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Abstract

Retinoic acid (RA) plays major roles during nervous system development, and during regen-

eration of the adult nervous system. We have previously shown that components of the RA

signaling pathway are upregulated after optic nerve injury, and that exogenous application

of all-trans retinoic acid (ATRA) greatly increases the survival of axotomized retinal ganglion

cells (RGCs). The objective of the present study is to investigate the effects of ATRA appli-

cation on the macrophages in the optic nerve after injury, and to determine whether this

affects axonal regeneration. The optic nerve was crushed and treated with PBS, ATRA and/

or clodronate-loaded liposomes. Nerves were examined at one and two weeks after axot-

omy with light microscopy, immunocytochemistry and electron microscopy. ATRA applica-

tion to the optic nerve caused transient increases in the number of macrophages and

microglia one week after injury. The macrophages are consistently labeled with M2-type

markers, and have considerable phagocytic activity. ATRA increased ultrastructural fea-

tures of ongoing phagocytic activity in macrophages at one and two weeks. ATRA treatment

also significantly increased the numbers of regenerating GAP-43-labeled axons. Clodronate

liposome treatment depleted macrophage numbers by 80%, completely eliminated the

ATRA-mediated increase in axonal regeneration, and clodronate treatment alone

decreased axonal numbers by 30%. These results suggest that the success of axon regen-

eration is partially dependent on the presence of debris-phagocytosing macrophages, and

that the increases in regeneration caused by ATRA are in part due to their increased num-

bers. Further studies will examine whether macrophage depletion affects RGC survival.

Introduction

Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays a major role during

early development of the nervous system, setting up dorsoventral and anteroposterior pattern-

ing of the neural plate and tube [1]. Its later function is to direct the differentiation of various
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types of neurons and glia by activating the transcription of many genes, including those

that encode transcription factors, cell signaling molecules, enzymes and cell surface receptors

[1–5].

More recently, it has been found that RA signaling also has a role in the CNS of adult ani-

mals, particularly in areas of high neuronal plasticity such as the hippocampus, cortex, and

striatum, where cells continue to be generated [1, 6–10]. It has also been shown to be involved

in the control of rhythms within the brain [11]. In addition, defects in RA signaling may occur

in various neurodegenerative diseases including ALS [12, 13] and Alzheimer’s disease [14, 15].

However, of particular relevance to the present study is the growing evidence that RA sig-

naling is reactivated in the adult peripheral nervous system following nerve injury, and thereby

enhances the capacity to regenerate. In peripheral nerves, injury causes an upregulation of RA

signaling components [16, 17], with one of its receptors, RARβ, being crucial for stimulating

neurite outgrowth [18]. However, in mammalian CNS neurons there is no such upregulation

of RA signaling after injury, and it was suggested that this, in addition to their inhibitory

microenvironment, might be another reason for their poor regenerative capabilities. In con-

trast, our lab has shown recently that in the frog CNS the RA signaling pathway is indeed upre-

gulated after optic nerve injury, moreover that exogenous application of an RA analogue

greatly increases the survival of axotomized retinal ganglion cells (RGCs) [19, 20]. Since RA

promotes long-term RGC survival, which generally depends on axons reaching their targets, it

is likely that it also promotes the axonal growth of these cells. However, the question of

whether RA application stimulates axonal regrowth in the frog remains open, so addressing

this question is one of the objectives of this study.

We know that both the numbers and elongation rate of regenerating frog RGC axons can

indeed be increased by a single topical application of a growth factor (CNTF or FGF-2) to the

optic nerve [21]. The mechanisms for this were not addressed, however, it was subsequently

shown that application of these factors also increases the numbers of phagocytic macrophages

in the regeneration zone of the injured nerve [22]. Previous work has shown that macrophage

infiltration into the eye after lens injury promotes retinal ganglion cell (RGC) survival and

regeneration [23–26], and it is now known that RA stimulates macrophage phagocytosis of

myelin in vitro [27]. These observations lead to the additional questions proposed in the pres-

ent study: does RA also influence the phagocytic cell populations in the injured optic nerve,

and if so, does this affect the regeneration of the axons?

We show that a single application of an RA analogue transiently increases the number of

phagocytic macrophages and microglia in the regenerating region of the crushed optic nerve.

This treatment also increases the number of regenerating RGC axons, and this increase is pre-

vented by chemical ablation of the macrophages.

Materials and methods

Animals

Adult frogs (Rana pipiens) of both sexes were obtained from Connecticut Valley Biological

Supply Company (Southampton, MA) and Nasco Worldwide Service to Education, Health,

Agriculture, and Industry (Fort Atkinson, WI). They were kept in tanks with recirculating tap

water at 19˚C. Approximately 50 animals were used for immunohistochemistry and electron

microscopy, and 25 more for the axonal regeneration experiments. The study is in accordance

with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health

and the recommendations of the Panel on Euthanasia of the American Veterinary Medical

Association. Experimental procedures were approved by the Institutional Animal Care and

Use Committee of the University of Puerto Rico Medical Sciences Campus.
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Surgical technique for optic nerve crush

The frog was anesthetized by immersion in 0.3% tricaine solution for 10 minutes. To access

the optic nerve an incision in the palate was made and then the extraocular muscles of the

right eye were retracted. The extracranial portion of the right optic nerve was crushed at the

halfway point using forceps (Dumont No. 5). This leaves the meningeal sheath intact but cre-

ates a transparent gap that is completely free of axons. We have confirmed the lack of even the

smallest of axons in this region by electron microscopic observation; also, crushing in this

manner perturbs RGC survival almost as effectively as cutting [28]. A strip of Parafilm was

placed under the crushed nerve area to contain any applied solutions. The palate was left open

for 10 minutes after the application; once absorption of the applied treatment had taken place

the incision was sutured, and the animals kept under observation until they recovered from

anesthesia. Once awakened, animals were returned to their tanks in the animal facility.

All-trans retinoic acid application

Immediately after the right optic nerve was crushed, a strip of Parafilm was placed under it

and 10 μl of all-trans retinoic acid (ATRA) solution at 0.1 μM or vehicle (phosphate-buffered

saline, PBS 0.1 M) was applied to the region between the stumps. The solution was left in place

for 10 min, then the Parafilm was removed and the palate sutured. This dosage and procedure

were similar to those used in a previous study [22].

Resin embedding for light microscopy and transmission electron

microscopy

Tissue was embedded in resin as previously described [22]. Euthanasia was carried out one or

two weeks after the optic nerve crush and ATRA or PBS application (N = 4 per treatment), by

using an overdose of anesthetic (1% tricaine +0.04% NaHCO3). The optic nerve was dissected

from the head and fixed overnight at 4˚C in 2% paraformaldehyde + 2% glutaraldehyde,

diluted in 0.1 M cacodylate buffer containing 0.05% CaCl2. Once fixed the nerve was washed

with 0.1M cacodylate buffer, then post-fixed with 1% osmium tetroxide (OsO4) in cacodylate

buffer for 1 hour under a fume hood. The tissue was dehydrated using 5 minute washes of

25%, 50%, and 70% ethanol, then placed in 3% uranyl acetate diluted in 70% ethanol for 1

hour. Dehydration continued with 90% ethanol and three washes with 100% ethanol (20 min-

utes each) and a propylene oxide wash for 10 minutes. Finally, the optic nerves were placed in

a 50:50 solution of Epon-Araldite and propylene oxide for another hour before leaving them

in 100% Epon-Araldite overnight in a dessicator. The next day, the nerves were placed in cubic

molds and embedded in 100% resin, then placed in the oven at 60˚ for 24 hours. The resin

blocks were trimmed and, using a Sorvall MT-2 ultramicrotome, cut in semithin sections

(1 μm) for light microscopy and ultrathin (90 nm) sections for TEM. Sections were taken from

the lesion and regenerating areas. For light microscopy, the semithin sections were stained

using methylene blue-azure II and basic fuchsin. For transmission electron microscopy, ultra-

thin sections were collected on a copper grid and stained using 3% uranyl acetate and 0.075%

lead citrate. Imaging and visualization of the ultrathin sections was carried out using a JEOL

JEM1011 electron microscope equipped with a Gatan digital camera model 832J46WO.

Light microscopy cell counts

As in our previous study [22], we cut a series of transverse 1 μm resin sections of optic nerves

from distal stump towards proximal stump until the injury site was reached, collecting sections

every 50 μm. Analysis was carried out on sections taken approximately 100 μm distal to the
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injury site, based on previous work showing that regenerating axons have reached this point at

one week, and that the number of cells in this region is representative of the cell numbers over-

all [21]. High magnification light microscope images of the nerve were taken with a CoolSNAP

HQ2 camera (Photometrics, Tucson, AZ) and composited using Adobe Photoshop or GIMP.

Macrophages were identified based on their large size and dark cytoplasm with granules or

vacuoles. It is possible that some of the smallest profiles fulfilling these criteria correspond to

phagocytic microglia that are intrinsically in the nerve, therefore we did not include any cells

with a diameter smaller than 7 μm. Cell counts were made blind using codes for the image file-

names. A color overlay was made outlining the nerve and macrophage-like cell bodies within

it; these overlays were subsequently saved as separate grayscale images. ImageJ (FiJi) was used

to threshold the grayscale images and to quantify the cell numbers and sizes using the Analyze

Particles function.

Electron microscopic analysis of phagocytic structures

As before, from electron micrographs we quantified sub-cellular structures (“organelles”)

indicative of phagocytic activity in macrophage cell profiles [22]. We classified these organelles

into three categories: (1) phagocytic vacuoles: electron-lucent, membrane-bound ‘holes’ con-

taining evident cellular debris, the diameter of which measured from 1 to 6 μm; (2) multilamel-

lar bodies, composed of multiple electron-dense lamellae or vesicles, ranging in diameter from

0.5 to 3 μm; and (3) lipid droplets, which ranged from 0.3 to 2 μm in diameter, were generally

homogeneously electron-lucent and had no bounding membrane. Color overlays were made

in Photoshop or GIMP of 24–40 cells and their phagocytic organelles from 3 animals per

experimental group, then these were converted to grayscale images. These were thresholded,

and the areas of each organelle type measured using the Analyze Particles function of FiJi. In

order to standardize variations caused by partial image cropping, different cell profile sizes,

and oblique sections, the total area of each type of structure per cell was expressed as a percent-

age of the total area of all the organelles. Data were plotted as kernel density (“violin”) plots

with superimposed box-whisker plots showing the median and 25–75 percent quartiles (box)

and minimum/maximum values (whiskers). Since data were generally not normally distrib-

uted, the statistical significance of differences between medians was determined using Krus-

kal-Wallis tests with post-hoc Dunn pairwise comparisons using Bonferroni corrected p-values

(�P<0.05, ��P<0.01, ���P<0.001).

Immunohistochemistry

The right optic nerves were dissected while still attached to the eye cup and fixed with 2% para-

formaldehyde solution for 30 minutes at room temperature. Then they were washed using 0.1

M PBS, and subsequently placed in 30% sucrose for cryoprotection at 4˚C overnight. Next day

they were frozen for the subsequent preparation of 12–14 μm thick cryostat sections, which

were collected on microscope slides. Prior to immunostaining, the slides were hydrated with

0.1 M PBS for 30 minutes, followed by antigen retrieval using a 10 mM citrate buffer (pH 6)

for 10 minutes at 60˚C. A pre-incubation with 10% normal goat serum in 0.1M PBS for 1 hour

was carried out, following which the slides were incubated overnight at room temperature

with the primary antibodies, which were anti-Arginase 1 (1:50; catalog # sc-271430; Santa

Cruz Biotechnology), anti-CD68 (ED1, 1:200; catalog # ab125212, Abcam) and anti-Iba1

(1:100; catalog # 01919741; Wako), diluted in 0.1M PBS + 0.3 TritonX-100 + 0.5% BSA. After

the washes with PBS 0.1M, the sections were incubated with secondary antibody goat anti-

mouse Cy2 (1:200, Jackson ImmunoResearch Laboratories, Inc.) or goat anti-rabbit Cy3

(1:200; Jackson ImmunoResearch Laboratories, Inc.) for 2 hours at room temperature.
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Sections were then stained using 4’,6-diamidino-2-phenylindole (DAPI) 40μg/mL for 5 min-

utes at room temperature, washed with 0.1M PBS 3 times 5 minutes each, and finally mounted

with Polyaquamount.

Omitting the primary antibodies resulted in the absence of immunostaining. The ED1 anti-

body recognizes rodent and bovine CD68 or macrosialin, which has some homology with

amphibian lysosomal proteins. The Arg1 polyclonal antibody recognizes the C terminus of

mammalian arginase 1, the likely antigenic regions of which show almost 70% identity with

amphibian arginase. The Iba1 polyclonal antibody recognizes the C terminus of rabbit Iba1 (or

“allograft inflammatory factor 1”), a widely used marker for microglia that has been used in a

range of species including zebrafish [29]. Because we cannot be completely sure that the anti-

bodies indeed recognize frog homologs of these mammalian proteins, we refer to the staining

as “ED1-like immunoreactivity” (ED1-LI), “Arg1-like immunoreactivity” (Arg1-LI) and

“Iba1-like immunoreactivity” (Iba1-LI).

Clodronate liposomes for macrophage depletion

In order to evaluate the importance of macrophages during recovery from optic nerve injury,

their numbers were depleted using clodronate liposomes, a technique that is well-established

for in vivo ablation, and which has been shown to work in zebrafish and frogs [30–32]. We

used the Clodrosome1 Fluorescent-DiI Macrophage Depletion Kit (Encapsula Nano Sci-

ences, Brentwood, TN), which includes a suspension of 1.5–2 μm liposomes consisting of non-

toxic L-alpha-phosphatidylcholine and cholesterol, labeled with 1,1’-Dioctadecyl-3,3,3’,3’-Tet-

ramethylindocarbocyanine (DiI) and containing either disodium Dichloro-phosphono-

methyl)phosphonate (Clodronate 18.4 nM) or PBS. 10 μl of liposome suspension were applied

to the optic nerve at the time of injury in the same manner as ATRA (see above). When both

ATRA and clodronate were applied, the ATRA was removed after 10 minutes and then the clo-

dronate suspension added for a further 10 minutes. Because macrophage repopulation can

occur after about a week [31], a second liposome injection was made into the region of the

injury site at 1 week after nerve crush.

Measurements of axonal number

As in a previous study, frozen longitudinal sections of the whole optic nerve were processed with

GAP-43 monoclonal antibody (1:500; Chemicon Millipore) in order to stain regenerating axons,

allowing us to count the number of axons that projected beyond the injury site [21]. Alternating

longitudinal sections through the nerve were analyzed to avoid overlap of data. Axonal regenera-

tion was measured from confocal images obtained with a Nikon laser scanning confocal micro-

scope, using NIS Elements Browser Software. Data was analyzed statistically with ANOVA and

post-hoc Tukey tests and differences were considered significant if the p-value< 0.05.

Results

ATRA application increases the number and size of macrophages 1 week

after optic nerve injury

We used light microscopy of transverse 1 μm sections of optic nerve to quantify phagocytic

cells. Based on our previous findings (Blanco et al., 2019; Vega-Meléndez et al., 2014) showing

that regenerating axons had reached 100–200 μm distal to the injury by 1 week, we selected

this region for quantifying macrophage-like cells. We identified macrophages based on their

large size, dark staining, and granular and/or vacuolar inclusions (Fig 1A and 1C). In PBS-

treated controls, from 70 to 105 macrophage cell profiles were counted in this region from
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overlays (Fig 1B, N = 6 animals). Although the nerve sizes did not change significantly between

treatments, there was substantial variability in the cross-sectional area of the nerve between

preparations (0.089–0.225 mm2). Therefore, as in the previous publication [22], this cell count

was converted to cell density, giving a mean of 654 ± 65 cells/mm2 (N = 6). At 1 week, treat-

ment with ATRA resulted in a 65% increase in mean cell density, to 1081 ± 56 cells/mm2

(N = 5, p = 0.00011, ANOVA with post-hoc Tukey test).

At 2 weeks after injury, PBS-treated animals showed a 57% decrease in macrophage cell

density compared to 1 week (282 ± 26 cells/mm2, N = 5, p = 0.0004). ATRA treatment did not

Fig 1. RA application increases the number of macrophages 1 week after optic nerve injury. (A and C) Light

micrographs of transverse 1 μm sections of the optic nerve taken from the region 100–200 μm distal to the injury area

at 1 week after axotomy. A. is a PBS-treated control, C is from an ATRA-treated animal. The insets show enlarged

examples of macrophage cell profiles, showing dark staining, granules, and vacuoles. (B and D) Color overlays of the

light micrographs, delineating macrophage cell profiles (red) and the nerve itself (yellow). The cell count and nerve

area derived from these overlays are shown below. (E) Scatterplots of cell density showing mean ± SEM. Treatments

are PBS or ATRA, at 1 or 2 weeks after axotomy. Numbers of animals are shown. Asterisks or “ns” above each column

indicate the significance when compared to 1 week PBS (row 1, gray), 1 week ATRA (row 2, red), or 2 weeks PBS (row

3, gray) with ANOVA and post-hoc Tukey tests. The macrophage cell density is increased at 1 week after optic nerve

injury by ATRA treatment. By the second week the cell density has decreased, with ATRA treatment showing no

significant difference from PBS treatment.

https://doi.org/10.1371/journal.pone.0255196.g001
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significantly increase the density of macrophages at 2 weeks (417 ± 43 cells/mm2, N = 4, p =

0.349). Thus the effect of a single topical application of ATRA is to temporarily increase the num-

bers of macrophages in the injured optic nerve. When compared to our previous study with appli-

cation of growth factors, this transient effect of ATRA is comparable to that of FGF-2 application,

whereas the effects of a single CNTF application are prolonged until the second week [22].

The macrophage overlays allowed the quantification of various parameters of the cell pro-

files. Because it has been shown previously that RA stimulates phagocytosis by macrophages in
vitro [27], one possibility was that the cells might become larger as a result of ATRA treatment,

and so we measured their diameter (Feret diameter, ie. longest diameter of each profile). At 1

week after axotomy, ATRA treatment resulted in a 20% increase in the mean Feret diameter of

the macrophages, from 17.7 ± 0.9 μm (N = 6) to 20.4 ± 1.2 μm (N = 5, p = 0.027, homoscedastic

t-test). Diameters were segregated in 10 μm bins for each preparation, then these totals were

expressed as a percentage of the total number of cells and averaged over the experimental ani-

mals (Fig 2). The majority (90%) of the cell profiles fell in the range of 10–40 μm. At 1 week

after axotomy, ATRA treatment had significantly decreased the proportion of 10–20 μm diam-

eter cells and increased the number of cells in the 20–30 and 30–40 μm size categories (Fig

2A). No significant changes were seen at 2 weeks in the mean Feret diameter (19.9 ± 2.3 μm,

N = 5 vs 19.0 ± 2.1 μm, N = 4) or in the size distributions (Fig 2B).

RA application increases putative microglia at 1 week after optic nerve

injury

In our previous study we had noted the presence of microglia in electron micrographs of the

regenerating optic nerve, relying on their small size and distinctive morphology to distinguish

them from macrophages and from phagocytic astrocytes [22]. In addition, astrocytes are

clearly identifiable by their bundles of intermediate filaments and inter-cellular desmosomes

[33]. The question arose as to whether the numbers of microglia were increased after axotomy

or by treatment with ATRA. In other systems microglia can be distinguished from macro-

phages by their differing immunoreactivities. The Arg1 antibody recognizes the C terminus of

mammalian arginase 1, which is a classic marker for pro-repair M2 macrophages [34]. A

BLAST search of the likely antigenic regions of this molecule showed an almost 70% identity

with amphibian arginase, and we have shown that it labels macrophage-like cells in frog optic

nerve [22]. A commonly used marker for microglia is the polyclonal antibody against C termi-

nus of Iba1 (or “allograft inflammatory factor 1”), which is known to stain zebrafish microglia

[29]. We used both antibodies, Arg1 and Iba1, in double-labeling immunostaining experi-

ments to identify putative macrophages and microglia in frozen sections of the injured frog

optic nerve at 1 week after axotomy, with or without treatment with ATRA (Fig 3). It appears

that small, microglia-like cells that strongly stain with Iba1 are not immunoreactive for the

macrophage marker Arg1, and vice versa (Fig 3B and 3D). In addition, it was found that an

increase in Iba1-stained putative microglia was apparent with ATRA treatment. Whereas PBS

treatment alone of crushed optic nerve resulted in no significant increase in Iba1-labeled cells

per section compared to uncut controls (30.0 ± 10.8, N = 4 vs 24.5 ± 2.3, N = 4), there was a

significant 6-fold increase in putative microglial numbers after ATRA treatment (199.5 ± 32.8,

N = 4 vs 30.0 ± 10.8, N = 4, p = 0.0005, ANOVA with post-hoc Tukey test).

Ultrastructural characteristics of macrophages and microglia in the optic

nerve after injury

Similar to the previous study [22], at one week after optic nerve crush and PBS treatment

actively phagocytosing macrophages were present inside the optic nerve (Fig 4A–4D),
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particularly in the periphery underneath the glia limitans, a layer made up of astrocytes, glial

cells that characteristically exhibit large bundles of intermediate filaments and desmosomes

[33]. Many macrophages contained structures indicative of different stages of phagocytosis

(Fig 4 inset). The large phagocytic vacuoles appeared to contain the remnants of degenerating

axons and myelin, and presumably indicate the relatively recent occurrence of phagocytosis;

multilamellar bodies probably represent a later stage of debris processing; and finally the lipid

inclusions are thought to represent the end points of myelin and membrane destruction [35].

At 1 week, there were numerous macrophages with a variety phagocytic organelles (Fig 4D).

Fig 2. ATRA treatment increases macrophage size at 1 week. (A and B). Frequency histograms of cell profile Feret

diameter, averaged over several preparations, showing mean ± SEM for each size category. (A) At 1 week after

axotomy ATRA treatment results in a significant decrease in 10–20 μm cells and an increase in 20–40 μm cells

(p< 0.05, homoscedastic t-test with sequential Bonferroni correction). (B) No significant changes in cell size are seen

at 2 weeks after axotomy.

https://doi.org/10.1371/journal.pone.0255196.g002

Fig 3. ATRA treatment increases microglia at 1 week. (A—D) Confocal fluorescence micrographs of frozen sections of optic nerve 1 week after axotomy,

immunostained with Arg1 (macrophages: Green) and Iba1 (microglia: Red) antibodies. Nuclei are counterstained with DAPI (blue). (A and C) PBS

treatment, (B and D) ATRA treatment, showing increased numbers of Iba1-labeled microglia. (B and D) Higher magnification views with some macrophages

(arrowheads) and microglia (asterisks) indicated. Scale bar in A: 100 μm in A and C; 50 μm in B and D.

https://doi.org/10.1371/journal.pone.0255196.g003
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Two weeks after nerve crush, there appeared to be fewer macrophages in the nerve. Those

which were present, both peripherally and centrally, generally contained fewer vacuoles with

axonal debris and were predominantly filled with lipid inclusions (Fig 4F and 4G). A minority

of the cells still appeared to be actively phagocytosing at 2 weeks (Fig 4F).

In addition to macrophages, smaller cells with evidence of phagocytosis were present, in

particular at 1 week, but also at 2 weeks after axotomy (Fig 4B and 4H). These were identified

as microglia by their smaller size, round nucleus, and darker cytoplasm that was typically

drawn out into narrow processes that infiltrated between bundles of regenerating axons

(Fig 4H).

At one week after ATRA treatment, more macrophages and microglia were visible in the

optic nerve (see quantitative Results sections above). Macrophages showed signs of having

been very active in phagocytosis, with many containing predominantly multilamellar bodies

(Fig 5A and 5B). Towards the center of the nerve some showed signs of ongoing phagocytosis,

containing phagocytic vacuoles (Fig 5C). Later, at 2 weeks after ATRA treatment, the remain-

ing macrophages were either lipid-filled (Fig 5D–5F) or still had signs of ongoing phagocytosis

(Fig 5E and 5F). In both 1 week and 2 week preparations many lipid-containing microglia

were also present, often near to macrophages and astrocytes (Fig 5E and 5F).

Quantitative analysis shows that ATRA prolongs phagocytic activity in

macrophages

As in the previous study [22], we carried out a quantitative analysis of the distribution of

organelles that are indicative of phagocytosis in macrophages at one or two weeks after axot-

omy, with or without ATRA treatment. As shown in Fig 6, overlays were constructed from

electron micrographs, with color-coding of the three categories of organelle: phagocytic vacu-

oles, multilamellar bodies, and lipid inclusions or droplets. The large debris-containing phago-

cytic vacuoles (shown in green) presumably indicate the relatively recent occurrence of

phagocytosis; the multilamellar bodies (shown in blue) probably represent a later stage of

debris processing; and finally the lipid inclusions (magenta) are thought to represent the end

points of myelin and membrane destruction [35]. As before, in order to standardize for varia-

tions in profile area due to different cell sizes, oblique sections, and partial image cropping, the

total area of each type of organelle per cell was expressed as a percentage of the total area of all

the organelles. Again, rather than carry out a multivariate analysis, the phagocytic vacuoles

and multilamellar bodies were initially grouped together as “phagocytic organelles”, so as to

compare them with the distribution of lipid inclusions (Fig 6C). Finally, we compared the rela-

tive contributions by area of the two components of the “phagocytic organelles” group, ie. mul-

tilamellar bodies and phagocytic vacuoles (Fig 6D).

The results of the analysis showed that at 1 week after axotomy, irrespective of ATRA treat-

ment, the great majority of macrophage-like cells contained predominantly “phagocytic organ-

elles” rather than lipid inclusions (Fig 6C). Conversely, at 2 weeks, PBS-treated nerves showed

Fig 4. Electron microscopy of macrophages in PBS controls. (A) Medium-low magnification electron micrograph of the optic nerve periphery at 1

w after injury. Macrophages (M) cluster under the glia limitans (gl). Inset between A and B shows high-magnification examples of phagocytic

organelles: Phagocytic vacuoles (pv), multilamellar bodies (mb) and lipid inclusions (li). (B) A peripheral macrophage (M) at 1 w after axotomy

containing a mixture of phagocytic vacuoles, multilamellar bodies and lipid inclusions. Next to it is a microglial cell (mg) and astrocytes (As). (C and

D) Centrally-located macrophages (M) at 1w, containing a similar range of phagocytic structures and a typical irregular nucleus. (E) At 2 w after

axotomy, macrophages (M), predominantly containing lipid inclusions, are clustered at the periphery of the nerve. (F) Peripheral macrophage (M) at

2w, adjacent to astrocytes (As). The macrophage has a variety of phagocytic organelles including phagocytic vacuoles (pv), multilamellar bodies (mb)

and lipid inclusions (li). (G) Centrally-located macrophages (M) at 2 weeks after axotomy, containing predominantly lipid inclusions (li). (H)

Peripheral microglial cell (mg) containing lipid inclusions (li), adjacent to astrocytes (As) and extending processes between bundles of small

regenerating axons (ax). Scale bar: 5 μm in A-H; 1 μm in inset.

https://doi.org/10.1371/journal.pone.0255196.g004
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Fig 5. Electron microscopy of macrophages after ATRA treatment. (A) Medium-low magnification electron micrograph of the optic nerve

periphery at 1 w after injury, showing several macrophages (M) containing predominantly multilamellar bodies (mb). (B) A macrophage

towards the center of the nerve, containing a few phagocytic vacuoles (pv), many multilamellar bodies (mb) and sparse lipid inclusions (li). (C)

A macrophage (M) and smaller, putative microglial cell (mg) in the center of the nerve. The macrophage contains phagocytic vacuoles (pv) and

multilamellar bodies (mb), whereas the microglia contains predominantly lipid inclusions (li). (D) At 2w after ATRA treatment, a centrally-

located macrophage containing only lipid inclusions (li). (E) At 2w after ATRA treatment, macrophage profiles lie below astrocytes (As) at the

nerve periphery. The macrophages contain a variety of phagocytic structures. (F) In the central region of the nerve a macrophage (M) with a

variety of phagocytic structures, and nearby a microglial cell (mg) with lipid inclusions (li). (G and H) At the periphery of the nerve, microglia

(mg) containing lipid inclusions (li) are located between astrocytes (As). Scale bar: 5 μm in A-H.

https://doi.org/10.1371/journal.pone.0255196.g005

Fig 6. ATRA treatment prolongs phagocytic activity. (A) Representative electron micrographs of macrophages from animals in

the four different treatment categories. (B) Color overlays of the cells showing phagocytic vacuoles (green), multilamellar bodies

(blue), and lipid inclusions (magenta), with cytoplasm indicated in yellow. Scale bars in A and B: 5 μm. (C, D) Kernel density

(“violin”) plots with superimposed box-whisker plots of organelle areas, expressed as a percentage of the total organelle area.

Asterisks or “ns” above each column indicate the significance when compared to PBS (rows 1 and 4, gray), or ATRA (row 2 with

Kruskal-Wallis test and Dunn’s post-hoc comparisons using Bonferroni p-correction (�P< 0.05, ��P< 0.01, ���P< 0.001). (C)

Comparison of relative areas occupied by “phagocytic organelles” (vacuoles + multilamellar bodies) versus lipid inclusions. At one

week, the majority of cells are predominantly occupied by “phagocytic organelles” as opposed to lipid inclusions and ATRA

treatment does not change this. At two weeks most cells are occupied predominantly by lipid inclusions in PBS-treated nerves, but

there is a significant increase in phagocytic cells with ATRA treatment. N (cells) = 24, 40, 25, 31. (D) Comparison of relative areas

occupied by multilamellar bodies versus phagocytic vacuoles. At one week after ATRA treatment, there is a significant increase in

the median area occupied by multilamellar bodies. At two weeks, phagocytic vacuoles predominate over multilamellar bodies, but

ATRA treatment significantly increases the proportion of multilamellar bodies. N (cells) = 24, 40, 24, 28.

https://doi.org/10.1371/journal.pone.0255196.g006
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a mixture of cell types, with a large population containing few “phagocytic organelles” and pre-

dominantly lipid inclusions, and a smaller population containing more evidence of ongoing

phagocytosis. The kernel density (“violin”) plots indicate the possibility of two cell populations,

one still undergoing active phagocytosis, and the other with lipid inclusions predominating.

Applying an arbitrary cutoff of 50% phagocytic / 50% lipid area, at two weeks 80% of the cells

analyzed contained predominantly lipid inclusions, versus 20% with phagocytic organelles.

ATRA-treated animals at 2 weeks showed no significant difference in median phagocytic area

compared to PBS-treatment (Fig 6C), probably due to the large spread in values. However, in

ATRA-treated animals only 58% of the cells had predominantly lipid inclusions, versus 42%

with mainly phagocytic organelles. If lipid inclusions indeed indicate the end point of phago-

cytosis [35], these results suggest that ATRA increases ongoing active phagocytic activity at 2

weeks.

We then analyzed the relative distribution of the two “phagocytic organelle” types that were

previously grouped together; namely, the large debris-containing vacuoles, which presumably

indicate the relatively recent occurrence of phagocytosis, and the multilamellar bodies, which

probably represent a later stage of debris processing (Fig 6D). At one week after axotomy,

ATRA treatment showed a significant difference from PBS controls, with a larger median area

occupied by multilamellar bodies compared to phagocytic vacuoles. Using the 50:50 cutoff to

define cell populations, in 96% of the cells from PBS-treated animals their phagocytic organ-

elles were predominantly vacuoles rather than multilamellar bodies. On the other hand, in

ATRA-treated animals 48% were vacuolar (and 52% multilamellar). At two weeks, 83% of the

cells in control animals were predominantly vacuolar, but after ATRA treatment only 64%

were. If multilamellar bodies represent a more advanced stage of phagocytic processing, this

result again implies that ATRA treatment may accelerate this process.

Macrophage depletion using clodronate liposomes

In order to be able to test the effects of macrophages on axonal regeneration, we first needed to

establish a method for depleting their numbers. Clodronate-loaded liposomes have been

shown to be an effective way of doing this, and are effective in zebrafish and frogs [30–32]. At

one week after nerve crush and control liposome injection, DiI-labeling could be observed

within CD68-immunostained macrophages (Fig 7A). In contrast, one week after injection of

clodronate-containing liposomes, both CD68 and DiI staining were largely absent, suggesting

that macrophages were absent. Quantitative counts of macrophage-like cells were made from

overlays of 1 μm resin sections, as described above (Fig 7C and 7D). Mean cell density was not

significantly affected by PBS-containing liposomes (658 ± 111 cells/mm2 versus 654 ± 65 cells/

mm2 in PBS controls, ANOVA with post-hoc Tukey test). However, there was an 84% decrease

to 105 ± 40 cells/mm2 in clodronate-liposome-treated animals (N = 4, p = 0.0017).

Numbers of regenerating axons are increased by ATRA and decreased by

clodronate

Having established above that ATRA increases macrophage numbers and phagocytic activity,

and that clodronate liposomes deplete macrophages by about 80%, we then assayed the effect

of these treatments on the numbers of regenerating axons. To this end we used a similar

method as reported previously, by immunostaining regrowing axons in longitudinal nerve sec-

tions with anti-GAP-43 antibody and counting their numbers per section at a distance of

about 200 μm distal to the lesion site, in the regenerating zone [21]. It should be noted that this

method may not allow us to distinguish between a single large axon and a fasciculating bundle

of small-diameter axons–we therefore use the term “axon profiles” in the subsequent results.
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In crushed PBS-treated nerves there were on average 84 ± 3 axon profiles per 12–14 μm sec-

tion (N = 5 animals) (Fig 8F). ATRA treatment increased this number by 53%, to 129 ± 6 axon

profiles per section (N = 8, p = 1.7 x 10−5, ANOVA with post-hoc Tukey test) (Fig 8F). This

suggests that (1) retinoic acid could act directly on the axons at the injury site and thereby

increase the rate of their regrowth, and/or (2) the increased numbers of phagocytosing macro-

phages induced by ATRA (see results above) promote the regeneration of the axons.

In order to test the second hypothesis, clodronate liposome treatment was used to deplete

the numbers of macrophages. Clodronate liposome treatment alone decreased the numbers of

regenerating axon profiles by about 30% compared to PBS (58 ± 3 axon profiles per section,

N = 4, p = 0.0187). In combination with ATRA application, clodronate liposomes completely

prevented the ATRA-induced increase in numbers of regenerating axon profiles compared to

PBS (Fig 4F) (83 ± 2 axon profiles per section, N = 4, p = 0.9978). These results support the

idea that much of ATRA’s effect on stimulating axonal regeneration is due to the recruitment

of macrophages, rather than a direct effect on the axons themselves. The fact that clodronate

alone results in 80% macrophage depletion but reduces regeneration by only 30% suggests that

the normally-occurring entry of macrophages into the injured nerve is indeed important for

axonal regeneration, but also perhaps that other instrinsic factors are in play, which are unaf-

fected by clodronate.

Fig 7. Clodronate liposomes deplete macrophage numbers. (A, B) Immunohistochemical staining of macrophages with

anti-CD68 antibody in the optic nerve at 1 week after axotomy and treatment with (A) DiI-labeled liposomes and PBS

(PLipo) or (B) with DiI-labeled clodronate liposomes (Clod Lipo). Nuclei are counter-stained with DAPI (blue). (A)

Macrophages stained with CD68 (green) are also labeled to varying degrees with DiI-labeled liposomes (red). The inset

shows a macrophage with particularly strong liposome uptake. Scale bar: 10 μm. (B) Clodronate-liposome-treated nerve

shows cells with only background staining with CD68, and no detectable DiI-liposome labeling. (C, D) Color overlays of

light micrographs of transverse 1 μm sections of the optic nerve taken from the region 100 μm distal to the injury area at 1

week after axotomy and liposome treatment, delineating macrophage-like cell profiles (red) and the nerve itself (yellow).

(E) Scatterplots of cell density showing mean ± SEM. Treatments are PBS alone, PBS liposomes (PLipo), or clodronate

liposomes (Clod Lipo), at 1 week after axotomy. Numbers of animals are shown. Asterisks or “ns” above each column

indicate the significance when compared to 1 week PBS control (row 1, gray), or 1 week clodronate liposomes (row 2,

blue) with ANOVA and post-hoc Tukey tests. The macrophage cell density is unaffected by DiI-labeled liposome

treatment alone. However, clodronate liposome treatment resulted in an 80% decrease in macrophage density.

https://doi.org/10.1371/journal.pone.0255196.g007
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Fig 8. Regenerating axons are increased by ATRA and decreased by clodronate. (A—E) Confocal images of

immunohistochemical staining of growing axons with anti-GAP43 antibody (green), in longitudinal sections of the

optic nerve at 2 weeks after axotomy. Nuclei are counter-stained with DAPI (blue). (A) Low magnification maximum

intensity projection of the complete nerve from a PBS-treated animal, composited from several 12 μm sections, with

the retina (ret) on the left and the distal stump (dist) on the right. The cut site (cut) and proximal stump (prox) are also

indicated. (B-E) Enlarged views of the cut zone and regenerating regions of nerves from animals with different

treatments. (B) PBS treatment, composite from 2 sections (C) ATRA-treatment, single section (D) Clodronate

liposome treatment, composite from 2 sections. (E) ATRA and clodronate liposome treatment, composite from 2

sections. Scale bar: 100 μm in A and B. (F) Bar and scatter plots of the number of axons per transverse section, sampled

at approximately 200 μm distal to the cut site, showing mean ± SEM. Treatments are PBS alone, ATRA, clodronate
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Discussion

The first result reported in this study shows that application of all-trans retinoic acid (ATRA) at

the time of nerve crush results in a 65% increase in the number of macrophage-like cells that

enter the regenerating nerve stump at 1 week after injury. When compared to our previous study

with application of growth factors, this transient effect of ATRA is most comparable to that of

FGF-2 application; in contrast, the effects of a single CNTF application are prolonged until the

second week [22]. The magnitude of the ATRA effect is not as large as that of the growth factors,

however, unlike the growth factors, ATRA induces a small but significant increase in the cell size.

It has been known for many years that macrophages congregate at the site of nerve injury.

Earlier work from this laboratory and others noted the accumulation of macrophages in the

axotomized optic nerve of the frog Rana pipiens [33, 36], which we later quantified and showed

to be preponderantly of the M2 neuroprotective type [22]. Macrophages in other animals

show similar large yet transient influxes after nerve injury, for example rat sciatic nerve [37],

axolotl spinal cord and peripheral axons [38], and the optic nerves of rat, goldfish and Xenopus
tadpoles [39–41].

How does ATRA increase the entry of macrophages? The migration of bone-marrow-

derived macrophages to the injury site is induced by chemokines, a type of chemoattractant

cytokine, secreted by the injured tissue. Of particular importance is monocyte chemoattractant

protein-1, now known as CCL2 [42, 43]. Our present finding that ATRA promotes the entry of

macrophages suggests that either (1) RA itself can act as a chemoattractant for bone marrow-

derived macrophages, or (2) that it promotes the secretion of chemokines such as CCL2 from

cells in the injured region such as microglia and astrocytes [44], and perhaps oligodendrocytes.

We have not found any evidence that RA itself acts as a direct chemoattractant for macro-

phages. Regarding the second hypothesis, that RA stimulates chemokine secretion, there is evi-

dence that it can increase CCL2 expression in, and promote migration of, human monocytes

[45]. On the other hand, RA has an anti-inflammatory effect on mouse astrocytes in vitro, sup-

pressing the release of CCL2 (and other chemokines) [46]. Retinoic acid-inducible gene I

(RIG-I) plays a role in mediating the up-regulation of CCL2 expression by mouse microglia in

response to viral infection [47] but it is not known whether RA would have the same effect.

Otherwise, this hypothesis remains to be tested.

In the present study we also show that ATRA also results in a large increase in numbers of

Iba1-positive putative microglia, a phagocytic cell type that is intrinsic to the CNS. There are

few studies that have addressed this question. In one, RA decreases mouse microglial activa-

tion in vitro [48], this being one suggested mechanism for its neuroprotective effect [49]. On

the other hand, RA-loaded nanoparticles do increase the preponderance of the neuroprotec-

tive M2 phenotype of microglia in murine hippocampal slices [50].

We then present electron microscopic evidence that ATRA increases ongoing phagocytic

activity in macrophages, similar to the effects of the growth factors CNTF and FGF-2 [22].

This is consistent with recent evidence that RA promotes macrophage phagocytosis of myelin

debris. Retinoic acid, acting via RARβ receptors, induces the non-inflammatory M2 phenotype

of mouse macrophages in vitro, and increases their ingestion of myelin, via the upregulation of

genes associated with phagocytosis [27]. Retinoid X receptor activation in aged macrophages

liposomes (Clod), or clodronate liposomes along with ATRA (Clod ATRA). Numbers of animals are shown. Asterisks

or “ns” above each column indicate the significance when compared to PBS control (row 1, gray), ATRA (row 2,

green), or clodronate (row 3, red) with ANOVA and post-hoc Tukey tests. Compared to PBS-treated, the number of

regenerating axons is doubled by ATRA treatment, decreased by 30% by clodronate, and, in the case of ATRA

combined with clodronate, is not significantly different.

https://doi.org/10.1371/journal.pone.0255196.g008
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reverses their deficiencies in myelin debris phagocytosis and remyelination in vivo and in vitro
[51]. It must be pointed out, however, that the percentage of myelinated axons in the frog

optic nerve is low, approximately 3% [33], so it is possible that clearance of debris from degen-

erating unmyelinated axons is of equal importance in facilitating axonal regrowth.

We then used the well-established method of treatment with clodronate-loaded liposomes

to reduce macrophage numbers, first demonstrating that this is 80% effective in the frog optic

nerve. Finally, having established above that ATRA increases macrophage numbers and

phagocytic activity, and that clodronate liposomes deplete the macrophages, we then tested the

effect of these treatments on the numbers of regenerating axons. We show that, in a manner

similar to CNTF and FGF-2 [21], ATRA increases the numbers of regenerating axon profiles

in the distal stump of the optic nerve by 53%.

In principle this could have been due to a direct effect of ATRA on axonal growth since RA,

acting via the RARβ2 receptor, promotes neurite outgrowth from cultured mouse spinal cord

[52], and RARβ2 overexpression increased regeneration in rat spinal cord [53]. We have

shown that RARβ immunoreactivity is present in regenerating frog RGC axons [19]. RA pro-

motes and direct neurite outgrowth of invertebrate neurons via effects on Ca2+ signaling [54].

While we cannot rule out the possibility that ATRA directly increases RGC axon growth,

our results show that clodronate liposome treatment was sufficient to completely prevent the

ATRA-induced increase in numbers of regenerating axons. Clodronate also prevented the

increase in numbers of macrophages, suggesting a direct causal relationship between the num-

bers of phagocytosing macrophages and axonal regrowth. In support of this, we also found

that depletion of macrophages alone, independently of ATRA treatment, reduced the numbers

of regenerating axons by 30%. In contrast, in mouse optic nerve, depletion of macrophages

alone had no effect on lens-injury-induced axonal regeneration [55]. This may perhaps be in

part due to the high M1/M2 macrophage ratio observed in mouse CNS, which may not be con-

ducive to regeneration [56], whereas in amphibia we have shown that the M2 pro-regenerative

type may be predominant [22]. In some cases there is a direct link between myelin debris

removal and axonal regeneration, for example, in mouse peripheral nerve injury, doubling the

rate of myelin phagocytosis (via SIRPα deletion) increases the removal of myelin debris and

doubles the numbers of regenerating axons [57].

In conclusion, our results show that ATRA treatment of the injured frog optic nerve

increases the numbers of M2-type macrophages and putative microglia, and increases the

amount of phagocytosis by those macrophages. The molecular mechanisms behind these

effects remain to be determined. ATRA treatment also increases the numbers of regenerating

axons in the distal nerve stump. Clodronate depletion experiments suggest that the success of

axon regeneration is partially dependent on the presence of debris-phagocytosing macro-

phages, and that the increases in axonal regeneration caused by ATRA are primarily due to the

increased numbers of macrophages that it induces, rather than being a direct effect. Further

studies will examine whether macrophage depletion also affects RGC survival.
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