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Abstract

organ failure in clinical severe sepsis.

microvascular dysregulation and with organ failure.

Introduction: Microvascular dysregulation characterized by hyporesponsive vessels and heterogeneous bloodflow
is implicated in the pathogenesis of organ failure in sepsis. The renin-angiotensin system (RAS) affects the
microvasculature, yet the relationships between RAS and organ injury in clinical sepsis remain unclear. We tested
our hypothesis that systemic RAS mediators are associated with dysregulation of the microvasculature and with

Methods: We studied 30 subjects with severe sepsis, and 10 healthy control subjects. Plasma was analyzed for
plasma renin activity (PRA) and angiotensin Il concentration (Ang Il). Using near-infrared spectroscopy, we
measured the rate of increase in the oxygen saturation of thenar microvascular hemoglobin after five minutes of
induced forearm ischemia. In so doing, we assessed bulk microvascular hemoglobin influx to the tissue during
reactive hyperemia. We studied all subjects 24 hours after the development of organ failure. We studied a subset
of 12 subjects at an additional timepoint, eight hours after recognition of organ failure (early sepsis).

Results: After 24 hours of resuscitation to clinically-defined endpoints of preload and arterial pressure, Ang Il and
PRA were elevated in septic subjects and the degree of elevation correlated negatively with the rate of
microvascular reoxygenation during reactive hyperemia. Early RAS mediators correlated with microvascular
dysfunction. Early Ang Il also correlated with the extent of organ failure realized during the first day of sepsis.

Conclusions: RAS is activated in clinical severe sepsis. Systemic RAS mediators correlate with measures of

Introduction
Sepsis is an inflammatory response to infection, and
multiple organ failure contributes to the mortality of
afflicted patients. Early restoration of systemic oxygen
delivery aids in the resuscitation of patients with septic
shock, but in contrast to other forms of shock, micro-
vascular perturbations persist despite optimized global
hemodynamics [1]. Because a disturbed microvascula-
ture results in diminished nutrient extraction [2], clini-
cians now search for therapeutic goals of microvascular
resuscitation in severe sepsis [3].

Direct imaging of the sublingual microcirculations of
septic humans reveals decreased capillary density and
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heterogeneous flow patterns compared to controls [4].
Sepsis disrupts endothelial signaling and diminishes
response to local vasodilators [5], suggesting that het-
erogeneous flow patterns may be due to abnormal vessel
regulation. Indeed, hyperemic responses to transient
ischemia are impaired in the septic human microvascu-
lature [6-8], and the degree of impairment is associated
with the degree of organ failure [9].

Angiotensin II (Ang II) is a potent vasoconstrictor and
diminishes vasodilator responses in arteries [10]. In
addition to direct effects on vascular tone, Ang II affects
multiple aspects of microvascular function through pro-
motion of leukostasis [11], induction of capillary perme-
ability [12], and depletion of glutathione [13]. The
renin-angiotensin system (RAS) is activated in sepsis,
and recent studies implicate Ang II in the pathogenesis
of acute lung injury in animal models [14]. Although
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RAS mediators are present in the blood and microcircu-
latory structures during sepsis, the relationships between
RAS and microvascular function during clinical sepsis
have not been investigated. We hypothesize that RAS
activation is associated with impaired microvascular reg-
ulation and organ dysfunction in patients with sepsis.
To test this hypothesis, we studied a prospective cohort
of human subjects with severe sepsis. Circulating media-
tors of RAS were measured and compared to both
microvascular responses during reactive hyperemia as
well as to organ dysfunction.

Materials and methods

Study design

We studied 30 consecutive patients in our Medical
Intensive Care Unit who fulfilled enrollment criteria,
including 1) severe sepsis, defined as signs of systemic
inflammation in the setting of probable or confirmed
infection, as originally described in a consensus state-
ment [15] and a more recently refined consensus [16],
and confirmed by attending critical care physician eva-
luation; 2) organ failure for no more than 24 hours; 3)
signed informed consent, including from surrogate deci-
sion-makers. Patients were excluded for the following
reasons: 1) recent chemotherapy; 2) recent steroid or
immunosuppressive agents; 3) severe peripheral vascular
disease, dialysis fistulas, or mastectomies that would pre-
clude safe forearm occlusion; 4) “Do Not Resuscitate”
order at time of enrollment. Ten of these 30 subjects
were included in a previous report that validated the
NIRS methodology [9]. In addition to sepsis subjects, we
studied 10 healthy volunteers that did not take any med-
ications. This study was performed in a manner compli-
ant with the Helsinki Declaration, and approved by the
University of Iowa Institutional Review Board.

Sepsis subjects were studied 24 hours after the clinical
recognition of organ dysfunction, corresponding to a
time of clinical significance [17,18], and when the prog-
nostic value of microvascular function has been well stu-
died [4,9,19]. Twelve of these septic subjects were
enrolled early such that an initial study could also be per-
formed eight hours after the recognition of organ dys-
function; this subset of subjects was evaluated following
the phase of Early Goal Directed Therapy, after which
vascular resuscitation may be less effective [20]. All resus-
citation goals and methods were left to the ICU team.
Clinical data were collected prospectively. Organ failure
was assessed using the Sequential Organ Failure Assess-
ment (SOFA) scoring system, using the 24 hour worst-
case score for each organ system as originally validated
[18]. Vasoconstrictor use was classified according to cri-
teria for the SOFA cardiovascular component. Accord-
ingly, low dose vasoconstrictors include Dopamine > 5
mcg/kg/min or Norepinephrine < 0.1 mcg/kg/min, and
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high-dose vasoconstrictors include Dopamine > 15 mcg/
kg/min or Norepinephrine > 0.1 mcg/kg/min. Since the
validation of SOFA scores, arginine vasopressin infusions
have been shown to decrease the need for additional
vasopressors and now are used commonly. Because vaso-
pressin effects on blood pressure are considered similar
to those of norepinephrine [21], subjects on vasopressin
as a single vasoactive agent were given a cardiovascular
component score of 3, while those on vasopressin plus
additional agents were given a score of 4.

Measurements of RAS activity

Blood was collected using ethylenediaminetetraacetate
(EDTA)-filled vacuum phlebotomy tubes. Samples were
immediately placed on ice and plasma was separated
and frozen to -80°C within 30 minutes of blood draw.
The rate of generation of angiotensin in ex-vivo plasma,
or plasma renin activity (PRA), was assayed using a
commercial radioimmune assay (RIA) kit (DiaSorin,
Stillwater, MN, USA). One tube was prechilled and pre-
filled with the converting enzyme inhibitor bestatin to
prevent ex-vivo generation of Ang II. Subsequently, the
plasma concentration of Ang II was measured using a
commercial RIA kit (ALPCO, Salem, NH, USA).

Microvascular responses to reactive hyperemia
We utilized near infrared spectroscopy (NIRS) to moni-
tor microvascular responses to reactive hyperemia in
thenar skeletal muscle [9]. NIRS detects the oxygen
saturation of hemoglobin specifically in skeletal muscle
tissue microvasculature (S;O,) with little influence from
myoglobin or from blood flow to skin or other tissues
[22,23]. The Inspectra 325 Tissue Spectrometer (Hutch-
inson Technology, Hutchinson, MN, USA) utilizes 15
mm spacing between emission and detection points, and
provides tissue attenuation measurements at four dis-
creet wavelengths (680, 720, 760, and 800 nm) [24].
Prior to NIRS testing, patients inhaled 100% oxygen to
maximize S,0,. Using techniques previously validated
[9], forearm stagnant ischemia was maintained via a vas-
cular cuff inflated to 250 mm Hg for five minutes, then
the cuff was deflated rapidly. We defined the reoxygena-
tion rate as the rate of increase of SO, during the
immediate 14 seconds after the release of ischemia. This
technique represents the summative rate of all arterial
influx to the tissue microvasculature and hence the
microvascular response to reactive hyperemia [9]. To
determine the reproducibility of our measurements, four
additional normal control subjects underwent repeated
ischemia/reoxygenation testing with 10 minutes rest
between ischemic periods.

Microvascular responses were evaluated immediately
following phlebotomy for RAS mediators. The family of
one septic subject refused stagnant ischemia after the
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enrollment process due to deterioration of clinical sta-
tus; the previously collected clinical and plasma data are
included in the analysis.

Statistical analysis

Clinical, NIRS, and plasma data were analyzed with
GraphPad Prism software v4.0 (San Diego, CA, USA).
Candidate groups for comparison were assessed with a
normality test, and Student’s t-test was utilized if appro-
priate. Medians of two groups with non-Gaussian distri-
butions were compared with Mann-Whitney tests,
whereas medians of three groups with non-Gaussian
distributions were compared with the Kruskal-Wallis
test; post-hoc analyses of significant differences (o <
0.05) were investigated with Dunn’s Multiple Compari-
son Test. A Pearson correlation coefficient was calcu-
lated to compare linear relationships between two
continuous variables with Gaussian distributions; a
Spearman coefficient was calculated when non-Gaussian
distributions were noted. Individual statistical tests are
specifically stated in each figure legend.

Results

Thirty subjects fulfilled our enrollment criteria, includ-
ing 12 subjects enrolled early such that an eight-hour
study could also be performed. Clinical data are sum-
marized in Table 1. Our subjects demonstrated a broad
age range and a slight male predominance. Pneumonia
was the most common infection leading to sepsis. Vaso-
constrictor use was common, as was mechanical ventila-
tion, while nearly half of our patients developed
extensive organ dysfunction culminating in a SOFA
score of 10 or greater (a predictor of 50% mortality).
Patients with severe sepsis were resuscitated according
to clinician preference, including a mean total fluid
intake over eight liters in the first 24 hours of ICU care.
The mean value of mean arterial pressures in our sub-
jects was 69 mm Hg (SD 10.4 mm Hg). Although no
subject had chronic renal failure requiring renal replace-
ment therapy prior to enrollment, the median serum
creatinine was 1.7 mg/dL. Overall, our subjects experi-
enced 67% survival. These features represent a typical
severe sepsis population at high risk of death.

Median values for PRA (7.4 ng/mL/h, range 0.1 to
49.7 ng/mL/h) and Ang II (29.8 pg/mL, range 3.1 to
242.8 pg/mL) were elevated at 24 hours, despite resusci-
tation to clinical endpoints of preload and mean arterial
pressure (see Figure 1). There was no relationship
between serum creatinine and either measure of RAS
activation. However, PRA correlated with total SOFA
score (Spearman r = 0.44, P = 0.01). Ang II did not cor-
relate with SOFA scores at 24 hours. We compared
values of PRA and Ang II to assess consistency within
an intact biologic system and found a strong correlation
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Table 1 Clinical data of severe sepsis subjects
Mean Range
Age (years) 56 31 to 85
Mean arterial pressure (mm Hg) 69 48 to 91
Heart rate (beats/min) 91 51to 124
S0, (%) 97 90 to 100
Hemoglobin, (g/dL) during NIRS Ihl 8.6 t0 224
Blood Lactate®, maximum value 3.7 0.7 to 103
Serum Creatinine, (mg/dL) 2 05to 76
SOFA Score 10 1to 19
n %
Total enrolled 30 100
Male gender 17 57
Severe organ failuret 14 47
Vasoconstrictor use* 21 70
Mechanical Ventilation 21 70
Survive, in-hospital 20 67
Source of Infection
Pneumonia 15 50
Genitourinary 5 17
Abdominal 5 17
Endovasculart* 4 13
Multiple foci 1 3

Sp0,, arterial oxygen saturation by pulse oximetry; SOFA, sequential organ
failure assessment. *n = 25 subjects. 'Severe organ failure defined as SOFA =
10. ¥ Vasoconstrictor use includes dopamine > 5 mcg/kg/min or any dose of
norepinephrine or vasopressin. *Endovascular denotes bacteremia without
detectable extravascular source of infection.

between these mediators (Spearman r = 0.75; P <
0.0001; see Figure 2). Mean arterial pressure did not
correlate with PRA (r = -0.31, P = 0.10) and only weakly
correlated with Ang II (r = -0.43, P = 0.02). Since many
of our subjects were being treated with vasoactive drugs,
and because catecholamines may stimulate renin release,
we sought interactions between such therapy and circu-
lating RAS mediators. Concentrations of the potent
vasoconstrictor Ang II were similar in subjects receiving
exogenous vasoconstrictor infusions and those not
receiving these drugs (mean 54.9 pg/mL, SD 56.4 vs
37.5 pg/mL, SD 41.6; normality test P > 0.1 for each
group, Student t-test P = 0.4).

At the same time that plasma was sampled for PRA
and Ang II, we assessed the microvascular response to
reactive hyperemia using NIRS. The reoxygenation rate
following ischemia was impaired in septic compared to
control subjects (mean 3.0% per sec (SD 1.6) vs. 4.8%
per sec (SD1.1); t-test P = 0.003). The coefficient of
variability of the reoxygenation rate in normal control
subjects was 23%, similar to previous reports [25]. The
reoxygenation rate correlated negatively with the degree
of organ dysfunction in septic subjects (Pearson r =
-0.50, P = 0.007; see Figure 3), confirming our prior
findings [9]. The reoxygenation rate was lower in those
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Figure 1 Circulating RAS mediators are prevalent in the septic circulation. Plasma renin activity (Panel A) and the plasma concentration of
angiotensin Il (Panel B) were assessed in control (n = 10) and septic subjects. At eight hours following the recognition of organ dysfunction,
both PRA and Ang Il were elevated in septic subjects (n = 12). Despite resuscitation to clinical endpoints, median values for PRA (7.4 ng/mlL/hr,
range 0.1 to 49.7 ng/mL/hr) and Ang Il (29.8 pg/mL, range 3.1 to 242.8 pg/mL) remained elevated at 24 hours (n = 30). Data depict median,
interquartile range, and range for each column. * P < 0.05, ** P < 0.01 compared to control, Kruskal-Wallis test, and Dunn’s Multiple Comparison
post-hoc test.
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Figure 2 Plasma renin activity correlates with plasma
concentration of angiotensin Il in septic patients. PRA and Ang
I were measured 24 hours after the recognition of organ
dysfunction in 30 septic patients. Correlation analysis showed a
significant relationship between these factors (Spearman r = 0.75; P

< 0.0001).

subjects receiving exogenous vasoconstrictors (mean
2.6% per sec (SD 1.6)) than in those not on vasocon-
strictors (mean 4.0% per sec (SD 1.3); t-test P = 0.03).
This did not appear to depend on drug dose as reoxy-
genation rates for those on high dose vasoconstrictors
(2.6% per sec, SD 1.8) were similar to those on lower
doses (2.7% per sec, SD 0.78; t-test P = 0.88). Similarly,
reoxygenation rates were lower in 20 septic subjects
receiving continuous sedation during mechanical venti-
lation (2.45% per sec, SD 1.21) compared to septic
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Figure 3 Microvascular responses to reactive hyperemia
correlate inversely with organ dysfunction in severe sepsis. The
microvascular response to reactive hyperemia was assessed by NIRS
measures of thenar reoxygenation rates following induced forearm
ischemia in 28 subjects. Correlation analysis showed a significant
inverse relationship between microvascular reoxygenation rates and
the degree of organ failure as assessed with the Sequential Organ
Failure Assessment (SOFA) score (Pearson r = -0.50, P = 0.007).
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subjects that were not ventilated (4.27% per sec, SD
1.68; t-test P = 0.03). Within the subset of ventilated
septic subjects, reoxygenation rates still correlated with
total SOFA score (r = -0.48; P = 0.037). A novel finding
is that these microvascular responses correlated with
RAS mediators in septic subjects. We found negative
correlations between reoxygenation rates and both PRA
(Spearman r = -0.52, P = 0.005) and Ang II (Spearman
r = -0.41, P = 0.03, see Figure 4).

In the subset of 12 subjects studied eight hours fol-
lowing the recognition of sepsis-induced organ dysfunc-
tion, our findings were quite similar. Three subjects
(25%) studied at this early timepoint ultimately did not
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Figure 4 Circulating RAS mediators correlate inversely with the
microvascular responses to reactive hyperemia. Circulating RAS
mediators were assessed by radioimmune assay of plasma from
septic subjects 24 hours following the clinical onset of organ
dysfunction. Correlation analysis showed both plasma renin activity
(Panel A; Spearman r = -0.52, P = 0.005) and plasma angiotensin ||
concentration (Panel B; Spearman r = -041, P = 0.03) had significant
inverse linear relationships with thenar reoxygenation rates, or

microvascular responses to reactive hyperemia.
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Figure 5 Early RAS activation correlates with microvascular
dysfunction. Plasma renin activity was assessed by radioimmune
assay of plasma from a subset of 12 subjects studied eight hours
following the recognition of organ failure. Correlation analysis
showed PRA had a significant inverse relationship (Spearman r =
-0.83, P = 0.0009) with microvascular reoxygenation rates.

survive hospitalization. The median PRA was signifi-
cantly elevated in early septic subjects (15.1 ng/mL/h,
range 0.9 to 73 ng/mL/h) compared to controls (1.5 ng/
mL/h, range 0.1 to 2.2 ng/mL/h; see Figure 1, Panel A).
Circulating Ang II was also increased in sepsis subjects
(median 47.2 pg/mL, range 3.7 to 146 pg/mL) at this
early timepoint (control median 10.6 pg/mL, range 2.8
to 17 pg/mL; see Figure 1, Panel B). Early PRA corre-
lated negatively with microvascular reoxygenation rates
measured at the same timepoint (Spearman r = -0.83,
P = 0.0009; see Figure 5). Strikingly, the plasma concen-
tration of Ang II early in sepsis correlated with the
extent of organ dysfunction realized during the first day
of ICU care (Spearman r = 0.66, P = 0.019; see Figure
6). In parallel, early Ang II concentrations in those that
ultimately survived hospitalization (mean 36.0 pg/mL,
SD 36 pg/mL) were lower than those in subjects that
died (mean 105.8 pg/mL, SD 36.4 pg/mL; normality test
P > .1; Student t-test P = 0.016).

Discussion

We found that circulating mediators of RAS are preva-
lent in clinically severe sepsis. As such we have con-
firmed prior studies [26,27] and extended the evaluation
of RAS mediators to two relevant timepoints during
resuscitation. Additionally, we have demonstrated rela-
tionships between RAS mediators and impaired physiol-
ogy within human septic subjects.

Our previous work documented that arteriolar influx
to skeletal muscle tissue was most impaired in septic
patients with profound vital organ failure [9]. Using
similar techniques, others have found this measure to be
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most impaired in septic patients who do not survive
[19]. The negative linear relationship between microvas-
cular regulation and organ failure in our current study
substantiates the reliability and relevance of this physio-
logic measurement.

Several therapeutic interventions in the care of septic
subjects can potentially alter vascular responses. Contin-
uous infusions of propofol, benzodiazepines, and opiates
were used in our subjects that required mechanical ven-
tilation, and are known to impair vasodilatory responses.
That reoxygenation rates correlated with overall severity
of illness score even within this subgroup suggests that
sedative infusions themselves are not the major cause of
impaired responses in our subjects.

It is interesting that responses to reactive hyperemia
were most impaired in our subjects receiving exogenous
vasoconstrictors (with a modest test of significance and
with no evidence of a dose-response), while previously
we found no relationship between vasoconstrictor use
and diminished responses in septic subjects. Other
groups have similarly described only a limited relation-
ship between exogenous vasoconstrictors and dimin-
ished microvascular responses in septic patients [19].
When norepinephrine infusions are titrated to escalating
arterial pressure targets in septic patients, some subjects
have an ideal resuscitation point above or below which
microvascular perfusion is impaired [28]. This leaves
open the possibility that some of our observed micro-
vascular dysfunction may have been due to inadequate
resuscitation. However, this occurs in a minority of sep-
tic subjects whereas microvascular flow is generally not
altered when norepinephrine is titrated to mean arterial
pressures ranging from 60 to 90 mm Hg [29]. Catecho-
lamines alter vasodilatory responses, but any analysis of
vasomotor responses must consider that circulating
endogenous vasoconstrictors are elevated in sepsis and
likely affect hyperemic responses even in patients that
don’t receive vasoconstrictor infusions. The limited rela-
tionship between vasoconstrictor infusions and hypere-
mic responses in our studies suggest that exogenous
catecholamines do not play a large role (compared to
endogenous factors) in dampening hyperemic responses.
Because Ang II was equally elevated in patients who did
or did not receive exogenous vasoconstrictors, we are
urged to investigate relationships between circulating
RAS mediators and microvascular function in sepsis.

We considered that RAS activation might simply reflect
glomerular hypoperfusion due to hypovolemia, hypoten-
sion, or insufficient resuscitation. The clinical use of vaso-
pressors, mechanical ventilation, and fluid resuscitation in
our subjects was consistent with aggressive resuscitative
efforts during the first day of sepsis, although we did not
standardize resuscitation to measures of cardiac output,
pulmonary artery occlusion (wedge) pressure, or pulse
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Figure 6 Early plasma angiotensin Il concentration correlates with organ failure in severe sepsis. Plasma angiotensin Il concentration was
measured eight hours after the recognition of organ failure in 12 septic subjects. Panel A: Correlation analysis of these 12 subjects showed a
significant relationship (Spearman r = 0.66; *P = 0.019) between Ang Il and the extent of organ failure realized during the first day of ICU care as
determined by the Sequential Organ Failure Assessment (SOFA) Score. Data shown includes subjects that died (black triangles) or survived
hospitalization (open circles). Panel B: Early Ang Il concentrations in those that ultimately survived hospitalization (mean 36.0 pg/mL, SD 36 pg/
mL) were lower than those in subjects that died (mean 105.8 pg/mL, SD 36.4 pg/mL; ** normality test P > .1; Student t-test P = 0.016).

pressure variation in accord with uncertainties regarding
what these goals should be [30-32]. Similarly, preexisting
hypertension, diabetes, and coronary disease are associated
with increased RAS activity, and no doubt are co-morbid
conditions in clinical sepsis. We note that the levels of
PRA and Ang II measured in our septic subjects are ele-
vated nearly two-fold compared to outpatients with risk
factors for vascular disease [33,34], arguing that the acute

septic state contributes to RAS activation. Although we
did identify a relationship between arterial hypotension
and circulating Ang II after the first day of severe sepsis,
the modest statistical significance and lack of a similar
relationship between hypotension and PRA (a biologic
precursor to Ang II) temper our enthusiasm to declare
arterial pressure a dominant factor leading to persistent
RAS activation during sepsis.
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Our most novel finding is the association of circulating
mediators of RAS with impaired hyperemic responses to
ischemia during sepsis. This association raises the possi-
bility that sepsis stimulates RAS, which contributes to
microvascular perfusion heterogeneity (manifested as
impaired response to local ischemia), and that perfusion
heterogeneity contributes to organ failure. We cautiously
note that our studies do not define a causal role of RAS
in the pathogenesis of septic microvascular dysfunction,
and RAS activation may be unrelated or even compensa-
tory for microvascular dysfunction. However, findings of
increased small vessel density and decreased heterogene-
ity following vasodilator administration to septic subjects
[35,36] suggest that an enhanced vasoconstrictor tone
contributes to perturbations of the microvasculature.
Thus our findings suggest that RAS contributes to the
enhanced microvascular tone in human sepsis.

Ang II inhibits endothelium-dependent relaxation of
resistance arteries [37] and thus modulates the response
to ischemia. Antagonism of the angiotensin type 1
receptor increases blood flow to ischemic mesenteries
[38] and attenuates mucosal permeability and bacterial
translocation [39] in animal models of shock. In addi-
tion to direct effects on vascular tone, Ang II induces
adhesion marker expression on both leukocytes and
endothelial cells [40,41] and thus may propagate the
hemostatic and inflammatory interactions implicated in
microvascular perturbations and organ failure during
sepsis. We note that early Ang II correlates with the
extent of organ failure achieved during the first day, but
Ang II values later in the course of sepsis do not corre-
late with SOFA scores. The explanation for this discre-
pancy is not clear. It is possible that Ang II is an early
mediator in a cascade of events that results in organ
failure over the first day, and as such the late concentra-
tion of Ang II is less relevant to organ failure.

Circulating precursors to Ang II also have biologic
importance. It is worth noting that PRA also correlated
with impaired hyperemic responses as well as SOFA
scores in our studies. Inhibition of angiotensin converting
enzyme (ACE) with enalapril improves endothelium-
dependent relaxation in endotoxemic animals [42]. ACE
inhibition decreases endothelial-derived adhesion mole-
cules and vasoconstrictors, improves gut perfusion, and
reduces organ failure in critically ill patients [26,43]. Our
studies provide evidence of associations between RAS
and relevant microvascular perturbations in sepsis.
Importantly, our studies provide an impetus to determine
if pharmacologic RAS blockade can increase microvascu-
lar function and improve septic patient outcomes.

Conclusions
RAS mediators are present in the systemic circulation
in human sepsis. Plasma renin activity and angiotensin
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II concentrations correlate with impairments in micro-
vascular dysfunction, organ failure, and mortality.
These derangements appear early and persist through
the first day of severe sepsis despite macrovascular
resuscitation.

Key messages
*The renin-angiotension system (RAS) activation
correlates with organ injury and mortality in clinical
sepsis.
= Systemic RAS mediators persist in many septic
patients despite macrovascular resuscitation.
* Microvascular responses to ischemia are impaired
in clinical sepsis and correlate with vital organ
function.
= Systemic RAS mediators correlate inversely with
microvascular responses to ischemia.
= Future work can determine if RAS antagonism can
improve microvascular function and vital organ
function in clinical sepsis.
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