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Abstract
Sepsis-associated encephalopathy (SAE) is a neurological complication of sepsis, characterized by brain dysfunction without 
any direct central nervous system infection. The diagnosis of SAE is currently a challenge. In fact, problems in making a 
diagnosis of SAE cause a great variability of incidence that can reach up to 70% of all septic patients. Even more, despite 
SAE is the most frequent type of encephalopathy occurring in critically ill patients, the molecular mechanisms that guide 
its progression have not been completely elucidated. On the other hand, miRNAs have proven to be excellent biomarkers 
for both diagnosis and prognosis, especially in brain pathologies because of their small size they can cross the blood–brain 
barrier easier than other biomolecules. The identification of new miRNAs as biomarkers may help to improve SAE diagnosis 
and prognosis and also to design new therapies for this clinical manifestation that produces diffuse cerebral dysfunction. 
This review is focused on SAE physiopathology and the need to have clear criteria for its diagnosis; thus, this work postu-
lates some miRNA candidates to be used for SAE biomarkers because of their role in both, neurological damage and sepsis.
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Introduction

According to the NIH, encephalopathy is defined as any 
diffuse disease of the brain that alters brain function or 
structure [1]. Sepsis-associated encephalopathy (SAE) is a 
brain dysfunction due to sepsis, and it is linked to a systemic 
inflammatory response syndrome (SIRS) [2, 3]. In sepsis, a 
potentially fatal organ dysfunction through a dysregulated 

host response to infection occurs (Sepsis-3 guidelines 2019) 
[4]. This process can progress to septic shock, a subtype 
of sepsis in which circulatory, cellular, and metabolic 
abnormalities are associated with a dramatic increase in 
mortality [4]. Therefore, SAE is a multifactorial syndrome 
categorized as a diffuse brain dysfunction induced by the 
systemic response to an infection, in the absence of direct 
central nervous system (CNS) infection or other types of 
encephalopathy, and it can appear as the first organic dys-
function in many septic patients [5, 6]. Sepsis has a global 
incidence of around 48 million cases per year and causes 11 
million deaths, being the leading cause of death around the 
world, even more than acute myocardial infarction [7–9]. 
SAE incidence is predicted between 9 and 71% of septic 
patients, depending on the inclusion and exclusion criteria 
used [3, 10–13]. In fact, SAE is the most common cause of 
encephalopathy in the intensive care unit (ICU) worldwide 
[14–16], but the disparity of data and incidence of SAE at 
ICUs suggests that new and more specific criteria for SAE 
diagnosis are needed.

Despite sepsis is associated with high mortality inci-
dence, about two out of every three patients survive a sepsis 
episode. In addition, sepsis can compromise the quality of 
life in survivors as they have sequelae after sepsis, including 
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immunosuppression, increased cognitive impairment, 
depression, increased cardiovascular risk, and post-traumatic 
stress disorder [17–19]. Furthermore, sepsis is associated 
with increased morbidity and mortality, as occurs in SAE, 
which is characterized by psychiatric disorders and long-
term cognitive impairments in sepsis survivors [6, 20–24]. 
Moreover, despite SAE is described as an acute reversible 
syndrome in most cases, there is mounting evidence that 
there are many substantial risks for long-term cognitive 
impairments. It appears to be linked to direct cellular dam-
age in the brain, mitochondrial and endothelial dysfunction, 
neurotransmission disturbances, and imbalances of calcium 
homeostasis in brain tissue, which may impair learning 
memory and cognitive function [25, 26]. Disturbances in 
mental processing speed, executive function, attention, 
and visual-spatial disabilities are other features associated 
with SAE [5]. Furthermore, it is noteworthy that patients 
with lower scores on the Glasgow Coma Scale (GCS) and 
higher Acute Physiology and Chronic Health Evaluation II 
(APACHE II) scores are more likely to suffer SAE [13].

Diagnosis of SAE represents a challenge due to lack of 
specific test or diagnostic criteria to define the SAE con-
dition, as well as the scarce number of biomarkers avail-
able or these available biomarkers have low specificity and 
sensitivity [27–30]. However, although currently available 
tests do not allow a specific diagnosis of SAE, these tests 
actually help to exclude other pathologies [5, 12, 31]. In 
fact, nowadays, SAE is being diagnosed by ruling out direct 
infection or primary pathologies in the CNS, or consequence 
of deleterious effects produced by different drugs, toxins, 
and metabolic disorders [6, 12, 31]. A study performed by 
Zhang et al. [13] showed that patients admitted to ICU usu-
ally manifest pre-existing or chronic kidney or liver failure, 
blood glucose disturbances, electrolyte imbalances, or pre-
existing CNS disease, among others. For all these reasons, 
SAE is managed as sepsis; so the approach is based on con-
trolling properly metabolic disturbances and avoiding neu-
rotoxic drugs [12, 27, 31].

Clinically, SAE is manifested in two different forms: 
an early predictable form and a late form, which is usually 
accompanied by complex metabolic encephalopathy that 
can lead to irreversible brain damage [11]. It is noteworthy 
that sometimes SAE is associated with high levels of aro-
matic amino acids (AAA) in plasma [32] as a consequence 
of energy deficit, which in turn causes a breakdown of the 
metabolic pathways related to gluconeogenesis and obtain 
energy in muscle [33, 34]. The muscles are able to degrade 
branched-chain amino acids but not AAA, causing their 
increase in plasma [33–36]. Higher levels of AAA have been 
observed in septic patients in comparison to healthy subjects 
[33, 34] and also in patients with SAE with no serious liver 
abnormalities [32]. Nevertheless, SAE can be induced by a 
hepatic failure, which is commonly present in septic patients 

and in patients suffering from chronic liver disease or cir-
rhosis [37–39]. Hepatic failure is highly related to encepha-
lopathy (hepatic encephalopathy), where a high amount of 
amino acids released into the bloodstream are found, due 
to the impossibility of the liver to catabolize amino acids, 
especially the AAA [35, 40]. In addition, Basler et al. [32] 
demonstrated that as the disease progressed, the levels of the 
amino acid were unbalanced (the ratio of branched-chain to 
aromatic amino acids were decreased), while inflammation 
markers (such as procalcitonin (PTC) or IL-6) increased, 
sharpening as time passed. Furthermore, it established a 
relation between sepsis severity and the level of amino acids 
in plasma: those patients who did not survive sepsis had 
higher levels of aromatic and sulfur-containing amino acids 
(Met and Cys) in comparison to septic survivors [33, 34, 
41]. Importantly, it was proposed that the outcome of septic 
patients might be positively affected using combined therapy 
with glucose, insulin, and branched-chain amino acids [33, 
34, 42]. However, these results need further research.

SAE is characterized by decreased fluctuating attention 
and confusion in early stages that can progress to delirium, 
agitation, and coma in late stages [5, 12, 27, 31]. Notably, up 
to 70% of patients with advanced SAE show critical illness 
neuromyopathy [15].

It is noteworthy that according to the Sepsis-3 consen-
sus, severe COVID-19 is related to sepsis [43]. Interestingly, 
COVID-19-associated acute brain dysfunction has been 
recently described including encephalitis, Guillain-Barré 
syndrome, ischemic and hemorrhagic stroke, and COVID-
19 SAE [44]. These heterogeneous events occurring in some 
cases of severe COVID-19 patients may further compro-
mise the clinical course and outcomes of severe COVID-19 
patients [45]. Therefore, the identification of such events is 
very important for early empirical combination therapy to 
survive severe COVID-19 [44].

Physiopathology of SAE

Several mechanisms are involved in SAE pathogenesis, 
such as disturbance of the blood–brain barrier (BBB), 
neuronal apoptosis, endothelial activation, hyperinflam-
mation produced by inflammatory cytokines release, oxi-
dative stress, neurotransmission disturbances by alteration 
in neurotransmitter level, altered brain signaling, altered 
microcirculation, and dysregulated metabolism [5, 46]. 
Recently, Kodali et al. demonstrated that cerebral endothe-
lial cells (CECs) are the first activated cells during the 
earliest stages of acute neuroinflammation, defined as a 
spinal cord or brain inflammatory response, mediated by 
cytokine, chemokine, and oxidative stress production [47, 
48]. Kodali et al. [47] suggested that CECs are the main 
source of proinflammatory mediators, which in turn can 
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promote glial cell activation, such as microglial activa-
tion. Furthermore, Kodali et al. [47] observed that SAE 
continued by activating apoptotic signaling in CECs, 
which is known that causes a BBB disruption, allowing 
the entrance of peripheral cytokines into the CNS and thus 
causing an exacerbate gliosis. Finally, it causes a vicious 
neuroinflammatory cascade, which is commonly observed 
during SAE. This process is summarized in Fig. 1.

SAE patients present a hyperinflammatory response 
mainly in the hippocampus, which can be quantified by 
measuring the levels of the NLRP3 inflammasome, IL-1β, 
IL-6, and gliosis [2, 27, 31, 49]. The tumor necrosis factor 
alpha (TNF-α) is another cytokine released in the brain 
when SAE occurs [27, 31, 50]. Furthermore, the hyper-
inflammatory response was associated with the activation 
of the inflammasome in the microglia, being, the pyrop-
tosis, an important nonapoptotic inflammatory cell death 
determinant of neurodegeneration [51]. In fact, Sui et al. 
[2] showed that the antioxidant resveratrol was able to 
inhibit the NLRP3 expression and IL-1β cleavage in a 
dose-dependent manner. They conclude that resveratrol 
treatment improved spatial memory and also decreased 
inflammation by inhibiting the NLRP3/IL-1β axis in the 
microglia in a mice model of SAE [2].

Moreover, it is now accepted that pyroptosis contributes 
to the development of many neurological diseases, includ-
ing SAE [51, 52]. It is noteworthy that the CNS is able to 
recognize damage-associated molecular patterns (DAMPs) 
through pattern recognition receptors (PRR), which are pre-
sent mainly on microglia and astrocytes. These receptors 
are localized on the membrane’s surface, for extracellular 
signal recognition, and in the cell cytoplasm for intracellular 
signal transmission [52]. There exist many studies that dem-
onstrated the expression of NLRP1, NLRP2, and NLRP3 in 
some CNS-related diseases, especially under stress condi-
tions [53–57]. Neurons, astrocytes, and microglia are the 
main cells able to suffer pyroptosis in the CNS and thus able 
to express the pyroptosis-related cytokines (IL-1α, IL-1β, 
and IL-18) and the receptors related to this process [58–60].

It has been demonstrated that inflammation is able to 
increase cytokine transcription of IL-1β TNF-α and IL-6. 
This is of special relevance because IL-1β can activate 
microglia, which has neurotoxic properties when it produces 
the release of nitric oxide (NO) and reactive oxygen species 
(ROS) [5, 27, 31, 61]. TNF-α causes neutrophil infiltration 
in brain tissue, neuronal apoptosis, and brain edema [31]. 
Furthermore, at the early stages of neuroinflammation, it 
is able to cause neurotoxicity [62]. Meanwhile, IL-6 can 

Fig. 1   Schematic overview of defined SAE physiopathology. This fig-
ure shows a normal physiopathology in a healthy brain and makes a 
comparison with an altered brain physiopathology, which is observed 
during SAE. An activation of CECs and the apoptosis induced on 
them causes a BBB disruption, which loses its selectivity, and an 
entrance of proinflammatory cytokines is produced. These processes 
promote glial cell activation, producing reactive astrocytes and acti-

vated microglia, which finally causes gliosis. Furthermore, in an SAE 
brain, an overexpression of glutamate as a consequence of neuroin-
flammation is produced. Ischemic lesions cause an altered microcir-
culation in the SAE brain. Finally, a vicious neuroinflammatory cas-
cade produced during SAE, causing brain atrophy. BBB, blood–brain 
barrier; NT, neurotransmission; ROS, reactive oxygen species
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induce cyclooxygenase-2 (COX-2) expression, which in 
turn increases the levels of the vasodilatory prostaglandin 
I2 (PGI2) [31, 63], causing fever and behavioral disturbances 
[5]. Endothelial adhesion molecules, such as V-CAM and 
I-CAM, also increase their expression in cerebrovascular 
endothelial cells, increasing the permeability of the BBB 
[5, 31, 64] and allowing the transfer of toxic factors from 
the peripheral circulation to the brain [12, 27], causing the 
BBB loss of selectivity, leading to neuroinflammation and 
microglia activation [65].

Neuroinflammation, which plays a central role in SAE 
onset and development, can be produced by a reduction in 
the proportion and in the total perfused brain vessel density, 
as well as the alteration of the microcirculation [6, 22, 66, 
67]. Notably, the main contributors to brain dysfunction are 
uncontrolled neuroinflammation and ischemic injury, which 
can cause the liberation of cytokines and able to activate the 
microglia [68]. Systemic inflammatory mediators produced 
by sepsis can enter the brain due to the BBB disturbance, 
causing the activation of microglia and neuroinflammation 
by releasing more pro-inflammatory cytokines [69]. The 
overproduction of pro-inflammatory cytokines can induce 
cholinergic neuron apoptosis, thus being reduced the cholin-
ergic activity and the acetylcholine (ACh) neurotransmitter 
levels [69]. The reduction in cholinergic activity can lead to 
delirium and cognitive decline, characteristics of SAE. Fur-
thermore, this reduction causes a decreased cholinergic inhi-
bition of activated microglia, thus accelerating the microglia 
activation and, in turn, increasing the cytokine levels [69]. 
In addition, microglial activation causes hypothalamic neu-
roinflammation triggering neurologic alterations such as 
neurotransmission disturbances, as can be the release incre-
ment of glucocorticoid hormone or a cell death increment [6, 
63]. This cascade leads to the immunosuppressive response, 
characteristic of sepsis and SAE, and exacerbates the infec-
tion worsening the outcome [69]. In the CNS, the cytokine 
increase is associated with infections, trauma, and injuries, 
among others [70, 71]. There is also an increase of trans-
forming growth factor beta (TGF-β) and monocyte chemoat-
tractant protein-1 (MCP-1) [72]. These mediators modify the 
expression of N-methyl-D-aspartate receptors (NMDARs) 
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptors (AMPARs) in neurons contributing to brain 
dysfunction [73]. Importantly, NMDARs and AMPARs are 
glutamate receptors. As it is known, glutamate is the most 
important excitatory neurotransmitter in the human brain, 
and when its levels are above the physiological range, exci-
totoxic effects are produced. This deleterious action of gluta-
mate is induced in different types of brain insults, including 
neuroinflammation (for a recent review, see Joy and Carmi-
chael [74]). Some studies have linked increased IL-1β levels 
with altered modulation of NMDARs, which may derive 
from functional disturbances in cognition and behavior and 

contribute to cognitive decline and depression in sepsis sur-
vivors [75–77]. It is also known that tryptophan, an AAA, 
is metabolized to quinolinic acid which can be synthesized 
in activated macrophages, acting as an excitatory transmitter 
stimulating NMDAR. The activation of these receptors can 
activate the neuronal isoform of the nitric oxide synthase 
(nNOS) and other calcium-dependent enzymes, releasing 
free radicals which can damage the DNA and activate the 
nuclear enzyme poly-ADP-ribose-synthetase (PARS), which 
its rapid activation depletes the intracellular concentration 
of NAD + , slowing the rate of glycolysis and ATP forma-
tion, so resulting in energy depletion, cell dysfunction, and 
death [78, 79]. These metabolic and molecular pathways are 
described in Fig. 2.

Role of miRNAs As a Potential Biomarker 
for SAE

microRNAs (miRNAs) are small noncoding RNAs which in 
recent years have been proposed as key biological regulators 
in many tissues and cell types, playing important roles in 
processes such as cell differentiation, growth, proliferation, 
apoptosis, metabolism, and cellular homeostasis [80–83]. 
miRNAs regulate the expression of many genes by linking 
their bases to complementary sequences of the 3′-untrans-
lated region (3′-UTR), producing translation repression, or 
in 5′-UTR which stabilizes mRNA structure and facilitates 
its transcription [80, 84].

miRNAs have been postulated to play essential roles in 
normal brain functions and in many neuropathological con-
ditions [85–87]. They are especially relevant in the brain 
because their small size miRNAs can cross the BBB easier 
than proteins or other biomolecules [88, 89]. When miRNAs 
are dysregulated, they can modify the expression levels of 
their mRNA targets, upregulating or downregulating gene 
expression and altering transcriptional programs, as demon-
strated in many diseases, including sepsis [90, 91]. For that 
reason, the potential of miRNAs as biomarkers is obvious. 
Moreover, miRNAs have other features that make them opti-
mal candidates as biomarkers, such as the fact they are pre-
sent in biofluids, including blood, urine, and saliva, allowing 
relatively noninvasive sample collection [80, 92]. In addition 
to their accessibility, miRNAs are highly stable in biofluids 
and in different biospecimens making them relatively easy 
to work with and analyze using different methods (i.e., small 
RNA sequencing, arrays, qPCR, and ddPCR) [93–96].

Focusing on neurological inflammation, microglia have 
been postulated to play a central role in SAE since microglia 
mediates the immune response and the hyperinflammatory 
status in the brain [97, 98]. In this regard, microglia serves 
as brain-resident myeloid cells participating in cerebral 
development, ischemia, neurodegeneration, and neuro-viral 
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infection [51, 99]. In this scenario, miRNAs are one of the 
most important regulators mediating microglial activation, 
polarization, and autophagy and subsequently affecting neu-
roinflammation and the outcome of CNS disease [100–102].

Although very few miRNAs have been described in 
SAE, it is expected that some miRNAs could show a similar 
expression pattern that those observed in sepsis, especially 
miRNAs related to hyperinflammation. Moreover, other 
miRNAs related to brain damage can also have dysregulated 
levels, although they could not be specific for SAE.

Many circulating miRNAs have been associated with 
sepsis diagnosis and prognosis [103]. Puskarich et al. [91] 
observed a correlation between sepsis and inflamma-miRs 
such as miR-146a, miR-223, and miR-150 in plasma. Inter-
estingly, miR-146a is involved in the regulatory T cells 
(Treg) survival and suppressor function [68], thus regu-
lating immune response and targeting the tumor necrosis 
factor receptor-associated factor 6 (TRAF6), a ubiquitin-
conjugating enzyme that mediates NF-κB activation [104]. 

Moreover, miR-223 directly participates in inflammation 
by targeting NF-κB [105]. NF-κB is closely related to 
inflammasome activation and therefore in pyroptosis, and 
importantly, it is upregulated in SAE [51]. Low levels of 
miR-223 and miR-146a were found in patients with severe 
sepsis [106], so we can suggest that low levels of miR-223 
may contribute to maintaining high transcription of NF-κB. 
Regarding miR-150, its expression was correlated with 
mortality [91]. Moreover, Vasilescu et al. [107] also found 
that miR-486 and miR-182 expression was higher in septic 
patients than in healthy subjects. Importantly, some miRNAs 
such as miR-146a or miR-155 demonstrated their role in 
neuroinflammation. This is because both miRNAs regulate 
the overexpression and activation of NF-κB and therefore 
induce neural pyroptosis through activation of the IL-1β 
signaling pathway [51, 108, 109].

Notably, miR-155, miR-27a, and miR-210 have been 
widely postulated as biomarkers in sepsis, and recent stud-
ies showed that they play a central role in microglia function 

Fig. 2   Metabolic alterations during SAE pathogenesis. The main 
alterations observed in SAE physiopathology cause a hyperinflam-
mation, which derives from microglial activation and brain dys-
function. At the molecular level, the NLRP3 inflammasome and the 
COX-2 pathways are activated, being inflammation the most relevant 
mechanism during SAE pathophysiology. SAE, sepsis-associated 
encephalopathy; BBB, blood–brain barrier; NLRP3, NLR family 

pyrin domain 3; ACh, acetylcholine; TNF-α, tumor necrosis factor 
alpha; IL, interleukin; NO, nitric oxide; ROS, reactive oxygen spe-
cies; COX-2, cyclooxygenase-2; PGI2, prostaglandin I2. Gray arrow 
indicates a cause; orange arrow indicates a release; green arrow indi-
cates an activation; black line indicates an inhibition. Figure  based 
on Chung et al. [46]
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[90, 110]. Moreover, some studies have shown that micro-
glial cells are the front line target in the brain for lipopoly-
saccharide (LPS) action, reinforcing the idea of the key role 
of microglia in SAE [111]. Regarding miR-155, it was shown 
that its inhibition in microglia contributes to the develop-
ment of endotoxin tolerance through an immunohomeostatic 
reaction [112]. This tolerance is caused by repeated exposure 
to LPS that maintains an altered response in immune cells, 
resulting in inhibition of the proinflammatory response and 
resolution of inflammation [112]. Since microglia is the first 
line of defense in the brain and the first cells which are the 
target of LPS in this tissue, it is expected that downregula-
tion of miR-155 may protect microglia against LPS-induced 
inflammatory injury [111, 113, 114], which is frequent in 
septic infections. For that reason, it is expected to find high 
levels of miR-155 in SAE patients when bacterial LPS is 
found in septic patients. However, miR-155 is not specific, 
because it is also found at high levels in a wide variety of 
neurological diseases, for example, in Alzheimer’s disease 
[88].

miR-27a was also found to be expressed in LPS-activated 
microglia, so it is possible that levels of miR-27a were 
reduced in SAE, postulating this miRNA as an interesting 
factor to be investigated in SAE. Moreover, miR-27a was 
able to inhibit microglia-produced inflammatory cytokines, 
including IL-6, IL-1β, and TNF-α, and blocking the expres-
sion of TLR4 and IL-1 receptor-associated kinase 4 (IRAK4) 
[115]. The capacity of miR-27a to regulate the expression 
of some key inflammatory mediators in microglia makes it 
a good candidate biomarker for SAE.

In addition, miR-210 is upregulated under hypoxic con-
ditions; therefore, it is considered an important regulator of 
hypoxia response through the control of many functions such 
as DNA repair, mitochondrial respiration, angiogenesis, and 
cell proliferation [116, 117]. Likewise, low miR-210 levels 
have shown neuroprotective effects on mice with hypoxic-
ischemic encephalopathy, due to its capacity for activating 
microglia, so it is upregulated during the development of the 
pathology [118–120]. Interestingly, miR-210 was related to 
ROS generation and inflammation in the brain through the 
ischemia–reperfusion process [119, 121]. Interestingly, due 
to ischemia–reperfusion injury is usually associated with 
SAE, miR-210 represents a good biomarker candidate to 
diagnose SAE. Moreover, targeting miR-210 is a promising 
approach to develop a miRNA-based therapy since it has 
been demonstrated that higher levels of this miRNA play a 
neuroprotective role [119].

Focusing on specific biomarkers for SAE, miR-370 is the 
most characterized biomarker associated with SAE. Vis-
itchanakun et al. [122] demonstrated that mice with SAE 
had high levels of miR-370 in brain tissue, and the results 
were corroborated in plasma samples of SAE patients. This 
result suggests that miR-370 is very specific for SAE since 

it shows undetectable levels in patients with sepsis and other 
inflammatory diseases. Despite the specific role of miR-370 
in SAE is not fully elucidated, some authors have postulated 
that miR-370 induces cell cycle arrest by targeting β-catenin 
that has a physiological role in controlling cell–cell adhesion 
and regulating gene transcription [123] and is able to inhibit 
the proliferation of human glioma cells [122].

In addition, some miRNAs postulated as key regulators in 
microglia have been shown to mediate inflammation in CNS 
pathologies [124]; therefore, they may play relevant roles 
in SAE pathology. In fact, transcriptome analyses compar-
ing microglia, myeloid, and other immune cells identified 
239 genes and 8 microRNAs that were highly expressed and 
specific for microglia: miR-29a, miR-29b, miR-342-3p, miR-
103, miR-99a, miR-322, miR-125b-5p, and miR-30a [125].

Interestingly, miR-181b has been postulated to have a 
protective role in the hippocampus of septic rats. In fact, 
Dong et al. showed that the expression of hippocampal miR-
181b was significantly decreased in septic rats. In this way, 
the upregulation of miR-181b can inhibit the activation of 
the NF-κβ signaling pathway and the release of the inflam-
matory cytokine IL-1β and TNF-α, which are elevated in 
plasma patients with SAE, therefore alleviating the inflam-
matory reaction and hippocampus injury in septic rats [126].

Another miRNA postulated as a regulator of microglia 
differentiation and inflammation was miR-101. Reiko et al. 
demonstrated that miR-101, which is enriched in the brain, 
regulates microglial morphology and inflammation, usually 
altered in SAE patients through the downregulation of the 
expression of MAPK phosphatase-1 [127]. Other authors 
showed that through the MAPK pathway, miR-101 also 
regulates cellular autophagy in the brain [128].

Another interesting miRNA is miR-203, which can inhibit 
ischemia induced by the activation of microglia, by target-
ing directly MyD88, a protein that plays a central role in 
the responses of microglia to pathogen-associated molecular 
patterns (PAMPs) through Toll-like receptors (TLRs) [90, 
129]. Moreover, the overexpression of miR-203 in the brain 
induces the repression of NF-κβ signaling and prevents sub-
sequent microglial activation ameliorating neuronal injury 
induced by hyperinflammation [130].

An important mechanism that induces an inflammatory 
state in CNS is the one mediated by inflammasomes. Some 
authors showed that the NLRP3-inflammasome complex 
plays an important role in sepsis through inflammation. 
NLRP3 inflammasome is considered one of the most impor-
tant mechanisms that mediate the pro-inflammatory status in 
the early phases of sepsis [131, 132]. Importantly, it has been 
shown that NLRP3/caspase-1 pathway-induced pyroptosis 
mediates cognitive deficits in a mouse model of SAE [133]. 
Moreover, the inhibition of the NLRP3/IL-1β axis in the 
microglia improves spatial memory in mice with SAE [2]. 
Regarding miRNAs, Zhou et al. showed that miR-7 was able 
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to inhibit the activation of microglial NLRP3 inflammasome 
in vitro. Importantly, stereotactic injection of miR-7 mim-
ics into the mouse striatum ameliorated microglial activa-
tion, concomitant with attenuation of dopaminergic neuron 
degeneration in a mouse model [134].

Similarly, Kumar and Nerurkar demonstrated that mice 
infected with West Nile virus showed differential expres-
sion of miR-196a, miR-202-3p, miR-449c, and miR-125a-3p 
in brain tissue, leading to neuroinflammation and neuronal 
death [135]. Furthermore, the upregulation of miR-32 was 
correlated with the levels of neuroinflammatory molecules 
[136]. In this regard, it has been demonstrated that the 
inhibition of miR-32 ameliorated inflammatory cytokine 

production in LPS-treated microglia, such as IL-1α, IL-1β, 
and NF-κβ pathway [88].

Finally, in a study performed by El-Assaad et al. [137], 
specific expression profiles of miRNA in the brain tissue 
after bacterial infection were found. They found that let-7i, 
miR-27a, miR-150, miR-126, miR-210, and miR-155 were 
differentially expressed in the brain. These findings suggest 
the possibility of measuring specific patterns of miRNA 
expression in the brain under bacterial infection, which may 
help to identify brain-related deleterious effects in sepsis. 
However, since miRNA expression profiles should not be 
specific for SAE, the use in combination with other bio-
markers associated with sepsis may be an effective method 

Table 1   miRNAs proposed as good biomarkers to diagnose SAE

miRNA Role Reference

miR-146a It is involved in the suppressive and survival function of Treg, thus regulating the immune response. It 
plays its role through the regulation of TNF receptor-associated factor 6 (TRAF6), a ubiquitin-conju-
gating enzyme that mediates the activation of NF-κB. miR-146a was found upregulated in the plasma 
of septic patients

[57, 91]

miR-223 It participates in inflammation by targeting NF-κB expression. Low levels of miRNA-223 were found in 
patients with sepsis

[92, 93]

miR-150 miR-150 regulates cell differentiation fate in many hematopoietic cell lineages as T- and B-progenitor 
cells and NK-cells, among others. Its expression was correlated with mortality in septic patients

[90]

miR-155 miR-155 plays an essential role in neuroinflammation because it regulates the overexpression and 
activation of NF-κB and therefore induces neural pyroptosis through activation of the IL-1β signaling 
pathway

Interestingly, its inhibition in microglia contributes to the development of endotoxin tolerance through 
an immune-homeostatic reaction. Therefore, it is expected that downregulation of miR-155 may pro-
tect microglia against LPS-induced inflammatory injury, which is frequent in septic infections

[39, 74, 95, 96, 98–101]

miR-27a miR-27a is able to inhibit microglia-produced inflammatory cytokines, including IL-6, IL-1β, and 
TNF-α and block the expression of TLR4 and IRAK4

[102]

miR-210 miR-210 is an important regulator of hypoxia response through the control of many functions such as 
DNA repair, mitochondrial respiration, angiogenesis, and cell proliferation. Likewise, low miR-210 
levels show neuroprotective effects on mice with hypoxic-ischemic encephalopathy, due to its capacity 
for activating microglia. Interestingly, miR-210 was related to ROS generation and inflammation in the 
brain

[91, 103–107]

miR-370 Despite the specific role of miR-370 in SAE is not fully elucidated, some authors have postulated that 
miR-370 induces cell cycle arrest by targeting β-catenin that controls cell–cell adhesion and regulates 
gene transcription. This protein is able to inhibit the proliferation of human glioma cells. miR-370 is 
the most and almost the only one characterized biomarker associated with SAE

[108, 109]

miR-181b miR-181b has been postulated to have a protective role in the hippocampus of septic rats. The upregu-
lation of miR-181b can inhibit the activation of the NF-κβ signaling pathway and the release of the 
inflammatory cytokine IL-1β and TNF-α, therefore alleviating the inflammatory reaction and hip-
pocampus injury in septic rats

[112]

miRNA-101 miR-101 is a miRNA enriched in the brain that regulates microglial morphology and inflammation, usu-
ally altered in SAE patients through the downregulation of the expression of MAPK phosphatase-1. 
Other authors showed that through the MAPK pathway, miR-101 also regulates cellular autophagy in 
the brain

[113, 114]

miR-203 miR-203 can inhibit ischemia induced by the activation of microglia, targeting directly MyD88, a 
protein that plays a central role in the responses of microglia to PAMPs through TLRs. Moreover, the 
overexpression of miR-203 in the brain induces the repression of NF-κβ signaling, so it can prevent 
subsequent microglial activation ameliorating neuronal injury induced by hyperinflammation

[76, 115, 116]

miR-32 miR-32 acts an important role by inhibiting glioma cell proliferation. The upregulation of miR-32 was 
correlated with the levels of neuroinflammatory molecules and looks like a great candidate for SAE 
diagnosis

[122]
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to diagnose SAE. Potential biomarkers for SAE based on 
miRNAs are summarized in Table 1.

Despite there are no optimal inclusion and exclusion cri-
teria for SAE, it is difficult to apply a specific treatment. 
Some researchers are looking for good therapeutic strate-
gies and drugs for SAE treatment; nevertheless, to perform 
a successful clinical trial, it is important to properly define 
inclusion and exclusion criteria [138]. Beyond the necessity 
of biomarkers to identify appropriate therapies, there is also 
a need to identify biomarkers to clearly define SAE. Some 
molecules that are being postulated for SAE treatment are 
showing promising results in animal models. Rocha Cat-
alão et al. [49] showed that Simvastatin prevents long-term 
cognitive deficits in sepsis survivor rats, which is one of 
the main problems in sepsis and SAE survivor patients, by 
reducing neuroinflammation and neurodegeneration. They 
observed, in the hippocampus, a reduction of gliosis, nitrate, 
IL1-β, and IL-6 and overexpression of Bcl-2 protein levels, 
which was correlated with a decrease of apoptosis. Likewise, 
animals exposed to Simvastatin presented a better perfor-
mance in tasks involving habituation, aversive and discrimi-
native memory, and a reduction of neurodegeneration [49]. 
In another study, Zhang et al. demonstrated the ability of 
amitriptyline to reduce sepsis-induced brain damage. This 
compound works through the tropomyosin receptor kinase A 
(TrkA) signaling pathway, implicated in neuron survival and 
differentiation [139]. It has been demonstrated that amitrip-
tyline is able to reduce cerebral inflammation by increasing 
the levels of IL-10, a potent anti-inflammatory cytokine, and 
reducing pro-inflammatory cytokine generation. Therefore, 
it is able to control gliosis and ROS production during the 
SAE physiopathology [139–141]. Another postulated ther-
apy is pentamidine; Huang et al. [142] demonstrated the role 
of this antiprotozoal drug for inhibiting the S100B/RAGE/
NF-κB signaling pathway, thus reducing neuroinflammation 
in the mouse hippocampus, attenuating ROS generation and 
gliosis.

Conclusions

SAE is a multifactorial syndrome categorized as a diffuse 
brain dysfunction with irreversible brain damage, which is 
associated with sepsis. SAE is the first organic dysfunction 
in many septic patients, and up to 70% of them can suffer 
from this syndrome. However, depending on the inclusion 
criteria, this percentage varies because there is no clear diag-
nostic method or biomarker to identify those patients. So 
the diagnosis of SAE represents one of the main challenges 
in SAE. Nowadays, molecular mechanisms underlying the 
SAE pathophysiology are not completely understood, but 
it seems that changes in brain metabolism, hyperinflam-
matory phenotypes, and alteration of the immune response 

play a central role in the SAE development and progression. 
Likewise, the microglia appear as a key player due to their 
function on the cerebral immune defense and their role in 
inflammation. miRNAs are involved in the brain immune 
response by regulating microglia, representing an effective 
form to assist clinicians to diagnose SAE and prognosticate 
SAE outcome, and helping to decrease high associated mor-
tality. However, a single biomarker could be not enough to 
diagnose this heterogeneous syndrome, and a combination of 
biomarkers may improve the performance of the diagnostic 
methods. In this regard, some miRNAs have been postulated 
as biomarkers for SAE, such as inflamma-miRs and micro-
glial-specific miRNAs. Specifically, circulating miR-370 
was postulated as a feasible candidate for SAE diagnosis, 
alone or in combination with other miRNAs. Nevertheless, 
despite the advances in understanding SAE physiopathology, 
there is a clinically unmet need for the appropriate diagnosis 
of SAE. In this sense, identifying (bio)markers, single or in 
combination with other (diagnostic tools), with the potential 
to achieve a specific diagnostic of SAE, will improve patient 
care and reduce future morbidities in these patients.
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