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Abstract
Since the outbreak of the pandemic Coronavirus Disease 2019, the world is in search of novel non-invasive methods for safer 
and early detection of lung diseases. The pulmonary pathological symptoms reflected through the lung sound opens a pos-
sibility of detection through auscultation and of employing spectral, fractal, nonlinear time series and principal component 
analyses. Thirty-five signals of vesicular and expiratory wheezing breath sound, subjected to spectral analyses shows a clear 
distinction in terms of time duration, intensity, and the number of frequency components. An investigation of the dynamics 
of air molecules during respiration using phase portrait, Lyapunov exponent, sample entropy, fractal dimension, and Hurst 
exponent helps in understanding the degree of complexity arising due to the presence of mucus secretions and constrictions 
in the respiratory airways. The feature extraction of the power spectral density data and the application of principal compo-
nent analysis helps in distinguishing vesicular and expiratory wheezing and thereby, giving a ray of hope in accomplishing 
an early detection of pulmonary diseases through sound signal analysis.
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Introduction

Respiratory diseases are one among the leading cause of 
deaths in the world, which is usually diagnosed through 
auscultation. Based on the frequency, intensity, time dura-
tion, and quality of the sound, a pathological and healthy-
normal breath signal can be distinguished [1–3]. When the 
normal lung sounds are generated due to the movement 
of air through the tracheobronchial tree, the vibrations of 
solid tissues, are responsible for the adventitious or abnor-
mal lung sounds. In the normal lung sounds, the vesicular 
sounds (VS) are heard over the chest wall distant from larger 
airways. Adventitious sounds can be generally classified as 
continuous and discontinuous based on their duration of 
occurrence. When the continuous adventitious breath sounds 
(wheezes, stridor, and rhonchi are musical) exhibit a time 
duration of > 250 ms, the discontinuous adventitious signals 
show a time duration of < 25 ms. Thus, many significant, 

characteristic features and conditions of the lung can be 
understood from the auscultation of lung sounds [1, 3–5].

In the present study, an attempt is made to bring out the 
hidden complexities in the adventitious and continuous 
respiratory disease—Expiratory Wheeze (EW). Wheezing 
sounds are musical sounds that can be identified by their 
intensity, pitch, location, and time duration between expi-
ration and inspiration. They can be high or low pitched 
depending on the narrowing of the airway obstructions. 
The bronchial obstruction due to tumours, accumulation of 
mucus or any other secretions, bronchostenosis by inflam-
mation or the presence of foreign bodies results in the gen-
eration of wheezing sound. The nature of the obstruction 
decides the nature of the wheezing, i.e., the occupancy of a 
flexible obstruction in the air passage causes inspiratory or 
expiratory wheezing whereas, a rigid permanent obstruction 
produces a wheezing sound throughout the respiration. The 
most common condition of wheezing observed in people is 
the expiratory wheezing (EW), where the wheezing sound is 
heard during the exhalation. The location of the generation 
of the wheezing sounds includes the branches between the 
second and seventh generation of the airway tree coupled 
with the oscillation of air molecules passing through nar-
rowed airway walls [1]. Therefore, the lung sound due to 
EW and normal vesicular (VS) breathing have significant 
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features that can aid in the diagnosis of diseases. The vesicu-
lar sounds are low-pitch, non-musical sounds usually heard 
over most of the lung surface.

In the standard auscultation using a stethoscope, the 
possibility of making errors in the diagnosis is high as it 
depends on the sensitivity of ears, the presence of noises, 
and practise in recognising sounds. This is overcome in the 
computerised methods of analysing the complex and non-
linear lung sounds. The computerized analysis of the signals 
in the time, frequency, and time–frequency domain could 
reveal important information regarding the pathological 
conditions [6]. As the ordinary, as well as abnormal lung 
sounds, occurs at specific frequency ranges, the details on 
the number of frequency components and its nature of per-
sistence can be obtained. This is usually done with the help 
of spectral analysis tools such as time spectrum, fast Fourier 
transform (FFT), power spectral density (PSD), and wave-
let analyses. According to Goldberger [7], human body is 
a wonderful laboratory for the study of fractals, chaos, and 
other types of nonlinear dynamics. Nonlinear time series 
analysis is an excellent mathematical tool for studying com-
plex biological signals. The multi-dimensional phase space 
representation throws light into the respiratory dynamics of 
the time series data. When the sample entropy (SE) is a 
measure of unpredictability of a time series, the maximal 
Lyapunov exponent (MLE) accounts the dynamics of trajec-
tory of the phase portrait reconstructed using the time series 
data. The fractal analysis can probe the self-affine and self-
similar fractal nature of the respiratory signals. Walking-
divider, epsilon-blanket, power spectrum, and box-counting 
methods are some among the methods for exploring the frac-
tality of a signal. The degree of self-similarity of the lung 
sound signal is quantified by the two parameters—fractal 
dimension (Db) and Hurst exponent (Hb)—estimated using 
the simple box-counting method [8–10].

The present study proposes a simple, cost-effective 
diagnostic method based on the mathematical tools for the 
investigations on the VS and adventitious EW breath signal. 
The lung sound signals are analysed in time, frequency and 
their combined domains by PSD and wavelet analyses. The 
nonlinear respiratory characteristics are extracted using the 
powerful nonlinear time series and the hidden complexity 
by the fractal analysis. The PSD being, the most appropriate 
for the feature extraction of a dataset, the principal compo-
nent analysis can be used for the classification of the sig-
nals based on these features. The study is significant in the 
context of the outbreak of the pandemic COVID-19 as it 
proposes methods based on time series and fractal analyses 
for analysing breath sound signals.

Methodology

Technological advancement has enabled the use of comput-
erised methods for the analysis of biomedical signals that 
could overcome many of the limitations of simple ausculta-
tion using a stethoscope. In the present study, digital audio 
sound signals of 35 normal vesicular (VS) and expiratory 
wheezing (EW) breath signals collected from various res-
piratory sound databases [11–14] are analysed. The lung 
sounds being nonlinear and non-stationary signals, lot of 
information can be unwrapped from the spectral (PSD 
and wavelet), nonlinear time series (phase portrait, sample 
entropy and Lyapunov exponent), and fractal analyses (frac-
tal dimension and Hurst exponent).

Fast Fourier Transform and power spectral density anal-
yses help in the objective and quantitative analysis of the 
pulmonary or respiratory sounds that are variations of sound 
intensity over time. From literature, it can be seen that many 
of the adventitious sounds occur at specific frequency inter-
vals. Therefore, the frequency distribution of lung sounds 
could reveal hidden information on lung diseases. In the 
FFT algorithm, the lung sounds signal in the time domain 
is transformed into a signal in the frequency domain. If x(t) 
is defined as a time-domain signal having frequency f, time, 
t and length L then the Fourier Transformed signal X(f) is 
expressed as Eq. (1) [15]

From the complex FFT signal, the real-valued power 
spectrum, signal’s power content at each frequency, can be 
obtained from the relation (Eq. 2)

Thus, the PSD data from the FFT analysis is one among 
the most commonly used method for the feature extraction 
of data for lung sound classification.

The time–frequency representation in the wavelet trans-
form overcome the limitations of the time and frequency 
domain signal analyses. Wavelet scalogram gives a visual 
representation of the temporal evolution of the spectrum of 
the frequencies. Wavelet analysis enables the decomposition 
of a signal (x(t)) into its shifted ( Γ -translation parameter) 
and scaled forms (s-scale paramter) of the mother wavelet 
(base function-� ) as given by the expression [16]

(1)X(f ) = ∫ x(t)e−j2�ftdt

(2)P =
|X(f )|2

L

(3)Wcf (s,Γ) =

∞

∫
−∞

x(t) ⋅ s−1∕2�
(
t − Γ

s

)
dt
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The Morse wavelet, introduced by Daubechies and 
Paul, which belongs to the category of continuous ana-
lytic wavelet is used in analysing the normal and abnormal 
lung sound as it unifies all the other analytic wavelets in 
a single domain.

The complex turbulent airflow dynamics due to the 
structural interaction with airway walls makes the lung 
sound signals nonlinear. This nonlinearity can be unveiled 
through the nonlinear time series analysis of the breath 
signal using the R software. A nonlinear dynamical system 
can be described entirely by its multi-dimensional phase 
space representation. For the construction of phase por-
trait, the parameters, delay coordinate (τ) and embedding 
dimension (m) are calculated using the nonlinearTseries 
package in the R software. The mutual information func-
tion gives mutual dependence between two variables. In 
the R software, we get the average or auto mutual infor-
mation, i.e., mutual information computed between a 
time series data and its time-shifted data. The embedding 
dimension gives the minimum number of dimensions 
essential for a phase portrait construction. The method 
put forward by Cao [17] is one of the practically used 
methods for choosing the proper embedding dimension, as 
it is capable of distinguishing deterministic and stochastic 
signals, works good for high dimensional attractors, and 
it is also independent of the length of the data. Thus, by 
employing the Taken’s method [9] of delay (“buildTakens” 
command in R software), using τ and m, a phase portrait 
is reconstructed as represented in Eq. (4), which helps in 
the visualisation of the hidden complexity in a time series 
data. A reconstructed vector in the phase plane in terms 
of τ and m can be formulated as,

Two widely used indicators of chaoticity and complex-
ity of a time series data are the maximal Lyapunov expo-
nent (MLE) and Sample entropy (SE) [9, 10, 18]. MLE 
measures the dynamics of the evolution of the trajectory 
in a phase portrait. The positive value of MLE denotes 
the rate of divergence of trajectories, indicating a chaotic 
domain and negative value shows the rate of convergence 
[2]. The rate of divergence (at time t) of two trajectories in 
the phase space having δZ0 as the initial separation vector 
is given by Eq. (5)

The value of MLE (λ) is obtained from the slope of the 
plot between log �Z(t)

�Z0
 and time (t). The command ‘maxLya-

punov’ in the R software is used for this. The SE is a scale-
independent computational means of quantifying the com-
plexity in terms of regularity or predictability of temporal 

(4)x
�
=
(
xn−(m−1)� , x(n−(m−2)�),… , xn

)

(5)|�Z(t)| ≈ eλt||�Z0||

signals. The SE is estimated using the command ‘sam-
pleEntropy’ in R software, employing the values of time-
delay, embedding dimension, and tolerance. The SE is 
computed in a radius of the neighbourhood (r) using 
Eq. (6) [19],

where Cm(r) and Cm+1(r) denotes the correlation sum of 
dimension m and m + 1, respectively. The value of SE at a 
particular value of m is the average of SE value for different 
values of r. Higher and lower values of SE represent complex 
and regular signals, respectively.

The complex signals having chaotic behaviour is expected 
to exhibit fractal nature too. The fractal dimension quanti-
fies the degree of complexity of a self-affine and self-similar 
time series data [20–22]. Of various methods of finding the 
fractal dimension, the box-counting method is employed 
in the present study. The box-counting fractal dimension 
(Db) of the respiratory signals is estimated using ‘fd.estim.
boxcount’ function present in the ‘fractaldim’ package of R 
software. In the box-counting method, Db is calculated by 
overlaying boxes of different sizes (ε) on to the signal and 
then counting the number of boxes N(ε) required to envelop 
the signal completely. Following the fractal power law, the 
relation between Db, N(ε) and (ε) is given by [23]

where the slope of lnN(∈) vs ln
(

1

∈

)
 plot gives Db, from 

which the value of Hurst exponent Hb can be calculated 
using Eq. (8).

Depending on the value of Hb, the time-varying signals falls 
under the three categories—persistent, antipersistent, and 
Brownian. In an antipersistent time series, also known as 
mean-reverting series, for which Hb < 0.5, the succeeding 
values possess a tendency to come back or revert to the long-
term mean value. For Hb > 0.5, the time series is said to have 
persistent nature, holding a short-term positive correlation 
between the data points. When there is a null correlation 
between the preceding and following data points in a signal, 
it is termed as Brownian time series or random walk [21]. 
Thus, Db and Hb are considered as potential parameters to 
denote the complexity of biological spatiotemporal signals.

Classification of the complex pathological signals from 
the normal healthy ones using signal-processing tools is a 
challenging task. The principal component analysis is one 
such method employed to analyse large time-series datasets 
by reducing the dimensionality by creating new uncorrelated 
variables that successively maximize variance, without any 

(6)SE(m, r) = ln

(
Cm(r)

Cm+1(r)

)

(7)N(�) ∝ �−Db

(8)Hb = 2 − Db
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loss of information [24]. Even though various parameters 
like PSD, Db, SE, MLE, and Hb can be used for PCA analy-
sis, as the lung sounds have characteristic frequency distri-
bution, the PSD data from the FFT analysis contains more 
information regarding the pathological conditions. Thus, in 
the present work, the power spectrum of the signals in the 
range 100–1000 Hz are found, segmented into 26, and the 
average PSD of each segment is calculated. The obtained 
mean values of the PSD data are the elements of the feature 
matrix required for the PCA analysis.

Results and discussion

The integration of auscultation with computerised signal 
processing has emerged as a reliable and quantitative diag-
nostic tool in the field of pulmonology. Monitoring of the 
audio signals produced in the lung provides valuable infor-
mation regarding its functioning and helps in the diagnosis 
of diseased conditions. One of the easiest and simplest way 
of representing an audio signal is by its time spectrum. From 
the representative time spectrum shown in Fig. 1, out of the 
thirty-five signals, the basic features of the VS breath signal 
and EW signal can be observed. When the VS signal shows 
a near-pause between its inspiration and expiration phase, 
the wheezing signal is continuous. Also, the difference in the 
time duration in the inspiratory and expiratory phase in the 
VS and EW signal is evident from the time spectrum. From 
literature [3], it is clear that the intensity and time duration 
of the inspiratory phase in the VS signal is more when com-
pared to its expiratory phase, as seen in Fig. 1a, which is due 
to the less turbulence of the airflow. But, from the time spec-
trum given in Fig. 1b, it can be understood that the wheeze 
happens during the exhalation period of breathing, resulting 
in the expiratory wheezing condition, where the duration of 
expiration is dominant when compared to inspiration. The 

magnified portion of the EW signal (2.25 s to 2.34 s) show-
ing sinusoidal pattern is given in the inset of Fig. 1b.

The lung sounds are highly non-stationary signals and 
the degree of non-stationarity increases as its abnormality 
increases [25, 26]. The difference in the passage of the air 
through regions of different cross-section produces a wide 
spectrum of frequencies. i.e., the number of frequency 
components, their spread, intensity, and mode of appear-
ance reflects the mechanical features of the airways and the 
nature of airflow through them helps in providing important 
information regarding the state of lungs and thus in diag-
nosis. Hence, the frequency domain and time–frequency 
domain representation of the respiratory signals using FFT 
and wavelet technique is analysed. Figure 2 shows the power 
spectral density plot (PSDP- frequency (Hz) vs. power as 
mean square amplitude (MSA)) of a representative signal 
of VS and EW sound signal during a single cycle of breath-
ing. A large number of frequency components spread over 
a wide range of frequencies between 120 and 700 Hz can 
be observed in the PSDP of the vesicular signal, which may 
be due to the flow of air through the lobar and segmental 
airways having varying diameters. (0.56 cm and 0.83 cm). 
From the PSDP of the VS signal, the overtone band around 
a frequency of 580 Hz corresponding to the fundamental 
frequency at 260 Hz can be seen indicating the flow of air 
through varying cross-sections. But, the EW signal shows a 
well-defined high intense peak around 260 Hz in the power 
spectrum, which indicates the narrowing of the air pas-
sage. The reduction in the calibre of airways accelerates the 
airflow producing musical EW sounds and oscillations of 
walls. Grotberg and Davis [27] have shown that the flut-
tering of walls of the airways with fluid in EW is respon-
sible for the frequency components generated. The critical 
flutter frequency indicates the musical pitch of the signal, 
which increases with narrowing of walls, increased bend-
ing resistance, elastance, and longitudinal tension. From 

Fig. 1   Time spectrum of the breath signal a VS and b EW with a portion (2.25 s to 2.34 s) magnified in the inset
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the literature [26], it is well understood that the expiratory 
sounds are produced mostly from the obstruction in the dis-
tal airways, those having < 2 mm internal diameter, (mainly 
from fifth to the seventh generation of the airways having 
diameter—0.08 cm to 0.2 cm) producing single high intense 
peaks in the PSDP. The examination of the power spectral 
plot of the inspiratory and expiratory phases of VS shows 
a large number of frequency components, whereas the EW 
signal shows only during the inspiratory phase. The sharp 
peak and the narrow frequency spread in the FFT of the 
expiratory phase of EW suggest expiratory wheezing. Thus, 
the analysis of the PSDP, obtained from the FFT data, helps 
in distinguishing whether the disease is in the expiratory or 
inspiratory phase.

A more evident differentiation between the VS and EW 
sound signal can be had from the time–frequency represen-
tation, wavelet scalogram, as shown in the representative 
scalogram, Fig. 3. Literature reports that the expiration to 
inspiration ratio in a VS signal is 1:3 with a pause between 
the two phases, which can be seen on the wavelet scalogram 
displayed in Fig. 3c. In addition, the short-time persistence 
of the higher intensity frequency component in the VS signal 
during expiration is evident. On analysing the wavelet scalo-
gram of EW signal given in Fig. 3f, continuous undulating 
sinusoidal deflections having a very high intense peak at 
261 Hz can be seen due to the constrained flow of air through 
the narrowed region. The inspiratory phase is merely visible 
as its intensity and time duration is very low, as observed in 
Fig. 2c. However, very strong, highly persistent, and intense 

frequency component is visible throughout the expiratory 
phase of the EW signal again confirming that the wheezing 
is caused during the period of exhalation. The dilation of 
airways due to elasticity during inspiration let the air to flow 
around the obstruction. As the airways contract during exha-
lation, airflow increases, causing the high-intense wheezing 
sounds. The presence of a large number of frequency com-
ponents with lower intensity, during the inspiratory phase 
of the EW signal, is clear from the wavelet scalogram given 
in Fig. 3d. When the inspiratory and expiratory phases of 
EW are compared, a significant difference in the amplitude 
of the signals can be seen in Fig. 3d and e as observed in the 
time spectrum and PSDP. This shows that the expiration is 
a strenuous process for a patient suffering from wheezing, 
as more energy has to be put in for expelling air from the 
lungs. The forcing of air out of the lungs through the airways 
with mucus and secretions results in turbulence. A compari-
son of the wavelet scalogram of expiration of VS and EW, 
shown in Fig. 3b and e, it is evident that the high intense 
frequency component persists for a longer duration of time 
in EW. Thus, the wavelet analysis provides a clear distinc-
tion between the pathological and normal lung sound signal.

The normal, as well as adventitious breath sounds, are 
produced only by the turbulent and vorticose airflow, which 
makes them complex and nonlinear. These non-stationary 
and nonlinear lung sounds are analysed using nonlinear time 
series analysis to unveil the hidden dynamics involved during 
respiration. The advantage of phase portrait analysis through 
the parameters—m, τ, MLE, SE, Hb, and Db—is that it offers 

Fig. 2   Power spectral density plot of breath signal: VS—a inspiration b expiration, c respiration; EW—d inspiration, e expiration, f respiration
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good fidelity as it details the multidimensional aspect of the 
lung sound signal giving the correlation among the data 
points evolving in time. The multi-dimensional phase space 
representation, obtained from the estimated values of τ and 
m, contains all the information regarding the complexity of 
the VS and EW signals. A representative phase portrait of 

inspiration, expiration, and respiration of both VS and EW 
are shown in Fig. 4. The values of τ and m used for plotting 
Fig. 4 computed are—for VS—(a) inspiration (τ = 37, m = 6) 
(b) expiration (τ = 39, m = 6) (c) respiration (τ = 38, m = 7) 
and for EW—(d) inspiration (τ = 22, m = 7) (e) expiration 
(τ = 40, m = 8) (f) respiration (τ = 43, m = 7). On comparing 

Fig. 3   Wavelet scalogram of breath signal: VS—a inspiration b expiration, c respiration; EW—d inspiration, e expiration, f respiration

Fig. 4   Phase portrait of breath signal: VS—a inspiration (τ = 37, m = 6), b expiration (τ = 39, m = 6), c respiration (τ = 38, m = 7); EW—d inspi-
ration (τ = 22, m = 7), e expiration (τ = 40, m = 8), f respiration (τ = 43, m = 7)
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the phase portrait of EW with VS, it can be seen that the 
randomness is lowered in EW during inspiration, expiration, 
and respiration indicating chaotic nature. The randomness 
in the phase portrait of the VS signal can be attributed to the 
higher degree of freedom of air molecules passing through 
airways of larger diameter. Figures 4e and f substantiate the 
musical nature of the expiratory phase, a characteristic fea-
ture of the EW signal. The mathematical explanation for the 
phase portraits of respiration of VS and EW can be given 
through the Lyapunov exponent, which quantifies the rate of 
divergence or convergence of state-space trajectories. The 
MLE of the normal and abnormal signals is calculated and 
is given in the box-and-whisker plot displayed in Fig. 5a. 
The higher mean value of MLE of VS (0.034) compared 
to that of EW (0.024) accounts for the faster rate of diverg-
ing of phase trajectory in VS, which is in agreement with 
Figs. 4c and f.

Sample entropy is one among the chaotic indices used 
to define the periodicity or irregularity in a time-series sig-
nal. The sample entropy values of the pseudo-periodic EW 
signals and transient VS signals are given in the whisker-
and-box plot (Fig. 5c). The sample entropy (SE) of EW is 
1.202, which is higher than that of VS signal 0.792. The 
increase in the value of SE for the EW signal is attributed 
to the increased complexity due to the fluid flutter airflow 
dynamics. During expiration when the air flows through nar-
rowed airway tubes with obstructions in the form of mucus 
or tumours, the intra-airway pressure decreases, resulting in 
the collapse of the airway. When air is forced out through 

such a constricted region, musical wheezing sound signals 
are produced. The higher velocity of the air molecules com-
ing out of the constricted region forms vortices and turbu-
lence, which is responsible for the higher value of SE of EW 
signals and thereby giving a picture of the nature of constric-
tion in the airways. The finite fractal structure of the lungs 
suggests that lung sounds exhibit fractal nature. The fractal 
dimension (Db) of the VS and EW signals are calculated by 
the box-counting method, and the Db values of the signals 
are represented in the whisker-and-box plot Fig. 5c. The 
higher mean value of Db of EW (1.850) indicates a higher 
self-similarity and complexity of the time series data when 
compared to that of VS (1.783). The higher complexity of 
the EW signal like the higher value of SE is due to the high 
intense and persistent frequency component in the signal. 
The Hurst exponent obtained from the Db values gives infor-
mation about the antipersistant nature of the signals, as both 
the signals show value below 0.5. The whisker-and-box plot 
of Hb values shown in Fig. 5d suggests more randomness to 
VS signal as its Hb value (0.219) is closer to 0.5 than EW 
(0.151).

Along with the analysis, classification of pathological and 
normal signals are also significant in the field of medical 
diagnosis. The PCA analysis is one such feature extraction 
tool, which makes use of any of the important features of 
a system like FFT, PSD, SE, MLE, Db, or Hb to reduce the 
dimensionality of the system with minimal loss of infor-
mation. In the present analysis, the most suitable feature 
selected for extraction is the mean of the PSD data from 

Fig. 5   Whiskers-and-box plot 
for EW and VS signals of res-
piration: a Lyapunov exponent, 
b Sample entropy, c Fractal 
dimension and d Hurst exponent
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the FFT. The 26 features of each signal are subjected to 
PCA using the R software. Figure 6 displays the PCA biplot 
of EW and VS signals. When the horizontal axis of Fig. 6 
indicates the projections on to the first principal component 
(PC1), which is the direction of the data having the most 
variance, the vertical axis points to the second principal 
component (PC2), which indicate the direction orthogonal 
to PC1. The principal components being orthogonal, their 
projections are uncorrelated. The PC1 and PC2 could cover 
about 99.9% of the total variance of the original data set. The 
spectral features being distinct, as elicited by the PCA of EW 
and VS, it opens a possibility of employing such spectral, 
fractal, and time series techniques in the auscultation for 
diagnosing respiratory diseases.

Conclusion

The present work discusses a novel approach of using 
powerful mathematical tools like FFT, PSD, fractals, time 
series, and principal component analyses in the auscultation 
for diagnosing respiratory diseases. Wheezes, the acoustic 
manifestations of obstructions and mucus secretions in the 
respiratory airways indicating the pathological lung condi-
tion are analysed. 35 signals of EW and VS, when subjected 
to spectral analysis, revealed a clear difference in their time 
duration, intensity, and the number of frequency compo-
nents. The expiratory nature of wheezing is evident from 
the time spectrum and wavelet scalogram. The lowering of 
the randomness in EW during inspiration, expiration, and 
respiration, indicates the musical and chaotic nature evi-
denced through its respective phase portraits. The higher 
value of MLE and randomness in the phase portrait of the 
VS signal is attributed to the higher degree of freedom of air 
molecules passing through airways of larger diameter. The 
passage of air molecules through the constricted regions of 
airways in EW accounts for the formation of vortices and 

turbulence resulting in the higher value of SE. The higher 
self-similarity, complexity and antipersistence of the time 
series data of EW, when compared to that of VS, is revealed 
through the higher Db and lower Hb value. The PCA biplot 
obtained by extracting features of the PSD is a potential 
tool for classification. The paper presents a functional, cost-
effective, and non-invasive tool for the safer and rapid detec-
tion of lung diseases. The study becomes more relevant in 
the context of the outbreak of the pandemic COVID-19, as 
it suggests a novel approach for breath sound signal analysis 
through the nonlinear time series parameters that reflects the 
correlation between data points evolving in time. Thus the 
work reported in the paper attempts to kindle the minds of 
researchers striving for developing novel digital ausculta-
tion techniques integrating the principles of mathematics 
and statistics.
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