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Speckle suppression plays an important role in improving ultrasound (US) image quality. While lots of algorithms have been
proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle
suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with
3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM) provides an effective
method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU-) based fast NLM
filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image
statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The
most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the
overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm.

1. Introduction

Ultrasonic imaging owns advantages such as noninvasive,
radiation-free, low-cost, and fast imaging compared with
othermedical imaging techniques [1]. It has been widely used
in many medical applications. Since 3D ultrasound imaging
can provide clearer spatial relationship and more abundant
diagnostic information compared with 2D ultrasound, it
attracts much attention from the related fields. However, due
to the coherence properties of ultrasound imaging, the image
is often severely corrupted by speckle and other artifacts.
Speckle could obscure the important image details and reduce
the contrast of the soft tissues in the image, thereby causing
great difficulties to the subsequent US image processing such
as edge detection, image segmentation, and image registra-
tion. Therefore, an efficient 3D ultrasound image denoising
algorithm is in urgent need in the field of 3D ultrasound.

Many researchers engaged in image processing have pro-
posed lots of denoising algorithms for 2D ultrasound images
[1–3]. However, only a few methods were presented for 3D
ultrasound speckle suppression. Yue and Clark [4] intro-
duced a speckle suppression approach by an integration of

the 3D nonlinear diffusion and 3D dyadic wavelet transform
techniques, in which, normalized wavelet modulus was used
as an edge map to expose the intrinsic speckle/edge relation.
Based on a local distribution of variance for a given voxel,
Veronika et al. [5] presented a structure-preserving filter
specifically designed to eliminate the speckle and random
noise in 3D ultrasound datasets. Coupé et al. [6] proposed a
modified Bayesian nonlocalmeans algorithmdeduced from a
relevant ultrasound noise model to accurately preserve edges
and structural details of the image.

The basic idea of the nonlocal means [7] method is that
the image contains a large number of repeat modes, and they
can be utilized to reduce the random noises by averaging
operation. Despite the superiority of the NLM algorithm
in preserving image details, it involves high computational
complexity. While applying the NLM algorithm to 3D image
denoising, the computational burden is especially huge since
the algorithm needs to take into account the relevant infor-
mation in all three dimensions. It will lead to a relatively long
runtime for general CPUs, which hinders the employment of
the algorithm in practical medical applications.
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Three strategies can be used for the algorithm accel-
eration: the multithread CPU technology with multicore
CPU, the multi CPU technology based on high-performance
computer clusters or servers, and the GPU technology [8].
Though multicore CPU and multithread technology can be
used to accelerate the algorithm, the maximum ratio of
speedup is approximately equivalent to the number of CPU
cores. Besides, the coarse multithread of CPU is in software
level, which is time costly when switching among different
threads. While the high-performance computer clusters can
improve the processing speed very much, the high cost
of owning and maintaining makes them difficult to access
for most researchers and clinical users [8]. Comparatively
speaking, the GPU can get a good balance between the cost
and performance. The GPU adopts the light level threads of
hardware management, so the overhead of threads switching
can achieve zero. For example, when a thread is waiting
for addressing off-chip memory or synchronic commands,
the GPU can rapidly switch to another thread on deck,
thus hiding the latency by calculation. Besides, as a highly
parallel, multithread and multicore processor, GPU can pro-
vide tremendous computational horsepower and very high
memory bandwidth. Therefore, it is very good at address-
ing such problems that can be expressed as data-parallel
computations—the execution of the same program on many
data elements in parallel—with high arithmetic intensity.

Compute unified device architecture (CUDA), officially
released by NVIDIA Corporation in 2007, comes with a
software environment in which the developers can use C-like
language rather than computer graphics API for general pur-
pose computing of GPU (GPGPU). Many applications that
process large data sets have used the CUDA programming
model to speed up the computation [9–12]. Some examples
in medical image processing that have taken advantages of
the computational power of the GPU are image registration
[13], image segmentation [14], f-MRI analysis [15], and so on.
In the field of image denoising, some researchers have tried to
employ GPU to accelerate 2D image denoising. In 2007, Chen
et al. [16] implemented bilateral filtering on GPU for real-
time edge-aware image processing. Su and Xu [17] proposed
how to accelerate wavelet-based image denoising by GPU.
Fontes et al. [18] adopted the GPU for real-time denoising of
2D ultrasound data. Goossens et al. [19] managed to run the
commonly used nonlocal means algorithm in real time. In
this paper, we intend to use the great computational power
of GPU to implement the Bayesian block-wise NLM filter
to realize fast 3D ultrasound speckle reduction on basis of
Coupé’s work.

2. Method

2.1. GPU andCUDA. In this section, wewill briefly introduce
the structure of CUDA, in which three important concepts
are involved: host, device, and kernel. In CUDA program-
ming model, shown as Figure 1, CPU is considered as the
host to responsible for logical transaction processing and
serial computing while GPU serves as the device to focus on
the implementation of parallel processing tasks. They work
together as a complete model and perform their own duties
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Figure 1: Programming model of CUDA.

within the model. Once the parallel portion of the program
is determined, we can hand the computation task of this part
over to GPU. Function of CUDA parallel computing running
on the GPU is called kernel, which is not a complete program
but just a step that can be executed in parallel. A complete
CUDAprogram is composed of a series of parallel procedures
of kernel functions on device and serial procedures on host.

As shown in Figure 2, kernel function is organized in the
form of grid. The grid is composed of a certain number of
blocks, and each block can be further partitioned into many
threads. It is exactly this kind of structure that makes the two
levels of parallel in kernel: parallel execution of all blocks in a
grid and parallel running of all threads in a block.This is one
of the most significant innovations of CUDA compared with
traditional GPGPU programmatic interfaces. Each thread in
kernel has its own block ID and thread ID to be distinguished
with other threads. The other great innovation of CUDA is
the realization of communication among different threads
in the same block, mainly through shared memory and
synchronization.

2.2. Traditional NL-Means for 3D Images. Unlike local meth-
ods, the NLM filter does not make any assumptions about
the location of the most relevant pixels used to denoise the
current pixel. It explores image self-similarities by compari-
son of image patches and uses the weighted average of all the
pixels in the image for noise reduction. For a 3D volume, the
gray level NL(V)(𝑖) of voxel 𝑖 restored by the traditional NLM
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Figure 2: Grid structure of thread blocks.

algorithm is the weighted average of gray scale of all voxels in
the volume data 𝐼; that is

NL (V) (𝑖) = ∑
𝑗∈𝐼

𝑤 (𝑖, 𝑗) V (𝑗) , (1)

where V(𝑗) is the gray level of voxel 𝑗 and 𝑤(𝑖, 𝑗) is the
weight given to V(𝑗) in the calculation of voxel 𝑖, reflecting
the similarity of voxels 𝑖 and 𝑗. The weight depends on the
local neighborhoods 𝑁𝑖 and 𝑁𝑗 (i.e., the similarity window)
centered at the voxels 𝑖 and 𝑗 and it is computed as

𝑤 (𝑖, 𝑗) =
1

𝑍 (𝑖)
𝑒
−(‖V(𝑁𝑖)−V(𝑁𝑗)‖

2

2,𝛼
/ℎ2)
, (2)

where ℎ acts as a smoothing parameter controlling the decay
of the exponential function, 𝑍(𝑖) is a normalization constant
with 𝑍(𝑖) = ∑𝑗∈𝐼 𝑒

−(‖V(𝑁𝑖)−V(𝑁𝑗)‖
2

2,𝛼
/ℎ2) to ensure ∑𝑗∈𝐼𝑤(𝑖, 𝑗) =

1, and ‖ ⋅ ‖22,𝛼 is the convolution for the Euclidean distance and
the Gaussian kernel with the standard deviation 𝛼.

For practical computational reasons, the number of
voxels taken into account in the weighted average is usually
limited to the so-called search window, which also centers at
voxel 𝑖.The bigger the searchwindow, the better the denoising
effect, but the longer the processing time.

2.3. Bayesian Theory Based 3D NL-Means. Since the tradi-
tional NLM filter is originally designed for Gaussian noise
removal, it cannot be directly applied to denoising ultrasonic
images corrupted with the speckle noise. Recent studies
related to US images demonstrated that the distribution
of noise can be satisfyingly approximated by a Gamma

distribution [20]. So, the following noise model was used in
this paper [7]:

𝑢 (𝑥) = V (𝑥) + V𝛾 (𝑥) 𝜂 (𝑥) , (3)

where V(𝑥) is the original image, 𝑢(𝑥) is the observed image,
𝜂(𝑥) ∼ 𝑁(0, 𝜎2) is a zero-mean Gaussian noise with variance
of 𝜎2. It has been shown in [21] that an empirical estimator of
an image patch 𝐵𝑖 can be defined as

∧
V (𝐵𝑖) =

(1/Δ 𝑖)∑
|Δ 𝑖|

𝑗=1 V (𝐵𝑗) 𝑝 (𝑢 (𝐵𝑖) | V (𝐵𝑗))

(1/Δ 𝑖)∑
|Δ 𝑖|

𝑗=1 𝑝 (𝑢 (𝐵𝑖) | V (𝐵𝑗))
, (4)

where 𝑝(𝑢(𝐵𝑖) | V(𝐵𝑗)) denotes the probability density
function of 𝑢(𝐵𝑖) given the noise free and unknown patch
V(𝐵𝑗) and Δ 𝑖 stands for the search window centered at voxel 𝑖
of size |Δ 𝑖|. Since V(𝐵𝑗) is unknown, an estimator is classically
computed by substituting 𝑢(𝐵𝑗) for V(𝐵𝑗). Assuming that
𝑢(𝑥) | V(𝑥) ∼ 𝑁(V(𝑥), V(𝑥)2𝛾𝜎2) for the Gamma distribution
noise model, we can express the probability density function
as

𝑝 (𝑢 (𝑥) | V (𝑥)) ∝ exp−(𝑢 (𝑥) − V (𝑥))
2

2V(𝑥)2𝛾𝜎2
. (5)

Given a block 𝐵𝑖 (i.e., the reference patch), the distance
for calculating the similarity between volume patches can be
defined as

𝑑𝑝 (𝑢 (𝐵𝑖) , 𝑢 (𝐵𝑗)) =

𝑃

∑
𝑝=1

(𝑢(𝑝) (𝐵𝑖) − 𝑢
(𝑝) (𝐵𝑗))

2

(𝑢(𝑝))
2𝛾
(𝐵𝑗)

, (6)

where 𝑃 denotes the size of 𝐵𝑖. Loupas et al. have shown that
𝛾 = 0.5model fits better to data than themultiplicativemodel
or the Rayleigh model based on the experimental estimation
of themean versus the standard deviation in Log-compressed
images [22]. By setting 𝛾 = 0.5, we can derive the weight from
(1) and (6) as

𝑤(𝐵𝑖, 𝐵𝑗) =
1

𝑍𝑖
exp(− 1

ℎ2

𝑃

∑
𝑝=1

(𝑢(𝑝) (𝐵𝑖) − 𝑢
(𝑝) (𝐵𝑗))

2

𝑢(𝑝) (𝐵𝑗)
) .

(7)

2.4. Block-Wise Optimization. A block-wise implementation
of the proposedNLM-based filter can significantly reduce the
computational burden while maintaining excellent restora-
tion quality [23] only by taking the similarity of two voxels in
the voxel-wise method in formula (7) as the similarity of two
blocks in the block-wise method. Here, we briefly describe
the steps of carrying out the block-wise NLM algorithm for
3D ultrasound images.

(1) Divide the original 3D volume Ω3 into overlapping
blocks 𝐵𝑖 of size 𝑃 = (2𝑅 + 1)

3; that is, Ω3 = ∪𝑖𝐵𝑖.
These patches are centered at different voxels which
constitute a subset of Ω3 and the distance between
the centers (i.e., the step size) of two neighboring
reference patches is set to be 𝑛.
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Figure 3: The flow chart of the implementation.

(2) Set the size of the search window to be (2𝑀 + 1)
3.

Then, the similarities between the reference patch
and all similarity windows in the corresponding
search window will be obtained by formula (7). So, a
reference patch 𝐵𝑖 can be restored as follows:

NL (𝑢) (𝐵𝑖) = ∑
𝐵𝑗∈Δ 𝑖

𝑤(𝐵𝑖, 𝐵𝑗) 𝑢 (𝐵𝑗) . (8)

(3) For a voxel 𝑥𝑖 included in several blocks 𝐵𝑖, sev-
eral estimations of the same voxel 𝑥𝑖 from different
NL(𝑢)(𝐵𝑖) are computed and stored in a vector 𝐴 𝑖.
The final restored intensity of voxel 𝑥𝑖 is the mean of
all the restored values of voxel 𝑥𝑖 in different blocks
NL(𝑢)(𝐵𝑖).

Indeed, for a volumeΩ3 of size𝑁3, the global complexity
is 𝑂((2𝑅 + 1)3(2𝑀 + 1)3((𝑁 − 𝑛)/𝑛)3). For instance, with 𝑛 =
2, the complexity is divided by a factor 8 compared with the
voxel-wise denoising algorithm.

2.5. CUDA Accelerated 3D Block-Wise NL-Means. According
to the principle of 3D block-wise NLM, the restoration task of
each reference patch is very suitable for GPU implementation
since each patch can be denoised independently.Then,we can
use kernel function for image denoising.

Firstly, the proper size of the reference patch, the search
window, and the step size should be choosen. Then, we need

to read the 3D volume data to CPU and do some initialization
for CUDA, and subsequently allocate device memory for
preparation of data transfer to GPU. Let the half-length of
the reference patch, the search window, and the step size be
Ref R, Sch R, and Stp S, respectively. The size of the input
data, insize, and the size of the output data, outsize, of the
kernel function should be

unsigned int insize = W∗H∗F; //original data size
int NUM BX= (W-2∗Sch R-Ref L)/Stp S+1; //the
number of reference patches in X axis
int NUM BY= (H-2∗Sch R-Ref L)/Stp S+1; //the
number of reference patches in Y axis
int NUM BZ= (F-2∗SCH R-Ref L)/Stp S+1; //the
number of reference patches in Z axis
unsigned int outsize = Ref L ∗ Ref L ∗ Ref L
∗NUM BX∗NUM BY∗NUM BZ;

and𝑊,𝐻, and𝐹 represent the width, height, and depth of the
original volume and 𝑅𝑒𝑓 𝐿 = (2𝑅𝑒𝑓 𝑅 + 1). Since the format
of all the data is float, we will allocate the device memory as
follows:

float∗d idata; //kernel input
CUDA SAFE CALL(cudaMalloc((void∗∗)
&d idata,insize∗sizeof(float)));
float∗d odata; //kernel output
CUDA SAFE CALL(cudaMalloc((void∗∗)
&d odata,outsize∗sizeof(float))).

To hand the volume patch restoring task over to GPU,
we need to determine two of the most crucial parameters
affecting the whole computational time—the block size and
the grid size. By running the Device Query program from
CUDASDK,we can achieve themaximumnumber of threads
per block: 1024, and the maximum sizes of each dimension
of a grid: 2147483647∗65535∗65535 (this is usually enough
for practical ultrasound data). The multiprocessor creates,
manages, schedules, and executes threads in groups of 32
parallel threads called warps.When amultiprocessor is given
one or more thread blocks to execute, it partitions them into
warps; and each warp gets scheduled by a warp scheduler
for execution. A warp executes one common instruction at
a time, so full efficiency is realized when all 32 threads of a
warp agree on their execution path. To get higher efficiency
of themultiprocessor, the number of threads per block should
be a multiple of 32. According to our experiments, the fastest
results were achieved by partitioning each block into 64
threads. So our block and grid are organized like this:

dim3 threads(64,1,1);
int N X = (NUM BX+63)/64;
int N YZ = NUM BY∗NUM BZ;
dim3 grid(N X,N YZ,1);
NLM kernel<<<grid,threads>>>( ).
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For each similar window within the searching window, except the fiducial window
For each voxel of the similar window

Calculate the distance for similarity;
End for

Calculate the similarity weight;
Cumulate the weight and weighted gray-scales, save the maximal similarity weight;

End for
Cumulate the weight and weighted gray-scales on fiducial patch of search window;
Normalize the cumulative sum of the weighted gray-scales, and obtain the new gray-scale;

Algorithm 1

(a) US fetus (428 × 354 × 209) (b) US carotid artery (396 × 297 × 338)

Figure 4: Real ultrasound volumes for experiment.

Here, NLM kernel is the kernel function used to denoise
all the reference patches. Each block and thread in the grid
can be identified by a one-dimensional, two-dimensional, or
three-dimensional index accessible within the kernel through
the built-in blockIdx and threadIdx variables.Thus, we can get
the exact position of each voxel in kernel function:

const int bx = blockDim.x∗
blockIdx.x+threadIdx.x;
const int bz = (blockDim.y∗
blockIdx.y+threadIdx.y)/NY;
const int by = (blockDim.y∗
blockIdx.y+threadIdx.y)-bz∗NY.

Here, NY denotes the number of overlapping blocks in 𝑌
axis, which is equal to NUM BY when the kernel function
is called. Within kernel function, we need to do an outer
cycle process and an inner cycle process. The inner cycle
process is to calculate the distance for similarity between
the reference window and the similarity window, and the
outer cycle process aims at calculating the similarity between
the reference window and all the similarity windows in the
corresponding search window, thus obtaining the restored
result of the reference window. Here is the pseudocode of the
Algorithm 1.

Through the processing of the kernel function, we will get
a new volume composed of all the restored reference patches,

so the next step is to calculate the restored result of each
voxel by taking the average of the same voxel from different
reference blocks. As we have partitioned the original volume
into overlapping parts, one voxel can appear in a few different
reference patches. So, the restoring task of each voxel is not a
parallel processing. Besides, we need to do some judgment of
the position of the voxels to determine the times they have
been calculated. GPU is unfit for such problems. Hence, we
put this computing part to CPU. The whole implementation
of CPU and GPU cooperation is shown in Figure 3.

3. Result and Discussion

Experiments were made on real ultrasound volume data as
shown in Figure 4, (a) is an US fetus with the size of 428 ×
354 × 209, (b) is the US carotid artery with the size of 396
× 297 × 338. The operating system used was Windows 7 32-
bit.The used CPUwas an Intel(R) Core(TM) i3-2120 3.3 GHz
with 4 processor cores, and the used GPU was a NVIDIA
GeForceGTX660Ti, equippedwith 1344 processor cores and
2GB of memory.

In order to testify the performance of the proposed algo-
rithm over to the traditional NLM, comparisons were made
on the US fetus data as it involves more detail information.
The decay parameter was set to a constant 20.0, and the
distance of each reference block Stp Swas set to (𝑅𝑒𝑓 𝑅+1) to
ensure the edge continuity while controlling computational
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Figure 5: Denoised results of the ultrasound fetus: (a1)–(a3) the denoised result of the traditional NLM with the similarity window radius
changing from 1 to 3; (b1)–(b3) the denoised result of the proposed NLM with the similarity window radius changing from 1 to 3.

load. The similarity window radius was set from 1 to 3, and
the size of search window was kept 11 × 11 × 11. As shown in
Figure 5, the performance of our method is obviously better
than that of the traditional NLM. The proposed method can
acquire better denoising results while maintaining the image
detail information.

In order to evaluate the effect of the GPU acceleration,
time comparisons of CPU single thread, CPU multithread,

and GPU implementation of different parameters were made
for the proposed method. The decay parameter was set to a
constant 20.0.The size of search window was kept 11 × 11 × 11,
and the distance of each reference block Stp S was also set to
(𝑅𝑒𝑓 𝑅 + 1). Tables 1 and 2 show the processing time of CPU
single thread, CPU multithread and GPU operations of the
similarity window radius ranging from 1 to 5. The results of
the experiments can lead us to the conclusion that the GPU
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Figure 6: The performance comparisons of the proposed NLM implemented by single-thread CPU, multithread CPU, and GPU for the US
fetus on the left and the US carotid artery on the right.

Table 1: Time comparisons of CPU single-thread, CPU multithread and GPU of ultrasound fetus denoising.

Similarity window Stp S Processing time (s)
CPU single-thread CPU multithread GPU

3 × 3 × 3 2 1530.08 553.86 26.66
5 × 5 × 5 3 1657.64 703.13 51.15
7 × 7 × 7 4 1678.91 767.12 75.54
9 × 9 × 9 5 1745.82 793.68 99.11
11 × 11 × 11 6 1739.60 769.55 177.34

Table 2: Time comparisons of CPU single-thread, CPU multithread and GPU of ultrasound carotid artery denoising.

Similarity window Stp S Processing time (s)
CPU single-thread CPU multithread GPU

3 × 3 × 3 2 1865.31 637.23 33.58
5 × 5 × 5 3 2039.22 841.77 57.22
7 × 7 × 7 4 2076.39 933.12 90.64
9 × 9 × 9 5 2129.09 962.11 127.96
11 × 11 × 11 6 2165.79 970.43 356.19

acceleration can enormously improve the processing speed
of the proposed NLM algorithm, for example, up to 57
times over the single thread CPU for the fetus data with the
similarity window size of 3 × 3 × 3. While multithread of the
CPU can accelerate the computation only to some extent. As
we can see in Figure 6, the time of C++ implementation does
not vary much with the increasing similarity window size.
When the similarity window becomes bigger, the denoising
calculation of each reference window becomesmore complex
while the total number of reference patches reduces because

Stp S is getting larger. So, the whole complexity does not
changemuch.The observation from theGPU columns on the
two tables shows that the processing time increases relatively
faster with the increasing similarity window size compared
to that of CPU, and accordingly the speed-up ratio decreases
with the increasing similarity window size. The reason can
be explained in this way. As we have mentioned above,
the CUDA performance will be better when the arithmetic
intensity is higher. It is easy to understand that the increasing
similarity window size will lead to larger Stp S and fewer
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Figure 7: Denoised results of the ultrasound fetus: (a1)–(a5) the denoised result with the similarity window radius changing from 1 to 5;
(b1)–(b5) the corresponding residual images between the original image and filtered images.

(a1) (a2) (a3) (a4) (a5)

(a)

(b1) (b2) (b3) (b4) (b5)

(b)

Figure 8: Denoised results of the ultrasound carotid artery. (a1)–(a5) The denoised result with the similarity window radius changing from
1 to 5; (b1)–(b5) the corresponding residual images between original image and filtered images.

reference patches, thus resulting in lower arithmetic intensity
since the kernel function here serves for the restoring of each
reference patch.

We also give the denoised results using the different
similarity window sizes ranging from 3∗3∗3 to 11∗11∗11
and the corresponding residual images between the original
image and filtered images in Figures 7 and 8, from which we
can see that the proposed method can effectively maintain
the image structure details and at the same time remove the
noises.

Though GPU can achieve very high efficiency for parallel
computation because of its tremendous computational horse-
power and very high memory bandwidth, generally it is not
easy for programmers to accomplish the threads assignment
work to the optimum efficiency. As the maximum number
of threads in a block and the maximum number of blocks
in a grid are predefined for a specific GPU, we cannot do
the threads assignment work as we expect. Besides, the final
efficiency depends on the computational intensity to some
extent. As the GPU is very good at addressing such problems
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that can be expressed as data-parallel computations, the final
performance will be better when the arithmetic intensity is
higher. If the arithmetic intensity is low and involves many
branches or judgments, the use ofGPUmay not be preferable.

4. Conclusion

In this paper, a GPU-based fast block-wise NLM algorithm
for 3D ultrasound image was presented. While the high-
performance computer clusters can improve the processing
speed very much, the cost is usually too high for most
researchers and clinical users. Though improving frequency
and upgrading manufacturing process of CPU can enhance
the computational speed for the algorithms of high time
complexity such as NLM denoising, it is still difficult to meet
the practical application requirement. As the algorithm com-
putation is very dense and quite fit for parallel computation,
GPU-based approach is introduced to accelerate the process
by exploiting its powerful parallel computation abilities.
Experiments on real ultrasound volume data showed that
the proposed method is capable of enormously speeding up
the NLM algorithm, and the speed-up ratio of the proposed
method is better when the arithmetic intensity is higher.With
an original volume data of a small size or a small search win-
dow chosen, the proposed method can be used for real-time
despeckling of 3DUS images. Future work will be focused on
how to tune the decay parameter and the size of similarity
window adaptively and extend the proposed method to 4D
US video denoising, such as in echocardiography. We believe
that the GPU-based Bayesian NLM method will be valuable
in practical applications and GPU will be more widely used
in the field of medical image processing.
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