
Latent Variables Capture Pathway-Level Points of Departure in
High-Throughput Toxicogenomic Data
Danilo Basili, Joe Reynolds, Jade Houghton, Sophie Malcomber, Bryant Chambers, Mark Liddell,
Iris Muller, Andrew White, Imran Shah, Logan J. Everett, Alistair Middleton,* and Andreas Bender*

Cite This: Chem. Res. Toxicol. 2022, 35, 670−683 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Estimation of points of departure (PoDs) from high-throughput
transcriptomic data (HTTr) represents a key step in the development of next-
generation risk assessment (NGRA). Current approaches mainly rely on single
key gene targets, which are constrained by the information currently available in
the knowledge base and make interpretation challenging as scientists need to
interpret PoDs for thousands of genes or hundreds of pathways. In this work, we
aimed to address these issues by developing a computational workflow to
investigate the pathway concentration−response relationships in a way that is not
fully constrained by known biology and also facilitates interpretation. We
employed the Pathway-Level Information ExtractoR (PLIER) to identify latent
variables (LVs) describing biological activity and then investigated in vitro LVs’
concentration−response relationships using the ToxCast pipeline. We applied this
methodology to a published transcriptomic concentration−response data set for
44 chemicals in MCF-7 cells and showed that our workflow can capture known biological activity and discriminate between
estrogenic and antiestrogenic compounds as well as activity not aligning with the existing knowledge base, which may be relevant in a
risk assessment scenario. Moreover, we were able to identify the known estrogen activity in compounds that are not well-established
ER agonists/antagonists supporting the use of the workflow in read-across. Next, we transferred its application to chemical
compounds tested in HepG2, HepaRG, and MCF-7 cells and showed that PoD estimates are in strong agreement with those
estimated using a recently developed Bayesian approach (cor = 0.89) and in weak agreement with those estimated using a well-
established approach such as BMDExpress2 (cor = 0.57). These results demonstrate the effectiveness of using PLIER in a
concentration−response scenario to investigate pathway activity in a way that is not fully constrained by the knowledge base and to
ease the biological interpretation and support the development of an NGRA framework with the ability to improve current risk
assessment strategies for chemicals using new approach methodologies.

■ INTRODUCTION

Toxicity testing to provide information about chemical hazards
and risks has historically relied on apical end points derived
from living animals,1 which is time-consuming, expensive, and
the results depend on biological variation. In 2007, the U.S.
National Academy of Science envisioned a change in the way
toxicity testing is conducted by promoting a transition from an
expensive and lengthy in vivo testing to an in vitro high-
throughput screening of chemical toxicity by using cell lines.2

In the last few decades, efforts by academia, industry, and
regulatory bodies have driven the development of new
approach methodologies (NAMs) that can accelerate the
pace of change in chemical risk assessment by providing
information on chemical safety without the need for animal
testing.3−7 NAMs encompass any technology or methodology
that is able to inform about chemical safety in a high-
throughput manner without relying on animal testing and plays
a key role in the development of next-generation risk
assessment (NGRA).8 In NGRA, safety decisions are based

largely on the margin of safety, also referred to as the
bioactivity exposure ratio,7,9−11 which is the ratio between an
appropriate exposure metric (e.g., Cmax, AUC) for a given
chemical and the point of departure (PoD), defined as the
concentration at which the chemical induces bioactivity in
relevant in vitro assays.12−14

One of the ways to derive data for NGRA is gene expression
profiling.15 While earlier approaches relied on relatively
expensive microarrays,16 recent technological improvements
in high-throughput transcriptomics (HTTr) have made it
feasible to analyze thousands of chemicals in concentration−
response.11,17 In this context, HTTr is becoming a practical
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approach to estimate chemical PoDs used to derive safety
decisions in NGRA.12 Concentration−response modeling of
transcriptional data to derive probe-level PoDs is performed by
identifying the best fit model for each probe expression profile
across the concentration range tested, based on a set of criteria
for determining an active call.18 The estimated PoDs are used
to inform safety decisions, and this is usually done by taking
the most conservative (i.e., protective) approach, which is to
select the gene with the lowest PoD. However, the challenge
lies in moving beyond this extremely conservative position
where PoDs are instead selected based on both how protective
they are and their biological relevance. To facilitate biological
interpretation, knowledge bases are usually employed to derive
pathway-level PoDs by computing the lowest or median PoDs
from the collection of all the responsive probes.18−20 However,
while this approach has proven to be successful in deriving
PoDs for known biological pathways,21 taking the coordinated
expression of multiple genes in a pathway is not trivial.22

Approaches to address this challenge have already been
explored and rely on aggregating genes into biologically
relevant sets prior to downstream analysis.23 Aggregating
across genes offers many advantages as it improves replication,
reduces technical and biological variances across the samples,
facilitates biological interpretation, and may also reduce the
dimensionality of the data set as well as increase statistical
power depending on the size of the gene sets considered.24−26

Despite these advantages, gene aggregation into biologically
relevant gene sets prior to concentration−response modeling
has been rarely performed. To our knowledge, the only
example of such an approach is the one performed by Harrill
and collaborators,11 who recently developed a novel gene
expression signature-based concentration−response modeling
approach, which they applied on the HTTr assay screening of a
small set of chemicals in the MCF-7 cell model. Harrill and
collaborators found out that aggregating signals from individual
genes into gene signatures before concentration−response
modeling yielded biological pathway altering concentrations
that were closely aligned with previous ToxCast assays.11

While annotating genes with pathways combine both data and
prior knowledge, such approaches are restricted by the use of
databases created by the curation of scientific literature that are
often biased toward genes with prior experimental evidence,27

and genes not involved in any of the known gene sets are

discarded regardless of their level of change. In addition, the
scale and redundancy of the existing pathway collections result
in the testing of a huge number of gene sets, each with a
different estimated PoD, leading to interpretation challenges.
In the present study, we hence set to address these

limitations by developing a computational workflow to (1)
investigate pathway-level concentration−response relationships
in a manner that is not fully constrained by current knowledge
bases and (2) ease the biological interpretation. First, we
evaluated our workflow on a published transcriptomic data set
produced by Harrill et al.11 and leveraging the TempO-Seq
technology28 for screening 44 chemicals in MCF-7 cells using
the concentration−response model.11 Second, we tested our
workflow on a small in-house data set obtained by screening
seven chemicals in HepG2, MCF-7, and HepaRG cells using
the concentration−response model to compare PoD estimates
across different methods.

■ MATERIALS AND METHODS
MCF-7 Data (Public Data Set). MCF-7 data were obtained from

the work performed by Harrill and collaborators.11 Briefly, this study
screened 44 chemicals with different target annotations (Table S1,
Supporting Information) in MCF-7 cells across a range of eight
concentrations from 0.03 to 100 μM (1/2 log spacing). The MCF-7
count data, which were generated using the TempO-Seq technol-
ogy,28 were downloaded from GEO (GSE162855). Flagged samples
as identified by Harrill et al.11 were removed from the analysis. Genes
with fewer than 10 counts in more than 90% of the samples were
removed. Reproducibility and overall sample quality were assessed by
means of PCA and correlation. The data set was adjusted for batch
effects due to experimental plate differences using ComBat-Seq
(ComBat_seq function from the SVA package, version 3.40.0).29 More
specifically, ComBat-Seq was run by specifying the experimental plate
along with the treatment-concentration condition as a biological
covariate in order for the signal to be preserved in the adjusted data.
Finally, the full data set was normalized by the DESeq2’s median of
ratios using the DESeq function (package DESeq2, version 1.32.0) to
account for differences in sequencing the depth and RNA
composition.30

HepG2, HepaRG, and MCF-7 Data (In-House Data Set).
Chemical Selection. For the present study, a total of 7 chemicals
were selected (Table 1). These chemicals represent a diverse set of
substances present in consumer products (including foods and food
supplements) and drugs that are relevant for risk assessment. Among
these compounds, coumarin, caffeine, phenoxyethanol, and niacina-
mide have a long history of safe use by humans.13

Table 1. Panel of Chemicals Selected for the Present Studya

chemical known biological effects CAS number concentration tested (μM)

phenoxyethanolb antimicrobial activity 122-99-6 0.01−0.1−1−10−100−1000
niacinamideb antipruritic, antimicrobial, vasoactive, photo-protective, sebostatic 98-92-0 1−4−10−100−1000−10,000
coumarinb CYP450 91-64-5 0.001−0.01−0.1−1−10−100
caffeineb CNS stimulant 58-08-2 0.01−0.1−1−10−100−1000
andrographolide anti-inflammatory 5508-58-7 HepG2: 0.2−0.5−2−5−10−15

HepaRG: 0.2−0.5−2−5−15−80
MCF-7: 0.2−0.5−2−5−15−80

triclosan fatty acid synthesis inhibitor 3380-34-5 HepG2: 0.1−0.4−1−4−10−20
HepaRG: 0.1−0.4−1−4−10−50
MCF-7: 0.1−0.4−1−4−10−50

flutamide AR antagonist 13311-84-7 HepG2: 0.2−0.5−2−5−20−50
HepaRG: 0.2−0.5−2−5−20−200
MCF-7: 0.2−0.5−2−5−20−200

aFor each chemical, the tested concentrations are reported along with the chemical mode of action (MoA) and the CAS number. The differences in
concentrations tested across different cell lines were due to different sensitivities assessed by the cell viability assay (see the section Cell Viability
Assay for details). bThe tested concentrations were all the same across the three cell lines.
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Cell Culture. HepG2 cells (human hepatoblastoma) were
obtained from the Public Health England European Collection of
Cell Cultures (ECACC, Salisbury, UK). Cells were cultured in
complete EMEM supplemented with 10% fetal bovine serum (FBS),
2 mM GlutaMAX, 1% nonessential amino acids, 53 U/mL penicillin,
and 53 μg/mL streptomycin. HepG2 cells were maintained in 75 cm2

cell culture flasks in a humidified atmosphere incubator with 5% CO2
at 37 °C; the cells were kept at a confluence below 85% and were not
maintained in culture for more than 4 weeks (8 passages). Cells were
seeded into 384-well, clear-bottom black-walled tissue culture plates at
a density of 3000 cells/well and were left overnight to attach.
MCF-7 cells (human Caucasian breast adenocarcinoma) were

obtained from ECACC (Salisbury, UK). Cells were cultured in
complete RPMI 1640 medium supplemented with 10% FBS, 2 mM
GlutaMAX, 53 U/mL penicillin, and 53 μg/mL streptomycin. MCF-7
cells were seeded into 384-well, clear-bottom black-walled tissue
culture plates at a density of 3000 cells/well and were left overnight
for attachment.
HepaRG cells were obtained from Life Technologies and cultured

in Williams E medium supplemented with 2 mM L-glutamine and
HPRG670 supplement (Lonza, UK), in collagen-coated, 384-well,
clear-bottom, black-walled, tissue culture plates, at a density of 20,000
cells/well. HepaRG cells were then transferred to serum-free medium
following the initial 24 h seeding procedure (Williams E medium
supplemented with 2 mM L-glutamine, 100 units/mL penicillin, 100
μg/mL streptomycin, and HPRG640 supplement), for 6 days prior to
dosing, with media replenishment every second day.
Cell Viability Assay. In order to assess cytotoxicity, HepG2,

MCF-7, and HepaRG cells were dosed with each compound at a
range of concentrations for 24 h. At the end of the incubation period,
the cells were loaded with the relevant dye/antibody for the following
cell health markers: cell count, nuclear size, DNA structure, and
cellular ATP. The plates were then scanned using an automated
fluorescent cellular imager, ArrayScan (Thermo Scientific Cellomics).
Cytotoxicity thresholds were defined for each cell line according to
the lowest minimum effective concentration (MEC) for all the
biomarkers measured and were used to determine the top
concentrations tested (Table 1 and Supporting Information: File 1,
XLSX).
Chemical Treatments. Test compounds were prepared as stock

solutions in 200× higher concentrations than the highest concen-
tration to be tested. [Dimethyl sulfoxide (DMSO) was used as the
solvent, and its concentration was maintained at 0.5% v/v.] Serial
dilutions were performed using the custom dilution series for each
compound. Cells were treated at six concentrations (Table 1) of each
test compound, and three biological replicates were generated.
Compound treatment was performed for 24 h in a humidified
atmosphere with 5% CO2 at 37 °C. Cells were washed in calcium- and
magnesium-free phosphate buffered saline (PBS). With all residual
PBS removed, the 2X TempO-Seq lysis buffer (BioSpyder
Technologies, proprietary kit) was diluted to 1× with PBS and
added at a volume of 1 μL per 1000 cells with a minimum of 10 μL
per well and incubated for 10 min at room temperature. Following
lysis, the samples were frozen at −80 °C prior to sequencing.
RNA Sequencing and Data Analysis. TempO-Seq analysis for

the HepG2, MCF-7, and HepaRG studies was performed as described

previously28 with a targeted sequence depth of 200 mapped read
counts per transcript, including the use of the general attenuation
panel. Samples with fewer than 500 K reads were removed, leading to
the highest concentration of flutamide (200 μM) and the third
highest concentration of niacinamide (100 μM) to be lost in
HepaRG. In addition, genes with fewer than 10 counts in more than
90% of the samples were removed. Reproducibility and overall sample
quality were assessed by means of PCA and correlation. The second
lowest concentration of coumarin (0.01 μM) in HepG2 cells was
removed due to the low correlation of replicates (Figure S1,
Supporting Information). Similar to the MCF-7 study, the data sets
were adjusted for batch effects due to plate differences using ComBat-
Seq (ComBat_seq function from the SVA package, version 3.40.0).29

Finally, data were normalized by DESeq2’s median of ratios using the
DESeq function (package DESeq2, version 1.32.0) to account for
differences in sequencing depth and RNA composition.30

Gene Aggregation into Latent Variables. Gene aggregation
into latent variables (LVs) was performed using the Pathway-Level
Information ExtractoR (PLIER).31 An LV is a variable that is inferred
using models from observed gene expression data. Briefly, PLIER
approximates each gene expression profile as a linear combination of
LVs that are similar to eigengenes (e.g., largely independent of one
another). Although this deconvolution is driven by prior knowledge
where the method optimizes the alignment of LVs to a relevant subset
of the available gene sets, some of the LVs do not have any association
with biology, allowing for the discovery of activity not captured by the
knowledge bases used (Figure 1, step 1). LVs are nonredundant as
they capture unique patterns of gene expression; hence, despite the
fact that they can align with the same gene set, they will capture the
behaviur of different genes. It is worth mentioning that the absolute
value of an LV has no direct interpretation, while what matters is the
value of the LV relative to the other LVs; relatively high values
correspond to a subset of correlated genes with relatively high
expression within the tissue/cell, while low values highlight patterns of
co-regulated genes with a relatively low expression. In the present
work, PLIER was run using the PLIER function from the PLIER
package (version 0.99.0) within the R statistical environment, with
default parameters providing as an input the fully normalized data set
for each cell line (both the public and in-house data) and using as
prior knowledge the MSigDB (sub)collections C2 and H (version
7.2) as these could be mapped to pathways that can be interpreted in
meaningful ways. For the MCF-7 public data, we also included the full
collection of directional CMAP signature as calculated and used by
Harrill et al.11 in order to perform a more robust comparison, which
we excluded from the analysis of the in-house data set as there is
uncertainty around its ability to facilitate biological interpretation.
The method outputs a matrix of LVs across samples along with a
matrix providing the accuracy of the alignment between LVs and
predefined gene sets. Gene sets aligning with LVs showing FDR <
0.05 and AUC > 0.7 were considered.

Concentration−Response Analysis of LVs. To investigate the
activity of LVs for each compound and estimate PoDs of biological
pathways, we leveraged the power of the ToxCast pipeline (tcpl)32

using a new updated version, tcplf it233 (https://github.com/cran/
tcplfit2) (Figure 1, step 2). Briefly, for each compound, the
concentration−response expression profile of each LV is fit to a set

Figure 1. Computational workflow overview. First, a concentration−response HTTr data set is used as the input into PLIER along with a collection
of predetermined gene sets (step 1). PLIER returns a collection of LVs, which represent patterns of co-regulated genes that may or may not align
with any of the gene sets supplied. Next, the concentration−response activity of each LV in each compound is investigated using a new updated
version of the ToxCast pipeline (tcplf it2).
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of models, including the Hill model, a gain−loss model, two
polynomial models, a power model, and four exponential models.
The LV expression profiles of the control samples are used to
determine the baseline expression (noise band). The winning curve fit
is selected as the model with the lowest Akaike Information Criterion
(AIC).34 One of the key outputs of tcplf it2 over tcpl is a “continuous
Hitcall” that quantifies the strength of the hits providing confidence
for the fitted model. The criteria considered for the calculation of the
continuous Hitcall and for the estimation of the benchmark dose
(BMD) can be found in the previous study.11 The only modifications
made were that for an active call we expected (1) at least one median
response at any test concentration to be greater than 1.5 times the
statistically defined baseline expression (noise band) and (2) at least
the benchmark dose lower (BMDL) or the benchmark dose upper
(BMDU) to be successfully estimated. The BMD value is the PoD,
the concentration at which the winning model curve crosses the
cutoff, which is set to 2 times the standard deviation (s.d.) of the
controls. Models with a continuous Hitcall ≥ 0.9 were considered.
The compound PoDs from the Harrill et al.11 work were computed by
first ranking all the active signatures in each compound by their PoD
and then considering the lowest 5th percentile. PLIER-derived
compound’s PoDs were derived by considering the LV with the
lowest PoD (provided in Table S2, Supporting Information). For
compounds lacking LV activity, no global PoD was assigned.

Benchmark Dose Modeling with BMDExpress2. For each data
set, normalized counts were used as the input into BMDExpress2
(version 2.2).35 Hill, power, polynomial 2nd degree (poly 2) and
exponential 3rd, 4th, and 5th degree models were all fit to the data.
Only probes that passed a William’s Trend test using thresholds of
1.5-fold change and a 0.05 p value had models fit to them and the
BMDL values calculated. Out of the 6 models fit to the probe data,
the best model was determined to be the one with the lowest AIC
value, and BMDLs were deemed significant if (1) the BMD was less
than or equal to the highest test concentration, (2) the BMDU/
BMDL ratio was less than 40, and (3) the model fit p values for the
best model were more than 0.1. Pathway enrichment was performed
using BMDExpress2 by taking all probes analyzed and mapping them
to Reactome pathways.36 A mean of the BMDLs of probes mapped to
pathways that were found to have significant dose responses and
BMDL values was deduced as the pathway-level PoD. Pathways were
deemed as significantly enriched when they had (1) a 2-tailed Fisher’s
p value less than 0.1, (2) over 2 probes in the input data set found in
the pathway, and (3) one or more probes in the pathway that passed
the previously listed probe significance criteria. For each chemical cell
line data set, the pathway with the lowest BMDL was determined as
the compound PoD. The estimation of a global PoD failed for
chemicals for which not enough genes had a significant dose
responsive model fit to them to significantly enrich any Reactome

Figure 2. Transcriptional activity after compound application. (A) Magnitude of activity in terms of active LVs found by the workflow developed in
this work. In cyan, we report those LVs that are found to align with prior knowledge and in red the ones that are found to not align with prior
knowledge. (B) Magnitude of perturbed genes across concentrations as identified by Harrill et al.11
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Figure 3. Concentration-dependent activity of LVs for estrogenic (bisphenol A, bisphenol B, 4-nonylphenol, and 4-cumylphenol) and
antiestrogenic (4-hydroxytamoxifen, clomiphene citrate, and fulvestrant) compounds. (A) The plots show LVs found to be active in each
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pathway. Global PoDs obtained using this method are provided in
Table S2, Supporting Information.
Bayesian Concentration−Response Analysis. A modification

of the approach developed by Reynolds et al.37 was used to estimate
global PoDs for the chemicals andrographolide, caffeine, coumarin,
flutamide, niacinamide, phenoxyethanol, and triclosan in HepaRG,
HepG2, and MCF-7 cell lines. Briefly, the approach fits a Bayesian
statistical model to the counts for a single gene. The posterior
distribution was used to derive a distribution encompassing the
uncertainty in the estimate of a gene-level PoD. This was repeated for
all genes with a mean or median raw count greater than 5. A global
PoD was derived using the method outlined earlier.37 The statistical
model was modified by switching the sampling distribution of counts
from a negative binomial to a log-Student’s t-Poisson compound
distribution to increase kurtosis, thereby reducing sensitivity to
outliers. PoD samples for the Bayesian concentration−response
method were obtained using the Hamiltonian Monte Carlo algorithm
implemented in PyStan 2.19.38 Data processing was performed with
Python 3.8, utilizing the packages matplotlib 3.3, NumPy 1.19, pandas
1.2, and SciPy 1.6. Global PoDs obtained using this method are
provided in Table S2, Supporting Information.
Concordance Correlation Analysis. To assess the concordance

between PoD estimates across methods, we used the concordance
correlation coefficient (CCC), an index that measures the correlation
between variables with the ability to capture bias and under-/
overdispersion in the estimates.39 The CCC was computed by using
the CCC function from the DescTools R package. PoDs of estrogen
activity from the Harrill et al.11 work were computed by first ranking
all the active estrogen-related signatures in each ER agonist and ER
antagonist by their PoD and then considering the lowest 5th
percentile.

■ RESULTS

LV Activity Reflects the Known Mechanism of Action.
We first assessed the ability of our computational workflow to
identify known mechanisms of toxicity by leveraging the
information covered in the data set developed by Harrill and
collaborators.11 Results obtained with the PLIER workflow
(Figure 2A) displayed thiram, ziram, amiodarone hydro-
chloride, cycloheximide, and 4-nonylphenol to be among the
compounds with a wider spectrum of bioactivity, being able to
modulate 40, 30, 22, 19, and 17 LVs, respectively. It is
interesting to note that compounds with the highest number of
active LVs also had the highest number of perturbed genes as
identified by Harrill and collaborators11 (Figure 2B). The
complete list of active LVs found for each compound and their
biological association are provided in Supporting Information:
File 1(XLSX).
Herbicides were found to have low activity, with just a few

LVs found to be modulated in some of the compounds (Figure
S2, Supporting Information), and this was expected given the
absence of the chemical class targets in the MCF-7 cells. On
the other hand, chemicals with a specific mode of action
(MoA), as estrogenic and antiestrogenic compounds, were able
to modulate a higher number of LVs (Figure 3A and
Supporting Information: File 1, XLSX). While fulvestrant, 4-
hydroxytamoxifen, and clomiphene citrate had most of the

PoDs occurring in the range 0−20 μM, 4-cumylphenol, 4-
nonylphenol, bisphenol A, and bisphenol B were found to have
PoDs up to 100 μM. Interestingly, we found both estrogenic
and antiestrogenic compounds to share activity for LV 30,
which had the lowest PoDs across all the compounds (Figure
3A). This LV was found to be associated with estrogen
receptor gene sets and some CMAP signatures underlying
estrogen-related activity (Figure 3B). We hypothesized this LV
was able to capture specific MoA for compounds targeting the
estrogen receptor, which was supported by the concentration−
response data showing effects in the opposite direction for ER
agonists and ER antagonists (Figure 3C). Of note, estrogenic
activity was found to have PoDs at or below 0.1 μM for all the
agonists and antagonists tested, highlighting a high potency. In
addition, the LV30 PoDs were found to be in concordance
with the PoDs of estrogenic activity found by Harrill et al.11

(CCC = 0.98 with CI [0.96, 0.99]), highlighting the
effectiveness of the present workflow to estimate relevant
PoDs while easing biological interpretation as redundant gene
sets are captured by a single LV associated with a single PoD.
To assess the specificity of the method, we explored whether

the LV30 capturing estrogen-related activity was also found to
be active in compounds which are not well-established ER
agonists/antagonists. Indeed, we could identify activity for
LV30 in another 17 chemicals (Supporting Information File 1)
of which five had a PoD below 0.5 μM (Table 2). It is

interesting to note that while these compounds are not well-
established ER agonists/antagonists, their ability to modulate
estrogen signaling, either directly or indirectly, has been
already demonstrated (see Table 2 for citations).

Activity of LVs Not Aligned to Biological Knowledge.
One of the advantages of PLIER is its ability to identify
patterns of co-regulated genes in a data-driven fashion that do
not necessarily need to align with predefined gene sets,
allowing the discovery of biological activity not captured by
current knowledge bases, but whose activity may be of concern

Figure 3. continued

compound along with their PoD across the dose-range tested. The presence or absence of association with biology is reported in cyan and red,
respectively. (B) Gene sets aligning with LV 30, which was found to be active in all the estrogenic and antiestrogenic compounds along with the
AUC and the FDR set at 0.7 and 0.05, respectively. (C) Concentration−response models for LV30 in response to ER agonists and ER antagonists.
For each panel, the noise band is represented by the gray band spanning zero, while the estimated PoD (green line) is reported along with its
confidence intervals (green box). mthd = best-fit concentration−response model; Hitcall = confidence for the fitted model; top = top parameter for
the fitted model.

Table 2. Additional Compounds Targeting Estrogen
Signalinga

compound
PoD
(μM) target annotation

ER
reference

fenpyroximate 0.007 mitochondrial electron
transport inhibitor

40

rotenone 0.02 mitochondria (complex I
inhibitor)

40, 41

tetrac 0.03 T4 synthesis inhibitor 42
ziram 0.04 inhibition of

metal-dependent and
sulfhydryl enzyme systems

43

3-5-3-triiodothyronine 0.41 thyroid hormone receptor
agonist

42

aCompounds that are not well-established ER agonists/antagonists
eliciting LV30 with underlying estrogenic/antiestrogenic activity and
whose PoDs fall within the three lowest concentrations.
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in a risk assessment scenario. Our analysis revealed the
presence of concentration−responsive LVs not aligned with
any of the gene sets present in the prior knowledge supplied, as
shown in Figure 2. For cycloheximide, flutamide, lactofen,
cypermethrin, and rotenone, we could identify active LVs
lacking an association with prior knowledge to have the lowest
PoDs among all the active LVs identified (Figure 4A). This
suggests that those LVs capture biological activity not present
in the knowledge base used as prior knowledge. An inspection
of the concentration−response profiles of these LVs revealed
that cycloheximide (LV 12), flutamide (LV 69), lactofen (LV
69), cypermethrin (LV 69), and rotenone (LV 12) displayed
potential biological activity that may be important for the risk
assessment (Figure S3, Supporting Information).
Interestingly, rotenone, lactofen, and flutamide LVs had a

PoD lower than the PoD of any of the concentration−
responsive gene signatures, highlighting the ability of PLIER to
identify activity that could be potentially missed by the gene-
signature approach developed by Harrill et al.11 (Figure 4B).
More precisely, the activity of LVs not aligning with any
predetermined gene set may be driven by probes that, despite
modulated as a result of chemical exposure, are discarded by
the gene-signature approach because they do not belong to any
of the gene sets considered. Nevertheless, a good overall

agreement of PoD estimates was found between the two
methods (CCC = 0.85 with CI [0.75, 0.91]).

Characterizing the Bioactivity of Compounds Pro-
filed across Cell Lines. We next applied the developed
concentration−response modeling approach to a set of seven
compounds present in consumer products (including foods
and food supplements) and drugs that are relevant for risk
assessment and applied it to HepG2, HepaRG, and MCF-7
cells, which is a novel data set generated in the context of the
current study.
Coumarin, niacinamide, caffeine, and phenoxyethanol were

all found to modulate none or a small number of LVs across all
cell lines whose PoDs occurred at high concentrations (Figure
5). The small spectrum of activities detected along with the
highest PoDs of the LVs found to be active highlights the low
potency of these chemicals in this part of bioactivity space for
this class of consumer good compounds, a finding already
described by Judson et al.44 On the other hand, triclosan,
flutamide, and andrographolide were all found to elicit a higher
number of concentration−responsive LVs, suggesting the
modulation of a wider spectrum of biological processes (Figure
5). While PoDs for both triclosan and flutamide were mostly
close to the highest tested concentrations (at 20/50 and 50/
200 μM, respectively), activity for andrographolide was found

Figure 4. PoD estimates of LVs not aligning with prior knowledge. (A) Distribution of PoDs for compounds having the lowest LV not associated
with prior knowledge. The plots display the distribution of the different PoDs (each dot, ordered from lowest to highest) along with their
confidence intervals, estimated using the approach developed in this study. PoDs are colored in cyan or red depending on whether they have an
association with existing gene sets (aligning) or not (not aligning), respectively. (B) The scatterplot shows the agreement between PoD estimates
across the two methods: the gene signature (GS) and PLIER. Chemicals are colored depending on whether the LV with the lowest PoD aligns
(cyan) or not (red) with prior knowledge.
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even at the lowest concentration tested (0.2 μM). The list of
LVs found to be active for each compound in each cell line,
along with their biological association, is provided in
Supporting Information: File 1(XLSX).
Next, we set to further explore the transcriptional activity of

andrographolide, flutamide, and triclosan in order to assess
whether active LVs captured some known MoA for these
compounds.
Andrographolide was found to trigger the widest spectrum

of activities. Interestingly, the LVs with the lowest PoDs across
all the cell lines were all found to modulate cell stress adaptive
responses (Figure 6). LVs 7 and 48 in HepG2 were found to
be associated with the activity at the level of the mitochondria,
a well-known target organelle for this compound.45 The
activity of these LVs was driven by genes taking part in the
electron transport chain as subunits of cytochrome c oxidase
(cox6b1, cox7a2, cox7a2l, cox7b, and cox7c) and subunits of
NADH dehydrogenase ubiquinone (ndufa2, ndufa4, ndufa13,
ndufab1, ndufb7, and ndufc1) as well as inorganic pyrophos-
phatase 2 (ppa2), which is essential for the correct regulation
of mitochondrial membrane potential and mitochondrial
organization and function46,47 (Figure S4, Supporting In-
formation). In MCF-7, LVs 7 and 80 had the lowest PoDs, and
while LV 80 was found not to align with any biological
knowledge, LV 7 was found to be associated with oxidative

stress response and, specifically, with the ability of this
compound to augment antioxidant defense48 (Figure 6). LV
14 in HepaRG was instead found to align with hypoxia, an
association supported by the ability of this compound to
inhibit the hypoxia-inducible factor 1 α (HIF-1α).49,50

Flutamide was found to trigger LVs with high PoDs in
HepG2 and MCF-7 cells, while in HepaRG, we detected a
smaller spectrum of activity with only two active LVs identified
(LV 15 and 34) and whose PoDs occurred in the range of the
two lowest concentrations tested (0.2 and 0.5 μM). LV 34 had
the lowest PoD and was found to align with functions
including steroid biosynthesis, oxidative phosphorylation, and
xenobiotic response (Figure 6 and Supporting Information:
File 1, XLSX), well-known activities found to be modulated by
this compound.51−53 The LV with the lowest PoDs in HepG2
was LV 92, which did not align with any predefined gene set
(Figure S5, Supporting Information). LVs 3, 15, and 80 were
found to represent biological processes, including hypoxia,
endoplasmic reticulum (ER) stress, and immune response
(Figure 6 and Supporting Information: File 1, XLSX), the well-
documented adverse effects of this compound,54−56 which all
occurred at the onset of cytotoxicity (MEC = 4.62 μM,
Supporting Information: File 1, XLSX). No sub-cytotoxic
flutamide effects were identified in MCF-7 as all the active LVs
were found to occur at the onset of cytotoxicity (MEC = 3.03

Figure 5. LV activity. The plot shows LVs found to be active in each compound across the different cell lines. The y-axis reports the different LVs
found to be active, while the x-axis shows the concentration range tested in the log scale. The presence or absence of association with biology is
reported in cyan and red, respectively.
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μM, Supporting Information: File 1, XLSX). This difference in
potency between cell lines can be explained by the fact that
HepaRG is the most metabolically competent cell line and the
toxicity of flutamide is mediated by metabolites produced by
members of the cytochrome P450 family;57,58 indeed, the LV

with the lowest PoD in HepaRG for flutamide (LV 34) was
found to be associated with the “REACTOME_XENO-
BIOTICS”, which represents metabolic activity (Figure 6).
Triclosan was found to trigger a similar number of LVs

across all cell lines (Figure 5), and its PoDs mostly occurred at

Figure 6. Summary of the biological activity for andrographolide, flutamide, and triclosan. (A) The table displays LVs found to be active in each
treatment/cell line along with the AUC and the FDR. (B) The concentration−response plots show example activities for some of the LVs listed in
(A), modeled using tcplfit2. For each plot, the noise band is represented by the gray band spanning zero, while the estimated PoD (green line) is
reported along with its confidence intervals (green box). mthd = best-fit concentration−response model; Hitcall = confidence for the fitted model;
top = top parameter for the fitted model.
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the highest concentrations tested (>10 μM). Interestingly, the
LVs with the lowest PoDs aligning with a predetermined gene
set, across all cell lines, were all found to be linked to
inflammatory responses with HepaRG (LV 9) and MCF-7 (LV
78), which align with gene sets characterized by high levels of
chemokines and interleukins,59 and HepG2 (LV 12), which
align with a gene set of FOXP3 targets underlying Tr cell
homeostasis60 (Figure 6). The ability of triclosan to modulate
the inflammatory response in HepG2 is in agreement with a
previous work where we observed pro-inflammatory responses
at similar concentrations.13 In addition, LV 15 in HepG2 was
found to describe ER stress, a known target of triclosan61

whose PoD (16.1 μM) coincided with the onset of cytotoxicity
(MEC = 13.9 μM, Supporting Information: File 1, XLSX).
Overall, we can conclude that these chemicals show similar

potency across cell lines with major differences driven by
metabolic competence as in the case of HepaRG.
Assessing PoD Estimate Concordance across Meth-

ods.We next explored the agreement between PoDs estimated
with our workflow and those estimated by using a well-
established method as BMDExpress235 and a recently
developed Bayesian approach,37 the results of which are
shown in Figure 7. An overall good agreement was found
between the PLIER-derived global PoDs and the Bayesian
ones (CCC = 0.89 with CI [0.74, 0.96]), while the agreement
of both methods with the BMD estimates was found to be
lower (Bayesian CCC = 0.65 with CI [0.39, 0.81]; PLIER
CCC = 0.57 with CI [0.21, 0.8]).
When considering the correlation between Bayesian and

PLIER-derived PoDs, it is interesting to note how compound
PoDs tend to cluster close to each other regardless of the cell
type, with the exception of flutamide, where its PoD in
HepaRG is ∼1-fold change lower due to the fact that the
toxicity of flutamide is often mediated by metabolites produced
by members of the cytochrome P450 family,57,58 and
niacinamide, where the PLIER PoD in HepG2 is influenced
by the activity of LV 31, which does not align with any of the
predetermined gene sets (Figure S6, Supporting Information).
On the other hand, the lower concordance of both methods
with BMDExpress2 estimates can be partially explained by two
different reasons. First is the fact that pathway-level PoDs from
BMDExpress2 are an average over gene-level PoDs in a gene
set, and hence for high potency chemicals, many gene-level
PoDs correspond with the onset of cytotoxicity, dragging the
average further away from the minimum effect concentration.
Second, the different compendium of biological knowledge

used to derive PoDs between the two methods, which for
BMDExpress2 took into account only the Reactome database.
These results highlight a good overall agreement between

the PLIER and Bayesian estimates, supporting the use of the
present workflow for PoD estimation in addition to an easier
biological interpretation as the method scales down to just few
LVs to be interpreted.

■ DISCUSSION

High-throughput profiling technologies allow the measurement
of thousands of genes across multiple conditions in a single
experiment. While the high dimensionality of these experi-
ments allows scientists to fully explore the landscape of
transcripts in a given condition, it also poses challenges of
extracting meaningful biological insights. Approaches aggregat-
ing genes into biologically relevant sets prior to downstream
analysis partially addresses this issue;23 however, they still leave
scientists to focus on thousands of gene sets, each associated
with a different PoD estimate, leading to challenges in
interpretation. Moreover, they are completely constrained by
the curated gene signatures and do not enable the
identification of biological activity that is not yet well-
characterized.
Here, we applied a matrix factorization approach (PLIER) to

aggregate genes into LVs in a data-driven way that also
incorporates predefined gene sets. This methodology offers
some important advantages over the gene-aggregation methods
that have been so far employed in concentration−response
studies: (1) it allows the discovery of nonspecific biology of
potential concern as not all the latent variables inferred are
associated with existing gene sets and (2) it eases biological
interpretation as multiple gene sets may align with the same
LV whose activity is described by a single PoD.
Our results demonstrate that our approach is able to capture

the activity of known biological functions despite the fact that
we have reduced the dimensionality of the problem
substantially, as in the case of chemicals targeting the estrogen
receptor (ER) (Figure 3). In agreement with the results
obtained in Harrill et al.,11 we were able to identify an LV
whose gene loadings aligned with gene sets related to ER
activity and CMAP signatures underlying estradiol-related
functions. As expected, this LV was found to respond in
opposite directions for ER agonists and antagonists. Estimated
PoDs for this LV were found to occur at low test
concentrations, as found in Harrill et al., highlighting a high
potency, and showed a high degree of concordance across

Figure 7. Agreement between PoD estimates across methods. The CCC is reported along with the CI.
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methods. In addition, the method also identified estrogenic
activity in compounds that are not well-established ER
agonists/antagonists but for which evidence in literature was
available, showing the potential of the method to be applied in
read-across (Table 1).
Interestingly, our approach also identified some activity that

did not align with any of the gene sets supplied as prior
knowledge, highlighting the presence of potential biological
activity that may have been missed by the gene-signature
scoring approach that focused only on known gene sets (Figure
4). The activity not aligning with predefined gene sets can be
relevant to investigating a chemical’s MoA and the associated
adverse events, especially when the associated PoD is the
lowest among all the estimated activities. Indeed, our results
revealed that cycloheximide, flutamide, lactofen, rotenone, and
cypermethrin had LV activity not aligned with prior knowledge
whose PoDs were the smallest among all the LVs identified in
each compound (Figure 4). More importantly, flutamide,
rotenone, and lactofen had a global PoD estimate lower than
the one estimated by Harrill et al.11 derived using only existing
gene sets,11 highlighting the ability of the present method to
identify the activity that may be missed by approaches where
PoDs are estimated from a set of predefined gene signatures
(covering the known biology). Investigating this transcriptional
activity to fully understand whether there is any activity that is
relevant for use in risk assessment is challenging, and
integrating this approach with more specific assays to
investigate cellular stress may represent a suitable strategy.13

We found that the workflow developed in this work was also
successful in characterizing and differentiating the toxicity
profile of low-risk compounds from those with higher
bioactivity, when applied to a small newly generated data set
obtained by screening HepG2, MCF-7, and HepaRG cells in
concentration−response. Indeed, coumarin, caffeine, niacina-
mide, and phenoxyethanol were found to modulate none or a
small number of active LVs, confirming the low bioactivity of
these compounds in the concentration−response range tested.
On the other hand, andrographolide, flutamide, and triclosan
were found to trigger a higher number of LVs, highlighting
their ability to affect a wider spectrum of biological activities,
and some of the LVs were able to capture known adverse
events. As an example, the lowest andrographolide PoDs across
all the cell lines were found to be represented by LVs
describing the known cell stress activity for this compound,
including mitochondrial dysfunction,45,62 oxidative stress,48

and hypoxia.49,50

We demonstrate that this approach is successful in
disentangling the biological activities underlying chemical
toxicity (including the known MoA). Moreover, one of the
primary advantages of the method is its ability to ease
biological interpretation as a single LV can capture multiple
redundant gene sets describing similar biological activities,
biological pathways with significant cross talk, and pathways
converging on similar transcriptional patterns. Each LV is
associated with a single PoD estimate, reducing the effort
needed to interpret thousands of gene sets with individual
PoDs. This was the case of the ER agonists/antagonists in the
MCF-7 public data set, where a single LV (LV 30) was found
to represent estrogenic activity, and many similar gene sets
describing estrogen-related activity were found to align with
this LV. Moreover, by exploring the gene contribution to each
LV, it is also possible to identify drivers of the associated
biological activity, making PLIER a useful approach for

biomarker discovery, as highlighted for mitochondrial activity
in andrographolide.
The fact that our workflow did not capture some of the

known biology may depend on multiple factors. First, because
PLIER is a dimensionality reduction technique, there is a
chance that weaker signals are lost during the decomposition.
Second, the ability to capture the activity of genes or pathways
strongly depends on the cutoff used in concentration−
response modeling. In the present study, we used 2× s.d. of
the controls to define the cutoff as this value is stringent
enough to provide high confidence that an LV is truly active.
Other recently developed pipelines for HTTr concentration−
response modeling drove PoD estimation by considering 1 s.d.
as the cutoff17 or by simulating signature scores in the absence
of correlation between fold changes to derive a noise band and
the corresponding cutoff.11 Defining a sensitive and reliable
cutoff for concentration−response analysis is still under debate,
but consensus needs to be achieved to make results
comparable and useful for risk assessment. Third, the ability
of the method to identify meaningful biological processes for
the different conditions also depends on the degree of coverage
of the biological knowledge used as prior knowledge. This
means that some of the LV activity we identified that did not
align with any of the gene sets used in the prior knowledge
may still align with different gene sets curated in knowledge
bases not taken into consideration in the analysis. In the
present study, we used a collection of gene sets or pathways
that provide a good coverage of the biological activity at a
cellular level. However, gene sets describing nonspecific stress
response still lack in the currently available knowledge base,
and manually curating this information represents a key step in
further advancing our understanding on how cells respond to
toxicity insults. Fourth and last, the ability of PLIER to identify
LVs describing the full landscape of biological activity
represented in the data set also depends on the heterogeneity
of the data set itself. Indeed, the more diversified the
experimental condition in the data set, the better the method
is able to disentangle the different underlying biological
processes. In this context, the limited number of conditions
tested in our data set may have reduced the ability of PLIER to
capture the biological activity underlying the toxicity profile of
the compounds tested. In this regard, applying our method to
future studies with bigger and more heterogeneous data
(greater chemical space, more time points, and different cell
culture media) may help address this issue. As an example,
Harrill and collaborators were able to identify some weak
activity for troglitazone, while the PLIER workflow developed
here failed (Figure 2). We figured out that this was due to the
different noise band calculation as we were able to capture LV
activity for troglitazone when using 1× s.d. for the noise band.
Another example, most strictly related to the biological aspects,
is the partial inability to capture proper stress response activity
known to be elicited by most of the compounds. The main
reason for this is a current lack of curated information about
stress response pathways in the available knowledge bases due
to the complex nature of these biological processes. Indeed,
one of the greatest challenges in order to develop accurate
signatures is to ensure both their sensitivity and specificity,63

especially due to the cross talk between stress response
pathways that produce similar patterns of effector genes, hence
limiting their specificity.64 The inclusion of curated stress
response signatures65 would provide a better and more reliable
biological coverage, allowing the present workflow to
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successfully identify the underlying chemically adaptive stress
response.
When comparing whether PoD estimates calculated with the

workflow developed in this work were in agreement with
recently developed or more established methods, we found
that the PLIER-derived PoDs were generally in agreement with
the Bayesian PoDs, while the concordance of both the
aforementioned methods with BMD estimates was lower.
Taken together, these results strongly demonstrate the

effectiveness of aggregating transcriptional changes into LVs
prior to the concentration−response analysis and show the
potential of the method to be employed toward the
development of a framework with the ability to improve
current risk assessment strategies for chemicals using NAMs by
allowing the identification of the most biologically relevant
PoD.
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