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The aim of this study was to predict the fatigue life of two different connections of a dental implant as in load transfer to bone. Two
three-dimensional models were created and assembled. All models were subjected to a natural masticatory force of 118 N in the
angle of 75° to the occlusal plane. All degrees of freedom in the inferior border of the cortical bone were restrained, and the
mesial and distal borders of the end of the bone section were constrained. Fatigue material data and loads were assumed as
random variables. Maximum principal stresses on bone were evaluated. Then, the probability of failure was obtained by the
probabilistic approach. The maximum principal stress distribution predicted in the cortical and trabecular bone is 32 MPa for
external connection and 39 MPa for internal connection. A mean life of 103 and 210 million cycles were obtained for external
and internal connection, respectively. Probability cumulative function was also evaluated for both connection types. This
stochastic model employs a cumulative damage model and probabilistic finite element method. This methodology allows the

possibility of measured uncertainties and has a good precision on the results.

1. Introduction

Dental implants have been widely employed to replace miss-
ing teeth and have become routine elements of dental prac-
tice [1, 2] with a success rate higher than 90% [3]. Despite
this high success rate, dental implant failure can occur.
Brunski detailed in [4] that how biting forces are transferred
to the surrounding bone play an important role on the suc-
cess or failure of a dental implant.

Load transfer from implants to bone is influenced by the
type of loading, the implant geometry (length and diameter),
the shape and characteristics of the implant surface, and the
quantity and quality of the surrounding bone [5, 6]. A huge
number of experimental and numerical studies have been

implemented with the aim of understanding the mechanism
of load transfer from the implants to the bone [7].

The connection of the dental implant also has influence
in the load transfer and the stress distribution. Many studies
have reported that the most crucial factor in dental implant
fatigue is the geometry of the dental implant-abutment con-
nection, a screw preload, dental implant fixation, and crown
loading [8]. Some studies have reported mechanical compli-
cations with external hexagon connections because of the
limited resistance to oblique load [9, 10]. Abutment connec-
tion design also affects the stress concentration in the
surrounding bone [11].

Manufacturers have developed different types of implant-
abutment connections with the aim of obtaining implant
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stability. For a good implantation, implants must resist the
stress and transmit forces to the bone [12]. Mechanical com-
plications have been reported to increase when external
hexagon connections are used, due to their instability and
reduced resistance to oblique loads.

Finite element analysis (FEA) has been extensively used
in dentistry for analyzing different aspects in this field.
Asmussen et al. and Maceri et al. employed this tool in differ-
ent restorative techniques [13, 14]; Baggi and coworkers and
Himmlova et al. used it for the influence of implant and pros-
thesis design [15, 16], among other authors that employed
some three-dimensional finite element analyses in some of
their studies.

Most of the finite element analyses, including the previ-
ous ones, were deterministic. However, in dental implant
field, it is important to evaluate the impact of some factors
such as geometry, loading conditions, or material properties
[17] because the combination of the uncertainty of a param-
eter can modify the component behavior.

Dental implants and their components must support
mastication forces which act on a cyclic manner, and there-
fore, fatigue is introduced in dental implant-supported reha-
bilitation. A good measure of variability and uncertainty is
decisive for having more accuracy on the results because
fatigue is very sensitive to many different parameters, as
material properties and load history [18].

The main purpose of this study was to predict the fatigue
life of different commercial dental implants and their stress
transfer properties. The stochastic methodology employed
here to obtain the probability of failure and the principal sta-
tistic of the fatigue life is based on a cumulative damage
model and a probabilistic finite element method. The applied
occlusal forces and fatigue implant material properties
were the random variables. Two commercial implants with
different connections have been analyzed with this meth-
odology. The fatigue behavior, the probability of failure,
and the mechanical behavior at the bone-implant interface
have been evaluated.

2. Materials and Methods

Two dental implants were employed in this study. These
implants are manufactured by Proclinic® (Avenir, Italy),
and their characteristics are described in Table 1.

2.1. Finite Element Model. Figure 1 represents the geometry
of the two dental implants employed in this study. Once
the implants’ geometry is defined, the surrounding bone
must be represented (Figure 2(a)).

Two 3D models were created employing the CAD
software Solidworks 2016 (Dassault Systemes, SolidWorks
Corp., Concord, MA, USA). Dental implants were pro-
vided by the manufacturer, and bone geometries were cre-
ated employing SolidWorks.

A D2 bone type [19] was simulated, and its character-
istics were obtained from Vootla and coworkers [20] and
are detailed in Table 2. Dimensions used in the bone
geometry ensure enough distance between the implants
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TasLE 1: Dental implant characteristics.

Model number Implant . Implant diameter
Connection
(catalogue name)  morphology x length (mm)
1 (IP851) Conical ~ DXternal 35x8
hexagon
2 (IP876) Conical ~ \nternal 35x8
hexagon

and the ends of the model, thus avoiding any undesired
boundary effects (Figure 2(b)).

Once all models were assembled, they were imported
into ANSYS Workbench 16 (Canonsburg, PA, USA) and
analyzed. An adequate finite element mesh was crucial in
this problem due to stress singularities expected at the
sharp corners. The convergence criterion was a change of
less than 5% in von Mises stress in the model [21]. The
number of elements and nodes employed in this study is
summarized in Table 3.

2.2. Material Properties. Implants were made from Ti6Al4V.
The elastic properties of the titanium alloy and bone used in
the models were taken from the literature. Implants and bone
were modelled with linear, elastic, isotropic, and homoge-
neous properties [6]. The elastic modulus and Poisson’s ratio
of the titanium alloy were 100 GPa and 0.3, respectively [22].
Bone properties were taken from [23], and they are summa-
rized in Table 4.

The ultimate stress of cortical bone has been reported
to be higher in compression (170 MPa) than in tension
(100 MPa) [24]. The strength of the trabecular bone has been
reported to be the same in tension and compression and is
approximately 2-5MPa [24].

2.3. Boundary Conditions and Loading Configuration. All
models employed in the present study were constraint as
detailed: all degrees of freedom in the inferior border of the
cortical bone were restrained, and the mesial and distal bor-
ders of the end of the bone section were constrained so that
the displacement of nodes in the direction perpendicular to
the surface was equal to zero (Figure 3). For simulating
osseointegrated condition, the implants were rigidly bonded
in the bone.

An average physiological bite force was simulated
(114.6 N in the axial direction, 17.1 N in the lingual direction,
and 23.4 N toward the mesial at an angle of 75° to the occlusal
plan) (Figure 3) [25].

2.4. Probabilistic Fatigue Model. In addition to the previous
deterministic FE analysis, a probabilistic fatigue model is also
implemented. Although fatigue phenomenon has a probabi-
listic nature which can compromise the usefulness and valid-
ity of the system, most of the studies available in the literature
have been done from a deterministic point of view.

Random variables considered in this study have been
Young’s modulus and mastication loads due to its influence
on the life of the structural components [26].

A schematic summary of the probabilistic methodology
is shown in Figure 4.
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FIGURE 2: (a) Regions modelled in the finite element model of dental
implants and bone. (b) Bone dimensions.

TABLE 2: Geometrical dimensions for cortical bone model.

Cortical thick (mm) Height (mm) Width (mm)
2 22 15

TABLE 3: Number of nodes and elements in each FE model.

Nodes Elements
Model number 1 (external hexagon) 733,147 513,285
Model number 2 (internal hexagon) 1,058,362 748,113

Firstly, the cumulative damage model (B-model) must be
defined [27]. This model requires to define the statistic char-
acteristics (mean and variance) of the variables involved in
the damage process (stresses/strains and material properties).

Authors have employed a cumulative damage model,
called B model, based on Markov chains and developed by
Bogdanoft and Kozin [27]. The hypotheses that serve as a

<

(b)

FIGURE 1: Geometry of the dental implants analyzed in this study (L: implant total length; D: diameter). (a) External connection; (b) internal

TaBLE 4: Cortical and trabecular bone properties.

Young’s modulus (GPa) Poisson’s ratio

Cortical bone 13.7 0.3
Trabecular bone 4 0.3

Axial direction
114 N

Mesiodistal direction
23N

Lingual direction
17N

=

FIGURE 3: Applied loads and boundary conditions.

A

A

basis for the expansion of the B-unit step model are the
following:

(1) Damage cycles (DC) are repetitive and of constant
severity.

(2) The levels of damage a component will go through
until final failure are discrete (1, 2, ... , j, ... , b),
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FIGURE 4: Scheme of the probabilistic model.

and failure occurs at the last level of damage (b). This
hypothesis merely discretizes the total life of the com-
ponent in b levels.

(3) The accumulation of damage that occurs in each DC
depends only on the DC itself and the level of damage
of the component at the start of the said DC.

(4) The level of damage in each DC can only be increased
from the occupied level at the beginning of the said
DC to the next immediate level.

The mathematical formulation of these hypotheses is
developed below. Vector p,, is defined as the initial distribu-
tion of damage levels for x = 0:

Po = {71 5 > 5, 0, (1)

verifying that

<
|

1

m=1. (2)

I
—

i

According to hypothesis 1, damage cycles have been

defined as constant severity, so the probability transition

matrix (P) will expresses the probability that each DC has

to be in the same level or the probability of jump to the next
DC [28]:

ppoa 0 0 .. 0 0
0 p, g6 0 .. 0 0
0 0 0 0

L ®)
0 0 0 O Po1 Gy
0 0 0 0o ... 0 1

TABLE 5: Stochastic values of the material properties and loads.

Titanium Young’s modulus
+ standard deviation (GPa)

100 +20

Mean mastication load
+ standard deviation (N)

118 +30

Due to damage cycles that have been defined as constant
severity, the probability transition matrix (P) will be unique.
Using the results of Markov chains, vector p, is

P, =P, P=p,P", con x=0,1,2,.... (4)

The expected value and variance of N; are obtained
as detailed:

BN = 3 (107)

]
—

(5)

?-\.
_

Var[Nf] = rj(l + rj),
-1

-

with r; —p]/q] and p;=r1; 5/(1+1;), where p; is the probability
of remalmng in the same DC and q; is prolgability of jumping
to the next DC.

In the present work, fatigue in random crack stage is ana-
lyzed. With this goal, expressions as those of Neuber,
Ramberg-Osgood, and Coffin-Basquin-Manson must be
employed with the aim of obtaining the statistical estimators.

The relation between the elastic stress and strain is
expressed by Neuber’s rule [29, 30] and detailed in

un' 2
Io , (T} " B _ .
E k Oep (6)
O :E'sel’

where ¢ is the elastic strain, o, is the elastic stress, k is the
strength coefficient, and #’ is the strain-hardening exponent
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von Mises stress (MPa)

252.78 max
234.68
216.63
198.59
180.55
162.5
144.46
126.42
108.37

(a)

von Mises stress (MPa)

109.94 max
102.09
94.25
86.40
78.55
70.71
62.86
55.02
4717
39.33
31.48
23.64
15.79
7.944
0.098 min

(©)

| 252.78 max

234.68
216.63
198.59
180.55
162.5
144.46
126.42
108.37
90.33
72.28
54.24
36.19
18.15
0.109 min

von Mises stress (MPa)

(b)
von Mises stress (MPa)

109.94 max
102.09
94.25
86.40
78.55
70.71
62.86
55.02
47.17
39.33
31.48
23.64
15.79
7.944
0.098 min

(d)

FIGURE 5: Stress distribution in dental implants. (a) Model number 1. (b) Cross section of model number 1. (c) Model number 2. (d) Cross

section of model number 2.

As it is detailed in [28], the estimators of elastic-plastic
deformations and stresses have been obtained by the use of
Neuber’s rule. The expected values and variances of von
Mises strain and stress were obtained from the probabilistic
finite element analysis.

Then, the expected values and variances of the elastic-
plastic magnitudes involved in the formulation of Coffin-
Basquin-Manson, from a linear static analysis using Neuber’s
correction, must be obtained [31-34]. Coffin and Basquin
proposed a nonexplicit relationship between the fatigue life
cycles in the nucleation stage of a component and the ampli-
tudes of strain:

Ae,, o ' c
2= % (2N;)" +¢ (2N)", (7)

where Ag,, is range of elastic-plastic strain suffered by the
component at the crack initiation area, o/ is fatigue resis-
tance coefficient, sf' is fatigue ductility coefficient, b is fatigue
resistance exponent, ¢ is fatigue ductility exponent, E is
modulus of elasticity, and N; is fatigue life cycles.

In the current study, the probabilistic finite element
method has been used to obtain the principal statistics of
the response variables of the system with respect to the
random variables introduced as data.

To develop this model, the stochastic values (mean and
standard deviation) of the material properties and loads
should be known (Table 5).

Once FE models analyzed, the random distribution
(mean and variance) of stress and strains in implants is eval-
uated by the probabilistic finite element method, which

avoids a Monte Carlo simulation [35]. The reader is referred
to Prados-Privado et al. [28] for further details.

The aim of the model is to calculate the fatigue life of the
component studied. To compute this random variable is
necessary to use the damage model, which is based on
Markov chains [27]. The probabilistic transition matrix
(PTM) can be obtained from the computed mean value and
variance of the fatigue life, and from this PT), it is possible
to obtain the probability of failure of the implant [28].

3. Results and Discussion

This paper applies a probabilistic methodology for two tita-
nium dental implants, considering the variability in loads
and Young’s modulus. This method can be employed as a
systematic technique to determine the effect of uncertainties
of mechanical factors in the performance. The method
proposed here was validated in [36-38].

Due to the uncertainties between bite habits among dif-
ferent patients, loads cannot be considered as deterministic.
This model considers these uncertainties from the very
beginning. Limitations of this method are mainly related to
the coefficient of variation of all the random variables
involved. As far as we use first order Taylor expansions, the
spread of every random variables cannot be wide. A second
order or a different approach must be used in this last case.
Most FE studies on dental implants and pieces need to place
them are static analyses [39, 40].

The first step to construct the model employed in this
work is the probabilistic model developed by Bogdanoff and
Kozin, considering as random most of the variables involved.



TaBLE 6: Mean and variance of the fatigue life for each dental
implant.

Mean life Variance
(million cycles) (million cyclesz)
Model number 1 103 5.48
Model number 2 210 11.3

Then, the finite element method and the B-model are used to
solve the mean values for the probabilistic problem and the
variance of them.

Photoelasticity and finite elements are two tools which
have been employed to a better understanding of the stress
transfer and distribution from implants to surrounding bone
[35]. In general, dental implants should be dared to distribute
properly the loads with a nonexcessive concentration area,
and if excessive stress is applied to bone, bone resorption
can occur.

Several studies have analyzed the fatigue failure of dental
implants [10, 41]. Cycled loads applied result in strains and
micromotions that can introduce fatigue failure of the dental
implant [42]. Bite habits also causes different loads on the
implants. Therefore, the analysis of dental implants presents
clear stochastic characteristics, requiring a probabilistic
approach as the ones detailed in this study.

The stress field on implants (von Mises stress) and
surrounding bone (maximum principal stress) was evaluated
for the case of previous static loading. The maximum princi-
pal stress distribution predicted in the cortical and trabecular
bone is 32 MPa for model number 1 and 39 MPa for model
number 2. These values are considerably lower than ultimate
stress values in tension (approximately 100 MPa).

Load transfer mechanisms have been studied from
many years helping to increase the success rate [43, 44].
Santiago et al. detailed in [43] that there is no consensus
about the connection of dental implants although some
studies have associated the external hexagon with higher
bone loss rates. It is important to know stress distribution
on dental implants because it is possible to predict where
the fracture or failure will occur.

With the aim of reproducing realistic loads in dental
implant environment, a combined force must be applied in
a finite element analysis to dental implants [45]. An average
bite force in a natural and oblique direction was applied in
the present study.

The highest von Mises stress in both dental implants
appears around the neck of the implants, which is in accor-
dance with the literature [46]. In this case, stress in implants
varying from 252 MPa in model number 1 (Figures 5(a) and
5(b)) to 109 MPa in model number 2 (Figures 5(c) and 5(d)).
These values are lower than yield stress in the titanium
alloy (around 650 MPa) [6]. In addition to this, stresses
are spread from the neck to the apical area where stress
is minimum (Figure 5).

The probabilistic methodology proposed was employed
to estimate the principal statistics of the fatigue life (mean
and variance) and the probability of failure of these two den-
tal implants. Table 6 details the principal statistics obtained
for each dental implant. These values have been obtained at
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FIGURE 6: Probability of failure function for external dental implant.
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FIGURE 7: Failure probability function for internal dental implant.

the most critical point that appears when the load described
in Figure 3 is applied.

We are able to determine the failure probability of these
two dental implants analyzed for a specific number of load
cycles. The probability of failure associated with each cycle
was obtained for the maximum stress. The evolution of the
probability of failure was evaluated from ten million loading
cycles to 200 million loading cycles for model number 1
(Figure 6) and from ten to 550 million cycles for model num-
ber 2 (Figure 7). Gibbs et al. defined one million loading
cycles as about one year of in vivo service [47].

For a fixed number of loading cycles, different failure
probabilities were predicted for each commercial implant.
Failure probability diagram relates the probability of failure
associated with each cycled load.

Fatigue phenomenon in dental implants is very sensitive
to uncertainties in variables involved in this phenomenon,
but despite this, most of the studies available in the literature
have been done from a deterministic point of view [16, 48].
Mathematical bone employed in this study could help to
understand and to improve the task of dental implant design
and their failure rates. In that sense, this probabilistic model
can determine the influence of many variables that take part
on dental implant fatigue phenomenon.

4. Conclusions

This study has applied a probabilistic methodology to two
commercial implants with the aim of evaluating the effect
of the connection in the mean life and the probability of
failure. The current approach is based on Markov chains,
cumulative damage model (B-model), and the probabilistic
finite element analysis. Load transfer to a D2 bone in both
dental implants has been also evaluated. Our results show
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that for a D2 bone, internal connection is more effective on
distributing loads than external hexagon.

An implant with the internal connection has a better
fatigue behavior because a bigger mean life was obtained
and, therefore, a better cumulative probability function.
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