernel function is selected according to Eq. (5).
Step 3: The affinity coefficient matrix is built according to Eq. (21).
Step 4: According to Eq. (18), the objective function of kernel weight and kernel parameter is established.
Step 5: Based on the training set, the local gradient and generalized Lagrange multiplier39 are used to solve 

Model (20) and obtain the optimal weight coefficients ωi and kernel parameters v, γ , d.
Step 6: The optimal parameters obtained in Step 5 are substituted into Eq. (5).
Step 7: Eq. (5), which is obtained in Step 6, is substituted into Model (6) to obtain the specific dual formula-

tion of the multiple kernel SVM.
Step 8: The training set Train obtained by stratified sampling is used to fit Model (6).
Step 9: The test set is put into the fitted Model (6) to obtain the predicted class label ŷi.
In Step 1, stratified sampling is used to prevent class imbalance in the training set and prevent the fitted SVM 

classification model from having class tendency. The specific form of each single kernel function must be specified 
in Step 2. In this study, the p-norm t-kernel constructed in "p-norm t kernel" section is mainly used for weighted 
combination. According to the experimental analysis in Step 6, to make use of the unique advantages of differ-
ent kernel functions, the p-norm t kernel can also be combined with traditional kernel functions, including the 
Gaussian kernel and polynomial kernel. Steps 3 to 5 belong to the optimization process of model parameters, 
including the solution of weight coefficients and kernel parameters. The objective function is established accord-
ing to the local kernel polarization, and the local gradient and the generalized Lagrange multiplier are used to 
solve it. Of course, other optimization algorithms can also be adopted. For details, please refer to reference40. 
Steps 6 to 8 fit the multiple kernel SVM model, and Step 9 predicts the test samples based on the fitted model. 
Finally, a specific evaluation index is used to evaluate the weighted p-norm t kernel SVM classification algorithm.

Experimental results and analysis
Experimental setting.  The experimental environment uses a Windows 10 64-bit operating system with 
an Intel i7-9700 @ 3.0 GHz CUP and 16 GB memory. The algorithm and experiment proposed in this paper are 
implemented based on R language (R 3.6.3) coding. Experimental data are from the Broad Institute Genome 
Data Analysis Center and UCI machine learning library. The specific information is shown in Table 1..

We compare the performance of the WpNt + SVM algorithm with the following methods:

(i)	 Poly + SVM: The polynomial kernel is used in SVM.
(ii)	 Sig + SVM: The sigmoid kernel is used in SVM.
(iii)	 Gau + SVM: The Gaussian kernel is used in SVM.
(iv)	 Lap + SVM: The Laplace kernel is used in SVM.
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(v)	 Simple MKL: The linear combination of kernel approach is used. Two kernel functions are mixed in the 
experiment, including two Gaussian kernels, one Gaussian kernel and one linear kernel.

To compare the effects of different kernel functions on the performance of the SVM classification algorithm, 
the experiment used fivefold cross-validation to divide the training set and test set, and the evaluation criteria 
were classification accuracy, recall, Kappa coefficient44 and training time. The training time of the algorithm is 
related to the range of parameter settings, as it often takes more time to obtain results with good performance. 
Different from the previous three evaluation indices, the training time of the algorithm is discussed separately in 
"Comparison experiment" section. Due to the large sample size of the postcode dataset, 10% random sampling is 
carried out in the training phase to reduce the time. Because of the high dimensionality of the breast dataset, PCA 
is used to reduce its dimensionality in advance. To evaluate the overall performance level of the WpNt + SVM 
algorithm, the optimal performance rate is constructed as follows.

where MN is the number of algorithms, DN is the number of datasets, EN is the number of evaluation indices, 
and PN is the number of WpNt + SVM that reaches the maximum under each evaluation index.

Equation (22) is generalized to obtain the cumulative optimal performance rate (COPR). Its definition is as 
follows:

where PNi is the number of algorithms reaching the i th maximum under each evaluation index, and m is the 
number of methods.

Comparison experiment.  For different datasets, SVM classification based on different kernel functions 
yields different prediction effects. In experimental analysis, to obtain better classification and prediction perfor-
mance, flexibility is required when encountering different datasets; that is, multiple p-norm distance t kernels 
should be combined or p-norm distance t kernels should be combined with traditional kernel functions when 
encountering different datasets. To reduce the complexity of the experiment, only two kernel functions are com-
bined, and a positive trade-off parameter C = 1 is allowed in all the SVM models. After many comparative 
experiments, different weighted kernel functions are selected for different datasets. The form of weighted kernel 
functions is mainly as follows.

Equation (24) is applied to the Kidney and Pima datasets, Eq. (25) is applied to the Postcode and Breast data-
sets, and Eq. (26) is applied to the Dermatology and Sonar datasets. When calculating the kernel weight and the 
kernel parameters, optimization Model (20) is adopted, and the aforementioned local gradient and generalized 
Lagrange multiplier method are used to solve the problem. The results are shown in Table 2.
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Table 1.   Data information. UCI: http://​archi​ve.​ics.​uci.​edu/​ml/​index.​php. BIGDAC: http://​porta​ls.​broad​insti​
tute.​org/​cgi-​bin/​cancer/​datas​ets.​cgi.

Dataset name Sample size Feature Categories Data source

Kidney 400 24 2 UCI

Dermatology 366 34 6 UCI

Sonar 208 60 2 UCI

Pima 768 8 2 UCI

Postcode 7291 256 10 41

Breast 98 1213 3 BIGDAC yyy42,43

http://archive.ics.uci.edu/ml/index.php
http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi
http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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The p-norm value is set by the wrapping strategy in Eqs. (24)–(26). The p-norm value in [a, b] is set and the 
step size � is given. For different p values, each performance index of N  times k-fold cross-validation of the 
proposed method is calculated, including accuracy, recall and Kappa coefficient. Finally, the p-norm value cor-
responding to the optimal performance index is determined.

For WpNt + SVM algorithm, the objective function with the kernel weight and kernel parameter is established 
according to the improved local polarization. The local gradient and generalized Lagrange multiplier is adopted 
to obtain the optimal weights and parameters. For the other comparison algorithms, grid search strategy and 
k-fold cross validation are used to obtain the optimal parameters.

The different kernel SVM methods are denoted as Poly + SVM, Sig + SVM, Gau + SVM, Lap + SVM, 
SMKL + SVM and WpNt + SVM. These methods are used to perform fivefold cross-validation classification 
prediction for the 6 datasets shown in Table 1. The obtained comparative experimental results are shown in 
Tables 3, 4 and 5, and the optimal results are bolded.

According to the experimental results in Tables 3, 4 and 5, the accuracy of the WpNt + SVM algorithm is 
optimal for 4 datasets and suboptimal in 1 datasets, the recall of the WpNt + SVM algorithm is optimal for 3 
datasets and suboptimal for 1 dataset, and the Kappa coefficient of the WpNt + SVM algorithm is optimal for 
3 datasets and suboptimal for 2 datasets. According to Eqs. (18) and (19), the optimal performance rate and 
cumulative optimal performance rate of WpNt + SVM are calculated as follows.

Table 2.   The optimized result of the weight coefficients and kernel parameters.

Dataset ω1 ω2 Kernel parameter 1 Kernel parameter 2

Kidney 0.78 0.22 v1 = 1.00 v2 = 0.80

Dermatology 0.23 0.77 v1 = 0.94 γ = 0.01

Sonar 0.91 0.29 v1 = 0.94 γ = 0.04

Pima 0.78 0.22 v1 = 0.91 v2 = 0.86

Postcode 0.86 0.14 v1 = 0.84 d = 1.00

Breast 0.65 0.35 v1 = 0.99 d = 1.00

Table 3.   The fivefold cross-validation classification accuracy based on the SVM algorithm with different 
kernel functions. Significant values are in bold.

Dataset Poly + SVM Sig + SVM Gau + SVM Lap + SVM SMKL + SVM WpNt + SVM

Kidney d = 4

0.9575
β = 1 θ= −8

0.9850
σ = 0.1

0.9975
σ = 0.1

0.9975
σ1 = 0.01σ2 = 0.05

0.9975
p = 1.5

0.9975

Dermatology d = 3

0.9344
β = 0.1 θ= −2

0.9672
σ = 0.05

0.9645
σ = 0.1

0.9699
σ1 = 0.01σ2 = 0.04

0.9672
p = 1.5

0.9726

Sonar d = 3

0.8559
β = 0.01 θ= −1

0.7978
σ = 0.01

0.8413
σ = 0.05

0.8170
σ1 = 0.01σ2 = 0.02

0.8364
p = 2

0.8459

Pima d = 2

0.7448
β = 1 θ= −1

0.6771
σ = 0.1

0.7643
σ = 0.05

0.7735
σ1 = 0.01σ2 = 0.02

0.7748
p = 2

0.7696

Postcode d = 2

0.9243
β = 0.01 θ= −2

0.9257
σ = 0.01

0.8432
σ = 0.05

0.9230
σ = 0.01, d = 1

0.9243
p = 1.5

0.9257

Breast d = 2

0.8684
β = 1 θ= −1

0.7653
σ = 0.01

0.8384
σ = 0.05

0.6947
σ = 0.02, d = 1

0.8684
p = 2.5

0.8789

Table 4.   The fivefold cross-validation classification recall based on the SVM algorithm with different kernel 
functions. Significant values are in bold.

Dataset Poly + SVM Sig + SVM Gau + SVM Lap + SVM SMKL + SVM WpNt + SVM

Kidney d = 4

0.9494
β = 1 θ= −8

0.9875
σ = 0.1

0.9979
σ = 0.1

0.9979
σ1 = 0.01σ2 = 0.05

0.9979
p = 1.5

0.9979

Dermatology d = 3

0.9453
β = 0.1 θ= −2

0.9727
σ = 0.05

0.9704
σ = 0.1

0.9749
σ1 = 0.01σ2 = 0.04

0.9727
p = 1.5

0.9772

Sonar d = 3

0.8720
β = 1 θ= −1

0.8077
σ = 0.01

0.8678
σ = 0.05

0.8237
σ1 = 0.01σ2 = 0.02

0.8398
p = 2

0.8636

Pima d = 2

0.7491
β = 1 θ= −1

0.6820
σ = 0.1

0.7761
σ = 0.05

0.7883
σ1 = 0.01σ2 = 0.02

0.7925
p = 2

0.7774

Postcode d = 2

0.9211
β = 0.01 θ= −2

0.9381
σ = 0.1

0.8693
σ = 0.05

0.9358
σ = 0.02, d = 1

0.9370
p = 1.5

0.9370

Breast d = 2

0.8070
β = 1 θ= −1

0.6377
σ = 0.1

0.7820
σ = 0.05

0.5789
σ = 0.02, d = 1

0.8070
p = 2.5

0.8158
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In the 6 datasets analysed, WpNt + SVM is optimal in 10 cases and suboptimal in 6 cases, and the cumula-
tive optimal performance rate is 0.7778, which is close to 80%. This shows that the p-norm t kernel constructed 
for this study can effectively improve the classification and prediction performance of the SVM algorithm. In 
addition, the combination of the p-norm t kernel with the classical Gaussian kernel and polynomial kernel is 
often better than the single kernel function. Therefore, multiple learning methods can utilize the advantages of 
each single kernel effectively.

In classification prediction, the training time of the algorithm is also an important evaluation index. Since the 
final parameters of the comparison algorithm are determined by the wrapping strategy, the grid search strategy 
is used to set the range of hyperparameters in advance.

The specific setup information is polynomial kernel:d = 1 : 5 , and the step size is 1; Gaussian kernel 
σ = 0.01 : 4 , and the step size is 0.01; Laplace kernel:σ = 0.01 : 1 , and the step size is 0.05; Sigmoid kernel: 
β = 1 : 5, θ = −10 : −1 , and the step size is 1. The optimization model is used to solve the kernel weights and 
parameters of the WpNt + SVM algorithm, so there is no need to set parameters in advance. See Table 6 for the 
specific training time (in minutes) of all algorithms.

According to Table 6, except for the Gau + SVM algorithm, in general, the training time of WpNt + SVM is 
higher than that of the other comparison algorithms in most cases. It should be emphasized that for Poly + SVM, 
Sig + SVM, Gau + SVM and Lap + SVM, the training time is dependent on the setting range of the parameters. 
The optimization model is established to solve the parameters of WpNt + SVM and SMKL + SVM based on the 
improved local polarization. Therefore, the algorithm proposed in this study does not depend on the setting range 
of the parameters. The hyperparameter in the Gaussian kernel has the smallest step size compared to other single 
kernels. The training time of Gau + SVM is significantly higher than that of WpNt + SVM and SMKL + SVM in 
all datasets except the Pima dataset. This indicates that the training time of Poly + SVM, Sig + SVM, Gau + SVM 
and Lap + SVM will certainly exceed the training time of WpNt + SVM and SMKL + SVM if the value range of 
parameters is added and the step size is continuously reduced. When dealing with the large sample data, R or 
Python’s GPU module can be called for training the model. WpNt + SVM can be parallel computing, so that the 
training time is reduced.

Statistical measurement comparison test of p‑norm distance.  For the WpNt + SVM algorithm, 
different p-norm distances are set for different datasets because in the process of experimental analysis, it was 

OPR =
4+3+3

1× 6× 3
≈ 0.5566

COPR =
(5+3+2)+ (1+ 1+ 2)

1× 6× 3
≈ 0.7778

Table 5.   The fivefold cross-validation classification Kappa coefficient based on the SVM algorithm with 
different kernel functions. Significant values are in bold.

Dataset Poly + SVM Sig + SVM Gau + SVM Lap + SVM SMKL + SVM WpNt + SVM

Kidney d = 4

0.9113
β = 1 θ= −8

0.9679
σ = 0.1

0.9945
σ = 0.1

0.9945
σ1 = 0.01σ2 = 0.05

0.9945
p = 1.5

0.9945

Dermatology d = 3

0.9174
β = 0.1 θ= −2

0.9586
σ = 0.05

0.9550
σ = 0.1

0.9619
σ1 = 0.01σ2 = 0.04

0.9585
p = 1.5

0.9654

Sonar d = 3

0.7055
β = 1 θ= −1

0.5922
σ = 0.01

0.6778
σ = 0.05

0.6300
σ1 = 0.01σ2 = 0.02

0.6692
p = 2

0.6861

Pima d = 2

0.4154
β = 1 θ= −1

0.2894
σ = 0.1

0.4573
σ = 0.05

0.4743
σ1 = 0.01σ2 = 0.02

0.4761
p = 2

0.4741

Postcode d = 2

0.9148
β = 0.01 θ= −2

0.9163
σ = 0.1

0.8232
σ = 0.05

0.9130
σ = 0.02, d = 1

0.9146
p = 2

0.9161

Breast d = 2

0.7683
β = 1 θ= −1

0.5935
σ = 0.1

0.7106
σ = 0.05

0.3879
σ = 0.02, d = 1

0.7694
p = 2.5

0.7862

Table 6.   The fivefold cross-validation classification training time based on the SVM algorithm with different 
kernel functions (minutes).

Dataset Poly + SVM Sig + SVM Gau + SVM Lap + SVM SMKL + SVM WpNt + SVM

Kidney 0.05 0.12 0. 87 0.05 0.64 0.78

Dermatology 0.07 0.18 2.64 0.133 0.54 0.65

Sonar 0.04 0.18 0.60 0.03 0.21 0.29

Pima 4.20 0.29 2.01 0.08 2.53 2.71

Postcode 1.37 3.73 35.25 1.71 8.21 17.53

Breast 0.31 0.36 0.70 0.33 0.32 0.39
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found that different norms in the p-norm t kernel affect the classification performance of the SVM algorithm. 
For details, please refer to Figs. 2, 3 and 4, where p ∈ [1, 50] and the step size is 0.5.

It can be clearly seen from Figs. 2, 3 and 4 that the accuracy, recall and Kappa coefficient using the 
WpNt + SVM algorithm on the Sonar, Pima and Kidney datasets show significant changes with increasing p-norm 
distance. There is a gradual increase in these metrics until the highest point is reached, then an overall downwards 

Figure 2.   The fivefold cross-validation accuracy varies with p-norm distance based on 6 datasets.

Figure 3.   The fivefold cross-validation recall varies with p-norm distance based on 6 datasets.

Figure 4.   The fivefold cross-validation Kappa coefficient varies with p-norm distance based on 6 datasets.



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6197  | https://doi.org/10.1038/s41598-022-09766-w

www.nature.com/scientificreports/

trend with a slight fluctuation in the middle is observed. Finally, the results become stable. For the breast dataset, 
the accuracy, recall and Kappa coefficient of the model began to decline after reaching the highest point and 
basically remained at the same level. For the dermatology and postcode datasets, the accuracy, recall and Kappa 
coefficient of the model fluctuate only slightly with the change in the p-norm. From the visualized results in 
Figs. 2, 3 and 4, it can be concluded that setting different p-norm distances has a significant effect on the perfor-
mance of the classification algorithm in some datasets, while the effect is relatively minimal in other datasets.

The above analysis verifies the influence of different p-norm distances on SVM classification performance 
through a set of cross-validation results, which often has strong randomness. We need to determine whether 
this significant or nonsignificant effect is necessary or random, so "statistical hypothesis testing" provides an 
important theoretical basis45,46. Next, a t test based on pairwise data is used to verify whether different p-norms 
have a significant impact on the classification performance of SVM algorithms in 6 datasets.

The specific operation steps are as follows.

	 (i)	 Given the two different norm distances p1 and p2 , we perform 10 times fivefold cross-validation under 
the two norm distances. The two groups of classification evaluation indices of the SVM algorithm are 
obtained, including precision, recall and Kappa coefficient. They are represented as xi and yi.

	 (ii)	 Let di = xi − yi ∼ N(µ, σ 2
) , H0 : µ = 0;H1 : µ �= 0;

	 (iii)	 Let the statistic

where d = 1
n

∑

n

i=1 di , sd =

√

1
n−1

∑

n

i=1 (di − d)2 and the significance level α = 0.05;
(iv) The t  value in Eq. (27) is calculated. If |t| > t1−α/2(n− 1) , then in a statistical sense, different p-norm 

distances have a significant effect on the SVM performance; otherwise, different p-norm distances do not have 
a significant effect on the SVM performance.

The null hypothesis and the alternative hypothesis in Step (ii) are equivalent to H0 : the use of different p-norm 
distances has a significant effect on the classification performance of SVM, and H1 : the use of different p-norm 
distances has no significant effect on the SVM classification performance. The critical value is t0.975(9) = 2.262 
in Step (iv).

To compare whether different p-norm distances have significant effects on the performance of the proposed 
algorithm, the principle of the p-norm setting is as follows:

	 (i)	 Let p ∈ [a, b] , and the step size is �;
	 (ii)	 The algorithm performance MIi , i = 1, 2, ...s is calculated corresponding to different norms pi;
	 (iii)	 When 

∣

∣MIi −MIj
∣

∣ ≥ ε, 1 ≤ i, j ≤ s , the corresponding pi and pj are fixed.

(27)t =
d

sd/
√
n
∼ t(n− 1),

Table 7.   The p-norm distance setting in different datasets.

Dataset p-norm distance

Kidney p1 = 1.5 p2 = 2

Dermatology p1 = 1.5 p2 = 2

Sonar p1 = 1.5 p2 = 2

Pima p1 = 3 p2 = 2

Postcode p1 = 1.5 p2 = 3

Breast p1 = 2.5 p2 = 3

Table 8.   The statistical comparison test of the weighted t kernel SVM classification performance at the 2 level 
p-norm. Sig: significance. Significant values are in bold.

Dataset

Accuracy test Recall test Kappa coefficient test

t  Value x − y Sig t  Value x − y Sig t  Value x − y Sig

Kidney 6.488 0.0232 Yes 7.489 0.0279 Yes 4.421 0.0359 Yes

Dermatology − 1.214 − 0.0009 No − 0.9019 -0.0005 No − 1.68 -0.0030 No

Sonar 3.074 0.0057 Yes 2.775 0.0054 Yes 2.874 0.0104 Yes

Pima − 5.116 − 0.0060 Yes − 3.283 -0.0055 Yes − 5.254 − 0.0118 Yes

Postcode 1.937 0.0025 No 1.157 0.0015 No 1.934 0.028 No

Breast 1.5 0.0020 No 1.5 0.0017 No 1.496 0.0035 No
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For convenience, let a = 1, b = 10, � = 0.5, ε = 0.1 . If 
∣

∣MIi −MIj
∣

∣ ≥ ε does not exist in [a, b] , ε is reduced 
appropriately. For the 6 datasets in the experiment, the 2-level p-norm distance is set, and the specific informa-
tion is shown in Table 7.

According to the above steps, the test statistic is calculated and compared to the critical value. The test results 
are shown in Table 8.

For the Kidney, Sonar and Pima datasets, the test results in Table 8 show that there is a significant difference 
in accuracy, recall and Kappa coefficient. For the other three datasets, there is no difference in accuracy, recall 
or Kappa coefficient at different p-norm levels, which is basically consistent with the results shown in Figs. 2, 3, 
and 4. In summary, it can be concluded that the change in the p-norm distance for different datasets will have 
different influences on the classification performance of SVM. In some datasets, such as the Sonar, Pima and 
Kidney datasets, the influence of the change in the p-norm distance is significant; in other datasets, such as the 
Postcode, Dermatology and Breast datasets, the influence is of the change in the p-norm distance is minimal. 
Therefore, when the kernel functions have the form of the p-norm distance, such as p-norm t kernel constructed 
in this paper and the traditional Gaussian kernel, we need to consider the influence of the norm distance on the 
performance of SVM and obtain the appropriate norm distance through experimental analysis to achieve the 
best classification prediction effect of SVM.

Conclusions
For the classical SVM algorithm, the kernel function plays a crucial role in the classification prediction process 
because an appropriate kernel function can map samples to an appropriate feature space so that similar samples 
are close together and different samples are far apart. In view of this characteristic of the SVM algorithm, the 
p-norm distance t kernel is constructed according to the t probability density function, and a strict theoretical 
proof is given. To make use of the advantages of different types of kernel functions, the kernel functions are com-
bined. The affinity matrix is redefined according to the local kernel polarization, and then an optimization model 
is established to solve the weight coefficients and kernel parameters. The weighted p-norm t kernel is applied to 
the SVM classification. Experimental analysis on six datasets shows that the proposed weighted p-norm t ker-
nel can effectively improve the classification prediction performance of the SVM algorithm compared with the 
traditional single kernel function. Finally, the influence of the p-norm distance on the performance of the SVM 
algorithm is analysed based on a statistical comparison test. It is concluded that for different datasets, different 
norm distances will have different effects on the performance of the algorithm, some of which are significant 
and some of which are minimal.

The multiple kernel method based on improved local polarization in this paper is applied to SVM classifica-
tion. Our method is also suitable for dimensionality reduction, kernel clustering and medical drug screening. In 
future work, this method will be improved and generalized in these research directions. However, the proposed 
method in this paper is only a simple linear combination of multiple kernel functions. There is no complete 
and effective theoretical basis for the selection and combination of kernel functions; the optimization of kernel 
weights and kernel parameters still faces the problem of nonconvergence, which needs to be further solved.
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