organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Phenylpyrrolidine-1-carbothioamide

Jin-He Jiang

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: weifangjjh@126.com

Received 2 December 2008: accepted 4 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.119; data-to-parameter ratio = 18.8.

The title compound, $C_{11}H_{14}N_2S$, was prepared by the reaction of 1-isothiocyanatobenzene and pyrrolidine. In the crystal structure, intermolecular N-H···S interactions are present.

Related literature

For the applications of thioamides, see: Toshiaki et al. (2003). For related structures, see: Casas et al. (2002); Cowley et al. (2002);

Experimental

Crystal data

 $C_{11}H_{14}N_2S$ $M_{\rm m} = 206.30$ Monoclinic, $P2_1/c$ a = 11.195 (2) Å b = 8.5694 (17) Å

c = 11.414 (2) Å
$\beta = 108.03 \ (3)^{\circ}$
V = 1041.2 (4) Å ³
Z = 4
Mo $K\alpha$ radiation

 $\mu = 0.27 \text{ mm}^{-1}$ T = 293 (2) K

Data collection

Enraf-Nonius CAD-4	2214 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.018$
Absorption correction: none	3 standard reflections
4554 measured reflections	every 100 reflections
2393 independent reflections	intensity decay: none
Refinement	

 $0.25 \times 0.20 \times 0.18 \; \rm mm$

127 parameters

 $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-2}$

 $\Delta\rho_{\rm min} = -0.46~{\rm e}~{\rm \AA}^{-3}$

H-atom parameters constrained

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.119$ S = 1.302393 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots S1^{i}$	0.86	2.64	3.4359 (17)	155
C	. 1 1			

Symmetry code: (i) $x_{1} - y_{2} + \frac{1}{2}, z_{1} - \frac{1}{2}$

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2689).

References

Casas, J. S., Castano, M. V. & Castellano, E. E. (2002). Inorg. Chem. 41, 1550-1557

Cowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc. 124, 5270-5271.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Toshiaki, M., Hideo, A. & Yoshiharu, Y. (2003). J. Org. Chem. 68, 8514-8519.

supplementary materials

Acta Cryst. (2009). E65, o52 [doi:10.1107/S1600536808040907]

N-Phenylpyrrolidine-1-carbothioamide

J.-H. Jiang

Comment

Thioamides have received considerable attention in the literature. They are attractive from several points of view in application (Toshiaki *et al.*, 2003). As part of our search for new thioamide compounds we synthesized the title compound (I), and describe its structure here.

In (I) (Fig. 1), the C6—S1 bond length of 1.689 (2)Å is comparable with C—S bond [1.688 (2) Å] reported (Cowley *et al.*, 2002). The distance of N1—C6 [1.332 (2) Å] is similar to the distance of reported [1.349 (1) Å] (Casas *et al.*, 2002). The crystal strucure is stabilized by intermolecular C—H···S interactions.

Experimental

A mixture of the 1-isothiocyanatobenzene (0.1 mol), and pyrrolidine (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.080 mol, yield 80%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93 and 0.97 Å and N—H = 0.86 Å, and with U_{iso} =1.2U_{eq}(C,N).

Figures

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

N-Phenylpyrrolidine-1-carbothioamide

Crystal data	
$C_{11}H_{14}N_2S$	$F_{000} = 440$
$M_r = 206.30$	$D_{\rm x} = 1.316 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 11.195 (2) Å	$\theta = 1.8 - 27.0^{\circ}$
<i>b</i> = 8.5694 (17) Å	$\mu = 0.27 \text{ mm}^{-1}$
c = 11.414 (2) Å	T = 293 (2) K
$\beta = 108.03 \ (3)^{\circ}$	Block, colourless

V = 1041.2 (4) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.018$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.9^{\circ}$
T = 293(2) K	$h = -14 \rightarrow 14$
ω scans	$k = -11 \rightarrow 11$
Absorption correction: none	$l = -14 \rightarrow 14$
4554 measured reflections	3 standard reflections
2393 independent reflections	every 100 reflections
2214 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.0574P)^2 + 0.3194P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.30	$(\Delta/\sigma)_{\rm max} < 0.001$
2393 reflections	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
127 parameters	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.25\times0.20\times0.18~mm$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.50030 (4)	0.12695 (5)	0.27663 (4)	0.01992 (15)
N2	0.34546 (13)	0.29432 (17)	0.09833 (13)	0.0162 (3)
N1	0.53176 (13)	0.23342 (19)	0.06683 (13)	0.0183 (3)

H1A	0.4979	0.2678	-0.0068	0.022*
C7	0.45718 (15)	0.2256 (2)	0.14190 (15)	0.0152 (3)
C5	0.66016 (16)	0.1894 (2)	0.10058 (16)	0.0177 (4)
C8	0.30485 (17)	0.3898 (2)	-0.01429 (16)	0.0200 (4)
H8A	0.2822	0.3248	-0.0874	0.024*
H8B	0.3704	0.4617	-0.0182	0.024*
C11	0.25255 (16)	0.2964 (2)	0.16519 (16)	0.0203 (4)
H11A	0.2806	0.3614	0.2382	0.024*
H11B	0.2364	0.1919	0.1892	0.024*
C4	0.70097 (18)	0.0997 (2)	0.01900 (18)	0.0225 (4)
H4A	0.6439	0.0646	-0.0541	0.027*
C9	0.19114 (17)	0.4771 (2)	-0.00189 (18)	0.0245 (4)
H9A	0.1312	0.4984	-0.0821	0.029*
H9B	0.2158	0.5748	0.0418	0.029*
C6	0.74613 (17)	0.2436 (2)	0.20885 (17)	0.0241 (4)
H6A	0.7196	0.3065	0.2624	0.029*
C2	0.91276 (19)	0.1125 (3)	0.1562 (2)	0.0337 (5)
H2A	0.9971	0.0854	0.1755	0.040*
C3	0.82751 (19)	0.0628 (2)	0.0475 (2)	0.0307 (5)
H3A	0.8551	0.0038	-0.0075	0.037*
C10	0.13624 (17)	0.3649 (2)	0.07178 (18)	0.0243 (4)
H10A	0.0844	0.4197	0.1124	0.029*
H10B	0.0865	0.2841	0.0193	0.029*
C1	0.87165 (18)	0.2032 (3)	0.23648 (19)	0.0309 (5)
H1B	0.9289	0.2375	0.3098	0.037*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0211 (2)	0.0247 (3)	0.0136 (2)	0.00322 (17)	0.00489 (16)	0.00532 (16)
N2	0.0159 (7)	0.0202 (7)	0.0125 (6)	0.0012 (6)	0.0045 (5)	0.0028 (5)
N1	0.0162 (7)	0.0264 (8)	0.0124 (6)	0.0025 (6)	0.0049 (5)	0.0027 (6)
C7	0.0164 (8)	0.0160 (8)	0.0127 (7)	-0.0019 (6)	0.0036 (6)	-0.0021 (6)
C5	0.0180 (8)	0.0180 (8)	0.0175 (8)	0.0006 (7)	0.0060 (7)	0.0036 (6)
C8	0.0204 (8)	0.0248 (9)	0.0150 (8)	0.0033 (7)	0.0056 (6)	0.0049 (7)
C11	0.0174 (8)	0.0270 (10)	0.0181 (8)	-0.0008 (7)	0.0078 (7)	0.0009 (7)
C4	0.0254 (9)	0.0195 (9)	0.0248 (9)	0.0001 (7)	0.0108 (7)	-0.0009(7)
C9	0.0204 (9)	0.0264 (10)	0.0264 (9)	0.0051 (7)	0.0070 (7)	0.0076 (8)
C6	0.0223 (9)	0.0304 (10)	0.0192 (9)	-0.0014 (8)	0.0057 (7)	0.0016 (7)
C2	0.0200 (9)	0.0385 (12)	0.0436 (12)	0.0075 (8)	0.0111 (9)	0.0164 (10)
C3	0.0298 (10)	0.0266 (10)	0.0423 (12)	0.0080 (8)	0.0206 (9)	0.0029 (9)
C10	0.0176 (8)	0.0299 (10)	0.0262 (9)	0.0017 (7)	0.0078 (7)	0.0028 (8)
C1	0.0201 (9)	0.0415 (12)	0.0264 (10)	-0.0039 (8)	0.0002 (8)	0.0098 (9)

Geometric parameters (Å, °)

S1—C7	1.6892 (17)	C4—C3	1.388 (3)
N2—C7	1.332 (2)	C4—H4A	0.9300
N2—C11	1.468 (2)	C9—C10	1.527 (3)

supplementary materials

N2—C8	1.472 (2)		С9—Н9А		0.9700
N1—C7	1.371 (2)		С9—Н9В		0.9700
N1—C5	1.419 (2)		C6—C1		1.385 (3)
N1—H1A	0.8600		С6—Н6А		0.9300
C5—C4	1.389 (2)		C2—C3		1.379 (3)
C5—C6	1.390 (3)		C2—C1		1.384 (3)
C8—C9	1.520 (2)		C2—H2A		0.9300
C8—H8A	0.9700		С3—НЗА		0.9300
C8—H8B	0.9700		C10—H10A		0.9700
C11—C10	1.522 (3)		C10—H10B		0.9700
C11—H11A	0.9700		C1—H1B		0.9300
C11—H11B	0.9700				
C7—N2—C11	123.08 (14)		C5—C4—H4A		120.2
C7—N2—C8	124.92 (14)		C8—C9—C10		103.46 (15)
C11—N2—C8	111.72 (13)		С8—С9—Н9А		111.1
C7—N1—C5	125.40 (15)		С10—С9—Н9А		111.1
C7—N1—H1A	117.3		С8—С9—Н9В		111.1
C5—N1—H1A	117.3		С10—С9—Н9В		111.1
N2—C7—N1	115.37 (15)		H9A—C9—H9B		109.0
N2—C7—S1	122.14 (13)		C1—C6—C5		119.56 (19)
N1—C7—S1	122.40 (13)		С1—С6—Н6А		120.2
C4—C5—C6	119.98 (17)		С5—С6—Н6А		120.2
C4—C5—N1	118.73 (16)		C3—C2—C1		119.36 (19)
C6—C5—N1	121.13 (16)		C3—C2—H2A		120.3
N2—C8—C9	103.50 (14)		C1—C2—H2A		120.3
N2—C8—H8A	111.1		C2—C3—C4		120.80 (19)
С9—С8—Н8А	111.1		С2—С3—НЗА		119.6
N2—C8—H8B	111.1		С4—С3—НЗА		119.6
С9—С8—Н8В	111.1		С11—С10—С9		103.05 (15)
H8A—C8—H8B	109.0		C11—C10—H10A		111.2
N2-C11-C10	103.34 (14)		C9-C10-H10A		111.2
N2—C11—H11A	111.1		C11-C10-H10B		111.2
C10-C11-H11A	111.1		C9-C10-H10B		111.2
N2—C11—H11B	111.1		H10A-C10-H10B		109.1
C10-C11-H11B	111.1		C2—C1—C6		120.7 (2)
H11A—C11—H11B	109.1		C2—C1—H1B		119.6
C3—C4—C5	119.51 (18)		C6—C1—H1B		119.6
С3—С4—Н4А	120.2				
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	H···A	$D \cdots A$	D—H··· A
N1—H1A····S1 ⁱ		0.86	2.64	3.4359 (17)	155

Symmetry codes: (i) x, -y+1/2, z-1/2.

Fig. 1