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Abstract: Pseudolite deployment is the premise of ground-based pseudolite system networking,
which affects the coverage and positioning accuracy of ground-based pseudolite systems. Optimal
deployment algorithms can help to achieve a higher signal coverage and lower mean horizontal
precision factor (HDOP) with a limited number of pseudolites. In this paper, we proposed a multi-
objective particle swarm optimization (MOPSO) algorithm for the deployment of a ground-based
pseudolite system. The new algorithm combines Digital Elevation Model (DEM) data and uses
the mean HDOP of the DEM grid to measure the geometry of the pseudolite system. The signal
coverage of the pseudolite system was calculated based on the visual area analysis with respect to
reference planes, which effectively avoids the repeated calculation of the intersection and improves
the calculation efficiency. A selected area covering 10 km×10 km in the Jiuzhaigou area of China was
used to verify the new algorithm. The results showed that both the coverage and HDOP achieved
were optimal using the new algorithm, where the coverage area can be up to approximately 50% and
30% more than using the existing particle swarm optimization (PSO) and convex polyhedron volume
optimization (CPVO) algorithms, respectively.

Keywords: pseudolite; multi-objective optimization; particle swarm optimization; visibility; dilution
of precision

1. Introduction

GNSS has the advantages of globalization and all-weather operation, but in nonopen
environments such as tunnels, indoors, and urban canyons, it is difficult for users to receive
signals from more than four satellites at the same time due to the weak satellite signals,
resulting in a decreased user positioning accuracy and even positioning failure [1–4]. The
ground-based pseudolite system is an augmented system for GNSS positioning. Ground-
based pseudolite systems can increase the number of visible satellites, improve the geome-
try of satellites, and consequently improve the user positioning accuracy [5–9]. Moreover,
the ground-based pseudolite system can work independently in the special cases when a
GNSS signal is unavailable [10].

Pseudolite deployment is the premise of ground-based pseudolite system networking,
which affects the coverage and positioning accuracy. In recent years, the research on
pseudolite system deployment has mainly focused on the geometry of the base station in
special scenarios, and simulation experiments are also ideal situations where occlusion
is not considered. Meng et al. (2007) analyzed the positioning accuracy under different
constellations and different numbers of pseudolites, but there is a lack of discussion on
the design of pseudolites constellations [11]. Sang et al. (2013) analyzed that the volume
of the polyhedron formed by pseudolite base stations and receivers is approximately
inversely proportional to the DOP, and they proposed the geometric configuration that
should be avoided in the design of an independent pseudolite system, but did not give
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the ideal scheme of pseudolite station distributions [12]. Song et al. (2013) combined the
tetrahedral volume method to improve the geometry of the base stations by constructing
the best observation matrix, and they gave the best distribution of four pseudolites but
did not consider the increase in the number of pseudolites [13]. Fan et al. (2014) proposed
an experience-based search method, which has a certain optimization effect, but with
randomness [14]. Kelly et al. (1990) proposed a ridge regression algorithm to reduce the
global mean square error of positioning results, but this is not the optimal solution for
users [15]. Shao et al. (2017) proposed a distribution method based on the particle swarm
optimization (PSO) algorithm considering user location information, which can improve
the positioning accuracy, but the proposed distribution strategy does not consider the
actual environment [16].

The goal of stations deployment is to obtain the highest signal coverage and the lowest
mean horizontal precision factor (HDOP) with a limited number of pseudolites. To solve
these problems, this paper proposed an MOPSO algorithm for the deployment of a ground-
based pseudolite system. Combining with DEM data of the deployed region, this algorithm
uses the mean HDOP of the DEM grid to measure the geometry of the pseudolite system.
The service range and positioning accuracy of the pseudolite system were optimized by the
MOPSO algorithm at the same time. Section 2 briefly introduces the key factors to measure
the distribution of the pseudolite system. Section 3 constructs the mathematical model
of the pseudolite distribution problem and proposes an MOPSO algorithm to optimize
the problem. Section 4 compares the MOPSO algorithm with other algorithms through a
specific simulation experiment. Section 5 summarizes the main conclusions.

2. Overview of Pseudolite System

The regional ground-based pseudolite system is mainly composed of four parts:
networking pseudolites (base station), pseudolite monitoring station, ground-based navi-
gation signal network operation management system, and corresponding user terminals
(as shown in Figure 1). The system can be understood as fixing the navigation satellites
to the ground. The coordinates of the base station (pseudolite) are precisely measured
in advance and are broadcast in the navigation message. The principle of the pseudolite
system is similar to that of a GNSS system. The base station transmits navigation signals,
which are received by user receivers to calculate the distance between the user receiver and
the base station. The position of the user receiver can be obtained when signals of four or
more pseudolites are received. A ground-based pseudolite system needs at least four base
stations to provide four-dimensional spatiotemporal services [17,18].
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2.1. Visual Area Analysis

According to the positioning principle of ground-based pseudolites, the pseudolite
user receiver needs to receive signals from at least four pseudolites to realize the user’s
positioning service. Although the signal power of pseudolites is much stronger than GNSS
satellites, it may not be able to penetrate obstacles such as buildings. Therefore, to achieve
the best service of a pseudolite system, we need to ensure larger areas where four or more
ground-based pseudolites are simultaneously visible.

The visual area depends on both the location of pseudolites and local geospatial infor-
mation. To obtain the highest signal coverage of a region, algorithms for the deployment of
pseudolites have been proposed. Among them, DEM-based visual range analysis is most
used [19]. The basic methods are described below. Figure 2 shows the intersection points
between the line of sight formed by the viewpoint (O) and the target point (T) and the
DEM grids: points S1 and S2. The elevations of S1

′
and S2

′
are interpolated by the known

elevations of DEM grids (P1, P2, P3, and P4). If the elevation of S1
′

or S2
′

is higher than the
height of line of sight (LOS), the propagation is blocked, and the target point is invisible.
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Figure 2. A common algorithm for visual domain analysis based on line of sight (left). Schematic diagram of occlusion in
elevation direction (right).

Although the above method is simple in logic, there are a lot of repeated calculations
and data redundancy. The processing time greatly increases, and the processing efficiency
greatly decreases when the DEM grid data sampling increases. To solve the problem, we
changed the strategy from judging the individual LOSs to the visual situation between the
corresponding plane, formed by the target point and the viewpoint, and all the points in
the target area. This algorithm does not need DEM interpolation and does not have any
repeated calculation, so it can greatly improve the computation efficiency. The steps of the
procedure are introduced as follows:

Step 1: As shown in Figure 3, we define the viewpoint as the coordinate origin O, and
all of the DEM grids are divided into 8 linear directions and 8 corresponding sector areas.
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Figure 3. DEM regional division diagram.

Step 2: The target points in the 8 linear directions are considered first. Taking the
N direction as an example, the viewpoint (O) and the nearest DEM grid point (N1) have
intervisibility by default (as shown in Figure 4). Thus, the points O and N1 determine a
reference line ON1. The height (Hi) of the i-th DEM grid point on the line defined by the
point Ni and viewpoint O is calculated by the following formula:

Hi = Hi−1 + (Hi−1 − ZO)/(i− 1) (1)

where Hi is called the critical height of the i-th DEM grid point and Z is the real height of
the DEM grid point.
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If Zi ≥ Hi, then points O and Ni are inter-visible, and we change the reference line
from ON1 to ONi; otherwise, points O and N are not inter-visible, and the line ON1 remains
as the reference line.

From near to far, the visibility of all the target points in the N direction is judged in
turn. Similarly, the target points in the other 7 linear directions can be judged.

Step 3: With the target points in the linear directions being judged, the remaining
target points are located in 8 sector areas. Taking the N-NE sector area shown in Figure 5
as an example, to judge the intervisibility of point Ti and point O, we first find the two
points (T1(m1, n1) and T2(m2, n2)) where T1 and T2 are in the same row or column.
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The space plane equation formed by three points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3)
is as follows: ∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣ = 0 (2)

Assume xab = xa − xb, then

z = z1 − [(x− x1)(y21z31 − y31z21) + (y− y1)(z21x31 − z31x21)]/(x21y31 − x31y21) (3)

Points O, T1, and T2 form a space reference plane OT1T2. By substituting the following
values into the above formula, the critical elevation Hi of point Ti can be calculated.

x1 = m1 × dx; y1 = n1 × dy; z1 = HT1 ;
x2 = m2 × dx; y2 = n2 × dy; z2 = HT2 ;
x3 = 0; y3 = 0; z3 = ZO;
x = m× dx; y = n× dy; z = Hi;

(4)

where dx and dy are resolutions in the X and Y directions, respectively.
As is shown in Figure 6, if Zi ≥ Hi, points O and Ti are inter-visible, and we change

the reference plane from OT1T2 to OT1Ni; otherwise, points O and Ti are not inter-visible,
and the reference plane OT1T2 remains as the reference plane.
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and T are not inter-visible.

From near to far, the visibility of all the target points in the N-NE sector area is judged
in turn. Similarly, the target points in the other 7 sector areas can be judged.

Taking the DEM data of the area covering 100 km × 100 km as an example, it has
the grid number of 3333 × 3333. In the same running environment, we use our algorithm
and common algorithm to analyze the visual area. The computation time is 124.9 s (our
algorithm) and 4758.8 s (common algorithm), under the Matlab running environment,
showing that our algorithm is nearly 40 times faster.

2.2. Dilution of Precision

The accuracy of satellite positioning is related to the following two factors: (1) the
measurement error of the pseudo range or carrier phase between the satellite and receiver;
(2) the geometric distribution of the satellite. The geometric distribution of ground-based
pseudolites is closely related to the distribution of ground-based pseudolites [20]. Precision
factors are defined as follows [21]:

GDOP =
√

h11 + h22 + h33 + h44 =
√

tr(H) (5)

PDOP =
√

h11 + h22 + h33 (6)

HDOP =
√

h11 + h22 (7)

VDOP =
√

h33 (8)

where GDOP is called the geometric dilution of precision; PDOP is called the positional
dilution of precision; HDOP is called the horizontal dilution of precision; VDOP is called



Sensors 2021, 21, 5364 7 of 14

the vertical dilution of precision. Matrix H is called the weight matrix, which is determined
by satellite position and receiver position.

H =
(

GTG
)−1

(9)

where

G =


−1(1)x (xk−1) −1(1)y (xk−1) −1(1)z (xk−1) 1
−1(2)x (xk−1) −1(2)y (xk−1) −1(2)z (xk−1) 1

. . . . . . . . .
−1(n)x (xk−1) −1(n)y (xk−1) −1(n)z (xk−1) 1

 =


−[1(1)(xk−1)]

T
1

−[1(2)(xk−1)]
T

1
. . . . . .

−[1(n)(xk−1)]
T

1

 (10)

In the formula, matrix G is the geometric matrix commonly used in positioning

calculation, where n represents the number of pseudolites, and [−1(n)x ,−1(n)y ,−1(n)z ]
T

represents the unit vector pointing to the i-th pseudolite from the user receiver position.
The dilution of precision shows the relationship between the covariance of the positioning
error and the covariance of the least squares measurement error.

3. Multi-Objective Particle Swarm Optimization Algorithm for Ground-Based
Pseudolite Deployment
3.1. Mathematical Model of Multi-Target Pseudolite Deployment

The problem of multi-target pseudolite deployment is to find the optimal pseudolite
distribution positions. The purpose is to obtain the highest signal coverage and the lowest
average HDOP under the condition of a certain number of pseudolites. Therefore, its
mathematical model can be expressed as follows:{

f1(X) = maximize
〈

S(X1,X2,··· ,Xn)
Sall

〉
f2(X) = minimize〈HDOP(X1, X2, · · · , Xn)〉

(11)

where X1, X2, · · · , Xn refers to the location of N ground-based pseudolites; S(X1, X2, · · · , Xn)
refers to the visual area of the ground-based pseudolite system; Sall refers to the whole
target area; HDOP(X1, X2, · · · , Xn) shows the average HDOP of the visual area of the
ground-based pseudolite system. Objective function f1 refers to the problem addressed
in Section 2.1, which is used to evaluate the coverage of the pseudolite system. Objective
function f2 refers to the problem addressed in Section 2.2, which is used to evaluate the
positioning accuracy. Different station distribution schemes of the pseudolite system have
corresponding objective function values. The best scheme is defined as the case when f1
reaches the maximum and f2 reaches the minimum at the same time.

3.2. Implementation of MOPSO Algorithm

Particle swarm optimization (PSO) is a heuristic optimization algorithm, which origi-
nates from the research on the behavior of birds. The basic idea of the PSO algorithm is to
find the optimal solution through the cooperation and information sharing among individ-
uals in the group. The MOPSO algorithm was proposed by Coello et al. (2004) [22]. The
purpose is to apply the PSO algorithm that can only be used in single target to multi-target.
The challenge of ground-based pseudolite system deployment is that both objective func-
tions, i.e., maximum system coverage and minimum average HDOP, should be satisfied.
Furthermore, the two objective functions f1 and f2 are not consistent, which may lead to
the fact that the solution of this multi-objective optimization problem is not unique, but a
set of optimal solutions (called Pareto optimal set [23]). The specific steps of the MOPSO
process are as follows:

Step 1: Initialization of PSO parameters, such as population size, archive size, and
maximum iteration number.
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Step 2: According to the evaluation of the objective function, a particle swarm is
randomly initialized in the decision space, including position and velocity. Suppose
the number of pseudolite stations is n, and the coordinate of pseudolite stations i is
Xi(xi, yi, zi) (i = 1, 2, 3, · · · , n), where xi and yi are independent variables, and zi can
be obtained from DEM data. These n pseudolite stations constitute a decision vector,
i.e., a particle.

Step 3: Calculation of the fitness value of PSO. According to the Pareto domination
principle, the initial archive set (also known as Pareto temporary optimal section) is
obtained. The values of the objective functions f1,j and f2,j of particle j in the particle
swarm generated after initialization are calculated. For particle j, if there is no objective
function of other particles k filling the following conditions: f1,k ≥ f1,j and f2,k ≤ f2,j, then
particle j is put into the archive set.

Step 4: Initialization of the individual optimal particle pbest to itself. The global
optimal particle gbest is randomly selected in the archive set.

Step 5: Calculation of the speed and position and their updates according to the
following formula:{

Vid(t + 1) = ωVid(t) + c1r1( pbestid(t)− Xid(t)) + c2r2( gbestid(t)− Xid(t))
Xid(t + 1) = Xid(t) + Vid(t + 1)

(12)

where Vid is the velocity of the particle; Xid is the position of the particle; c1 and c2
are learning factors, usually set to 2, where c1 determines its local search ability and c2
determines its global search ability; r1 and r2 are random functions, and the value range is
[0, 1]; ω is the inertia weight, which can be determined by the following formula:

ω = ωmax −
ωmax −ωmin

tmax
t (13)

ωmax is the maximum inertia weight, usually set to 0.9; ωmin is the minimum inertia
weight, usually set to 0.4; t is the current number of iterations; tmax is the total number
of iterations.

Step 6: According to the updated position of each particle, the fitness value of the
objective function is re-calculated. The individual optimal particle pbest is updated on the
basis of the Pareto dominance principle (PDP). Comparing the new PSO with the archive
set according to the PDP, the archive set is updated, and the global optimal particle gbest is
randomly selected and updated in the archive set.

Step 7: If the maximum number of iterations is reached, exit the cycle; otherwise,
return to Step 5 to continue the cycle. The specific process is shown in Figure 7 below.
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4. Simulation Experiment Analysis
4.1. Comparison of MOPSO and Classical PSO

The DEM Terrain Data (about 10 km × 10 km) of Jiuzhaigou area were used as an
example to simulate the distribution of ground-based pseudolite stations for MOPSO. The
height of the pseudolite base station was set to 10 m. The following four schemes were
designed to perform comparative analysis:

Scheme 1: The stations were evenly distributed in the target area, and the number of
ground-based pseudolites was set to 9, 16, 25, 36, and 49.
Scheme 2: In the target area, the classical PSO algorithm was used to optimize the signal
coverage of the ground-based pseudolite system.
Scheme 3: In the target area, the classical PSO algorithm was used to optimize the average
HDOP of the ground-based pseudolite system.
Scheme 4: In the target area, the MOPSO algorithm was used to optimize both the signal
coverage and average HDOP of the ground-based pseudolite system.

Among these schemes, the parameters of Schemes 2–4 were set as follows: the pop-
ulation number was 50, and the maximum number of iterations was 100. Four schemes
were used for simulation to obtain the relationship between coverage, mean HDOP and the
number of ground-based pseudolite stations. Taking 16 ground-based pseudolite stations
as an example, the convergence process of optimization using Scheme 2 and Scheme 3 is
shown in Figure 8.
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All the specific results of the four schemes are shown in Table 1.

Table 1. Coverage, mean HDOP, and the number of pseudolite stations under the four schemes.

Station Number Scheme Coverage/% Mean HDOP

9

1 7.7 10.07
2 52.0 21.36
3 17.3 4.62
4 47.5 6.36

16

1 21.5 5.67
2 84.1 16.63
3 34.5 3.91
4 70.4 5.02

25

1 32.6 4.72
2 92.9 15.14
3 43.4 3.09
4 89.3 4.21

36

1 46.5 3.69
2 96.6 14.53
3 51.7 2.6
4 92.8 3.39

49

1 56.1 3.19
2 98.5 10.87
3 58.3 2.23
4 95.1 2.91

As can be seen from Table 1, when Scheme 1, i.e., the average distribution of pseudolite
base stations, is used, the average HDOP value is low due to the good configuration of the
pseudolite distribution. However, the coverage rate is only 56.1% even if 49 pseudolite
base stations are deployed. In Scheme 2, only the signal coverage of the ground-based
pseudolite system is optimized, so Scheme 2 has the best system coverage in the four
schemes. In Scheme 3, only the average HDOP of the ground-based pseudolite system is
optimized, so Scheme 3 has the best average HDOP and the highest positioning accuracy.
Scheme 4 uses multi-objective optimization; although the system coverage and average
HDOP cannot be best at the same time, it achieves a good balance between the two.

As shown in Figure 9, the comparison between Scheme 2 and Scheme 4 shows that the
PSO algorithm of Scheme 2 only optimizes the coverage of the pseudolite system with the
single objective, while Scheme 4 needs to consider the geometry of the pseudolite system.
Therefore, Scheme 4 is slightly lower than Scheme 2 in terms of system coverage with an
overall difference of 7.2%. The average HDOP of Scheme 2 is 72.4% larger than that of
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Scheme 4, which is due to the fact that Scheme 2 does not consider the geometry of the
pseudolite system.
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The comparison between Scheme 3 and Scheme 4 shows that the particle swarm
optimization algorithm of Scheme 3 only optimizes the geometry of the pseudolite system
with a single objective and has a smaller average HDOP. Scheme 4 needs to consider the
coverage of the pseudolite system at the same time, so the average HDOP of the system is
about 24.6% higher than that of Scheme 3. However, the coverage of the pseudolite system
is not considered in Scheme 3, so the coverage of Scheme 4 is 49.8% higher than that of
Scheme 3.

In summary, Scheme 1 adopts a uniform station distribution, which has small coverage.
Both Scheme 2 and Scheme 3 adopt common single objective particle swarm optimization
algorithms without considering the coverage and average HDOP of the pseudo-lite system
at the same time. The proposed algorithm based on MOPSO has achieved good results in



Sensors 2021, 21, 5364 12 of 14

both coverage and geometry of the pseudolite system. According to the simulation results,
about 25 pseudolite base stations can cover 90% of the target area.

4.2. Comparison of MOPSO and Convex Polyhedron Volume Optimization

To further assess the performance of the proposed MOPSO algorithm, we compared it
to the well-developed convex polyhedron volume optimization (CPVO) algorithm (Nuria
and Fernando, 2010) [24].

In the experiments, when the convex polyhedron volume optimization algorithm is
used for n pseudolites, the available pseudolites distribution is first given according to the
actual environment. Then, the positions of n-1 pseudolites are fixed and the azimuth and
altitude of the remaining pseudolite are adjusted.

It should be noted that for comparison, we still select the target area mentioned
above, and use algorithms of CPVO and MOPSO to carry out simulation experiments.
The distribution results of the two algorithms are shown in the following Figure 10 and
Table 2. It should be noted that the red marked points in Figure 10 are the positions of
the pseudolite base stations. Under the same number of pseudolite base stations, the two
algorithms achieve different station distribution results.
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Table 2. Comparison of MOPSO and CPVO.

Algorithm Number Coverage/% Mean HDOP

CPVO
6 10.1 7.83
8 18.9 7.37

10 22.3 7.54

MOPSO
6 40.9 6.91
8 46.5 6.53

10 49.3 6.15

From the comparison (Figure 10 and Table 2), there is no significant difference be-
tween MOPSO and CPVO algorithms in terms of mean HDOP. This indicates that the
two algorithms can be both used to achieve good geometric configurations for pseudolite
deployment. However, CPVO only optimizes the geometry without considering the system
coverage. This results in a significant advantage of the MOPSO algorithm over the CPVO
algorithm in terms of system coverage, which is about 30% higher.

5. Conclusions

The constellation design of pseudolites positioning is a multi-objective optimization
problem with the best coverage and positioning accuracy of one certain area as the objec-
tives. In this study, the MOPSO algorithm was used for the constellation of pseudolites.
The coverage of pseudolites was determined by visible range analysis, and the average
HDOP of DEM grid points was used to measure the accuracy of pseudolites positioning.
The simulation results of Jiuzhaigou area in China show that:

(1). The MOPSO algorithm can optimize the geometric distribution of base stations while
ensuring the system coverage.

(2). Compared with the classical PSO algorithm, the MOPSO algorithm improves the
system coverage by 49.8% and the average HDOP by 72.4%.

(3). The MOPSO and CPVO algorithm both can be used to obtain good geometric configu-
rations for pseudolite deployment. However, the MOPSO algorithm further increases
by about 30% in system coverage.

The new ground-based pseudolite system deployment algorithm based on the MOPSO
algorithm can not only improve the coverage of system, but also has high positioning
accuracy in the coverage area, which can provide a reference for multi-target pseudolite
deployment. All the above results were derived based on simulation, so the ranging
capability of pseudolites, i.e., around maximum 10 km in this paper, should also be
considered in real deployment.
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