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Abstract: Socioeconomic inequalities in health and mortality are well established, but the biological
mechanisms underlying these associations are less understood. In parallel, the gut microbiome is
emerging as a potentially important determinant of human health, but little is known about its broader
environmental and social determinants. We test the association between gut microbiota composition
and individual- and area-level socioeconomic factors in a well-characterized twin cohort. In this study,
1672 healthy volunteers from twin registry TwinsUK had data available for at least one socioeconomic
measure, existing fecal 16S rRNA microbiota data, and all considered co-variables. Associations with
socioeconomic status (SES) were robust to adjustment for known health correlates of the microbiome;
conversely, these health-microbiome associations partially attenuated with adjustment for SES. Twins
discordant for IMD (Index of Multiple Deprivation) were shown to significantly differ by measures of
compositional dissimilarity, with suggestion the greater the difference in twin pair IMD, the greater
the dissimilarity of their microbiota. Future research should explore how SES might influence the
composition of the gut microbiota and its potential role as a mediator of differences associated
with SES.
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1. Introduction

There is increasing evidence that the human gut microbiota play an important role in a broad
range of physiological functions, including immune system maturation, metabolic and inflammatory
processes, and health deficits [1–3]. Despite rapid advances, scientific knowledge of the sources of
inter-individual variation in the microbiome and how this evolves over the life course is in its infancy.
Recent findings suggest that genetic factors explain a limited amount of variation in the microbiome,
pointing to “environmental” factors as the primary driver of microbiome composition [4]. While
work on specific nutritional and environmental exposures is rapidly accelerating [5,6], we know little
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about how broader social and environmental conditions influence the structure and function of the
microbiome [7].

The social environment may influence the human microbiome across the life course through
a variety of pathways [8]. Early life exposures such as mode of delivery (vaginal or caesarean
section), initiation and duration of breastfeeding, antibiotic use, interactions with the indoor and
outdoor environment, and dietary habits are likely to be highly influenced by social status and
relationships [9–11]. Recent studies in primates suggest that social relationships impact the composition
of the gut microbiota through microbial sharing between individuals [12–15]. There is also evidence
of interactions between social and physical environments. Cohabiting humans have more similar
microbial communities compared to those living apart and shifts in older adults’ gut microbiota
composition are observed upon moving from community dwelling to a nursing home [16,17].

In addition to direct microbial sharing, psychosocial stressors, which are positively associated with
higher deprivation, may modulate the microbiome [18,19]. Exposure to social stressors has been shown
to alter homeostatic interactions between the intestinal microbiota and the immune system in mice,
leading to increased susceptibility to enteric infection and overproduction of inflammatory mediators
that induce anxiety-like behavior [20]. Prenatal maternal stress, associated with lower subjective
socioeconomic status, and maternal neglect has also been shown to impact the gut microbiota of
offspring mice [21–25]. In rhesus monkeys whose mothers were exposed to startle stressors during
pregnancy, lactobacilli levels in the gut microbiota were lower during the first six months of life,
which in turn disrupted the development of natural resistance to the enteric pathogen Shigella flexneri
(48). Evidence from germ-free mice also suggests that the microbiome may directly influence social
behavior through host-microbiome interactions during early brain development, particularly in the
amygdala [26]. Overall, the animal evidence is suggestive of important pathways linking social factors
to the microbiome, motivating the need for studies of these dynamics in human populations.

Thus far, research on social factors and the microbiome in humans is limited. A small study of
forty-four healthy volunteers in Chicago found that lower area-level socioeconomic status (SES) was
associated with reduced alpha-diversity, greater abundance of Bacteroides, and lower abundance of
Prevotella in the colonic microbiota, providing preliminary evidence of associations between SES and the
microbiome [27]. To our knowledge, no existing studies have tested the association of individual-level
socioeconomic factors and the composition of the gut microbiome. The current study will test the
association between both individual- and area-level socioeconomic measures and the composition of
the gut microbiome in a well characterized cohort of twins. It will also examine whether any observed
associations are explained by known correlates of microbiome composition including diet and existing
health deficits.

2. Materials and Methods

2.1. Data

Data come from the TwinsUK study, the UK’s largest research cohort of adult twins (http://
www.twinsuk.ac.uk/) [28]. The study was started in 1992 and now incorporates roughly 13,000
male and female twins aged 18–103 who have been extensively studied for a wide range of clinical
and behavioral outcomes. All sociodemographic and health variables were matched to the nearest
microbiome sample date. Here, 1672 individuals had data available for at least one socioeconomic
measure and all included co-variables. The analytical sample size varies depending on the availability
of the SES variable for each respondent (ranging from 1672 to 799); missing SES data was due to
differences in questionnaires dependent on the year the twin joined the study, as shown in Table 1.

The European Bioinformatics Institute (EBI) accession number for the 16S sequences reported
in this paper is ERP015317. Metadata used in this analysis is provided upon application to our data
access committee website http://twinsuk.ac.uk/resources-for-researchers/access-our-data/.

http://www.twinsuk.ac.uk/
http://www.twinsuk.ac.uk/
http://twinsuk.ac.uk/resources-for-researchers/access-our-data/
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Table 1. Descriptive statistics by socioeconomic factors.

Group n %MZ (%Female) Age µ BMI µ HEI µ FI µ

IMD

Q1 336 57 89 60.35 26.9 59.53 0.19
Q2 333 58 91 61.37 25.52 61.09 0.18
Q3 334 55 90 61.35 26.3 60.22 0.19
Q4 334 59 90 62.57 25.38 60.46 0.19
Q5 335 54 93 63.7 25.53 60.46 0.18

Total 1672 56 91 61.89 25.92 60.33 0.19

Education

Q1 224 50 91 68.92 27.18 58.92 0.24
Q2 336 52 94 62.33 26.02 60.38 0.19
Q3 486 57 89 61.2 25.81 60.32 0.19
Q4 359 65 83 55.99 24.93 61.3 0.18

Total 1426 57 89 61.48 25.87 60.34 0.2

Income

Q1 139 52 97 67.22 26.38 58.83 0.24
Q2 203 45 93 64.62 26.32 59.55 0.21
Q3 310 51 97 62.11 26.01 59.99 0.2
Q4 147 52 86 60.53 25 61.72 0.16

Total 799 50 92 63.35 25.97 59.99 0.2

IMD = Index of Multiple Deprivation, % MZ = % monozygotic; BMI = Body Mass Index; HEI = Healthy Eating
Index; FI = Frailty Index; Q1 = most deprived category.

Ethics Approval and Consent to Participate

Favorable ethical opinion was granted by the formerly known St. Thomas’ Hospital Research
Ethics Committee (REC). Following restructure and merging of REC, subsequent amendments were
approved by the NRES Committee London—Westminster (TwinsUK, REC ref: EC04/015, 1 November
2011); use of microbiota samples was granted NRES Committee London—Westminster (The Flora
Twin Study, REC ref: 12/LO/0227, 1 November 2011)

2.2. Microbiota Sample Processing

This study used a subset of samples from a previous study [29]. Fecal sample collection, bacterial
DNA extraction, amplification, and sequencing have previously been described [29]. Briefly, samples
were stored by participants in sealed ice packs and either received by the research department during
clinical visits or via post. Samples were stored at −80 ◦C and were subsequently shipped frozen
to Cornell University (Ithaca, NY, USA), where DNA was extracted and the V4 region of the 16S
rRNA gene was amplified. The Illumina MiSeq platform (Illumina, San Diego, CA, USA) was used to
sequence the amplicons via a multiplexed approach. Subsequent to demultiplexing, sample read paired
ends were merged using a 200 nt minimum overlap. USEARCH was used for de novo identification
of per sample chimeric sequences, which were subsequently removed. A similarity threshold of 97%
was used for picking de novo operational taxonomic units (OTUs) using SUMACLUST within QIIME
version 1.9.1. The phylogenetic tree required for calculation of weighted-UniFrac distances was also
created in QIIME version 1.9.1 using the make_phylogeny command and default parameters.

2.3. Measures

2.3.1. Socioeconomic Status (SES)

SES was measured using two individual-level and one area-level indicator. Area-level SES
was measured using the Index of Multiple Deprivation 2015 (IMD), a composite of seven different
domains representing income, employment, education, skills and training, health deprivation and
disability, crime, barriers to housing and services, and living environment deprivation, based on the
postcode (or UK grid reference mapped to postcode) where a participant lived at the time of sample
collection [30]. Scottish and English/Welsh datasets, provided online by the Scottish government and
Public Health England were mapped to participants using RStudio [31] or QGis [32]. Quintiles of the
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IMD were generated, and reverse-coded to match the other two measures (1 = most deprived, 5 = least
deprived, n = 1672). Education level was self-reported in 2014–2015 by the respondent (n = 1426) as the
highest academic credential they had received and grouped into four categories: No qualification or
NVQ1/SVQ; O-Level, GCSE, NVQ2/SVQ2, or Scottish Intermediate; Scottish Higher, NVQ3, city and
guilds, Pitman, A Level, Scottish Advanced Higher, or Higher Vocational training; University degree,
Postgraduate degree, NVQ5, or SVQ5. Annual household income was assessed from questionnaire
data with seven response categories ranging from <£5000 to >£50,000 (n = 799). The nearest time
point of available data to the microbiome collection was chosen from self-responses taken over the
period 2004–2014. For analysis, income was grouped into four categories of roughly equal number of
individuals: 1. <£14,999, 2. £15,000–£24,999, 3. £25,000–£49,999, and 4. >£50,000.

2.3.2. Covariates

Current health deficit was measured using a single composite measure, the Frailty Index (FI),
which comprises the proportion of health deficits from a total of 39 binary domains of physical and
mental health. The FI relates deficit accumulation to an individual’s risk of death [33]. The measure has
been previously associated with microbiota composition in this cohort [3], and this approach reduces
multiple testing of individual health deficits. The FI was root normalized, as is hereafter referred
to as “health deficit”. Dietary composition was measured via Food Frequency Questionnaire data
and summarized using the Healthy Eating Index 2010 (HEI), which has been previously used within
this cohort in diet and microbiota association studies and was shown to best capture diet variance
associated with gut microbiota [34]. Smoking has not been previously observed as correlating with the
microbiota within this cohort and so was not considered as a covariate [3].

2.4. Microbiome analysis

Microbiome composition was analyzed with respect to (1) alpha diversity, (2) beta diversity,
and (3) differential abundance of OTUs. All analysis was carried out in RStudio [31].

Three measures of alpha diversity (Chao1, Shannon diversity, and Simpson index) were calculated
on the full untrimmed OTU tables using phyloseq [35]. Linear mixed effects models were constructed
using the lme4 and ImerTest packages [36,37] with these measures as response variables. Biological
covariates included the HEI, health deficit, Body Mass Index (BMI) (kg/m2), and age. Hierarchical
models were constructed for each SES variable with and without biological covariates. Technical
covariates including log10 transformed library size (i.e., total reads per sample), familial relatedness,
mode of collection, and sequencing run were included in all models.

Bray–Curtis and weighted UniFrac distances were calculated on variance stabilized OTU tables (as
outlined in Reference [38]) using R packages vegan and phyloseq [35,39]). Non-parametric multivariate
analysis of variance tests (NPMANOVA) were performed for each SES variable in crude and adjusted
models. Five thousand permutations were run for each NPMANOVA. Tests for homogeneity of
dispersion were performed for each SES variable at 999 permutations.

DeSeq2 v.1.16.1 was used to calculate differential abundance of OTUs between the least deprived
and most deprived group of each SES variable [40]. Models were run with and without biological
covariates. A Benjamini–Hochberg false discovery rate transformation was applied to the resulting
p-values. OTUs were collapsed to family, order, and phylum levels, and hierarchical models run for
each SES variable, adjusted for each potential mediator individually (health deficit, age, BMI, diet),
then fully adjusted. As a comparative measure, BMI and health deficit were transformed to factor
variables using appropriate thresholds [41,42], as shown in Additional File 1.1, and used in models of
differential abundance at OTU level in crude models and separately adjusted for each SES variable.
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Analysis of twins discordant for SES was also performed. Twin discordance was calculated in
two ways. In a conservative approach, twins were coded as discordant for a particular SES variable
where one twin was in the most deprived category and their co-twin was in the top two least-deprived
categories. Analysis was repeated using a less-stringent threshold of discordance, where pairs were
treated as discordant if their SES grouping differed by more than one category. Differences in the
three measures of alpha diversity were assessed via paired Wilcox rank sum tests. Paired tests of
OTU abundances were performed using edgeR [43]. To reduce multiple testing burden, only OTUs
significant for each SES factor as above were used within the models, again with a Benjamini–Hochberg
false discovery rate transformation.

All twins within each SES variable were used in paired tests to assess if microbiota dissimilarity
(captured via Bray–Curtis and weighted UniFrac measures) increased with differences in SES. For this
analysis, the beta diversity distance between each pair was used as the response variable in a regression
model. The difference of values between each twin pair’s SES, BMI, diet, health deficit, and library
size was calculated and used as covariates.

3. Results

Descriptive statistics for the sample are shown in Table 1. Ethnicity data was available for at least
92% of each subset, with all subsets >96% white British. Overall, lower SES was associated with less
healthy diet, more health deficits, and higher BMI, as shown in Additional File 2.

We modelled alpha diversity measures versus SES, as shown in Figure 1, Additional File 1.2,
and Additional File 3. Higher levels of income and area-level SES were broadly positively associated
with measures of alpha diversity, while a non-significant but positive association with higher levels
of education was found. The coefficients for BMI, age, and diet were attenuated in models including
income, suggesting that income could explain some of the variance attributed to these factors. For
IMD, coefficients were reduced in adjusted models, but the general trend remained.

Examining intra-individual (beta) microbiome diversity, we found significant differences across
education and IMD groups in crude and adjusted NPMANOVA for Bray–Curtis dissimilarity
(Education: crude F(3, 1425) = 1.71, p = 0.0004; adjusted F(3, 1425) = 1.75, p = 0.0004, IMD: crude F(4,
1671) = 1.37, p = 0.008; adjusted F(4, 1671) = 1.41, p = 0.006, permutations = 5000) and weighted UniFrac
(Education: crude F(3, 1425) = 1.74, p = 0.0022; adjusted F(3, 1425) = 1.73, p = 0.0028, IMD: crude F(4,
1671) = 1.35, p = 0.03, adjusted F(4, 1671) = 1.38, p = 0.02). This suggests a difference in microbiota
community composition between each education and IMD group, with the highest education level
being the most dissimilar to the other groups. Difference in group centroids for both the crude and
adjusted Income–Bray distance model neared the significance threshold; however, the latter is to be
interpreted with caution as tests for homogeneity of variance also neared significance, as shown in
Additional File 4. All R2 values were low; similar values were observed for covariates in adjusted
models, as shown in Additional File 4.

Of the 2126 OTUs considered for this analysis, we found a total of 76 unique OTUs that
had a significant (FDR-adjusted q < 0.01) differential abundance between the lowest and highest
levels of deprivation for all three SES variables, as shown in Figure 2A and Additional File 1.3–1.8,
in unadjusted models.
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Figure 1. Alpha diversity and socioeconomic status. Bars represent the standardized coefficients 
extracted from hierarchical linear mixed effects models of alpha diversity (Chao1, Shannon diversity 
index, and Simpson's diversity index): i. Covariate model, where model variables were age, Body 
Mass Index (BMI kg/m2), health deficit (FI), and diet (HEI); ii. crude income model, iii. adjusted 
income model, iv. crude IMD model, and v. IMD-adjusted model. All models were adjusted for 
technical covariates modelled as random effects. Education models are not included due to non-
significance. p-values indicated as: ‘ < 0.1, * < 0.05, ** < 0.01, *** < 0.001. 

Figure 1. Alpha diversity and socioeconomic status. Bars represent the standardized coefficients
extracted from hierarchical linear mixed effects models of alpha diversity (Chao1, Shannon diversity
index, and Simpson’s diversity index): i. Covariate model, where model variables were age, Body Mass
Index (BMI kg/m2), health deficit (FI), and diet (HEI); ii. crude income model, iii. adjusted income
model, iv. crude IMD model, and v. IMD-adjusted model. All models were adjusted for technical
covariates modelled as random effects. Education models are not included due to non-significance.
p-values indicated as: ‘ < 0.1, * < 0.05, ** < 0.01, *** < 0.001.
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Unadjusted, education models had the highest numbers of FDR-significant OTUs at 57 OTUs 
(17 in models adjusted for diet, age, BMI, and health deficit), followed by IMD (18 unadjusted, 15 in 
adjusted models), and income (10 unadjusted, 3 adjusted). To benchmark, comparisons were made 
to the associations of established correlates of the gut microbiome, BMI, and frailty, coded as factor 

Figure 2. Differential abundance of OTUs with socioeconomic variables and covariates. DeSeq2 was
used to calculate the differential abundance of OTUs in: (A). Between the lowest and highest levels
of deprivation for education, income and the IMD, and in models adjusted for age, Body Mass Index
(BMI), health deficit (FI) and diet (HEI); (B). Between lowest and highest levels of BMI and health deficit
(FI), and in models adjusted for education (Edu), income (inc) and the Index of Multiple deprivation
(imd). The phyla assigned to each denovo OTU is indicated. Dashed lines connect the same OTU ids in
each hierarchical model; therefore, where there are no connecting lines, the associate was not observed
in the corresponding model.
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Unadjusted, education models had the highest numbers of FDR-significant OTUs at 57 OTUs
(17 in models adjusted for diet, age, BMI, and health deficit), followed by IMD (18 unadjusted, 15 in
adjusted models), and income (10 unadjusted, 3 adjusted). To benchmark, comparisons were made
to the associations of established correlates of the gut microbiome, BMI, and frailty, coded as factor
variables using published thresholds, to be consistent with the SES measures. A total of 128 OTUs
where observed to be differentially abundant (q < 0.01) in crude models between not frail and very frail
individuals, and 90 OTUs between underweight and obese individuals. The number of associations
for both traits diminished with adjustment for household income in particular: to 36 for frailty and 21
for body mass, as shown in Figure 2B and Additional File 1.9–1.16.

Results of OTU counts collapsed by phylum-level taxonomic assignment are shown in Figure 3.
Interestingly, more associations with SES were found in models adjusted for individual covariates
rather than alone or in models adjusted for all covariates together. Most of the differences at collapsed
levels were observed across all three SES measures when adjusted for health deficit; results here and in
previous studies within this cohort suggest that health deficit is a key correlate of the microbiota and
therefore may have been suppressing the observed crude associations. IMD had the highest number of
FDR-significant associations as family level; income had the least.
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Figure 3. Differential abundance of phyla in hierarchical models. DeSeq2 was used to calculate the
differential abundance of OTUs collapsed to phylum level in hierarchical models that were crude,
adjusted for age, diet (HEI), health deficit (FI), and Body Mass Index (BMI) separately and together in
three socioeconomic status (SES) measures: (A) education, (B) income, and (C) IMD. Only FDR-adjusted
results significant above q < 0.05 are shown.
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Under a stringent definition of discordance, 22 twin pairs were discordant for education, 24 for
income, and 48 for the IMD. There were no significant differences between alpha diversity of twins
discordant for the SES measure. Within twin pairs, difference in IMD was significantly associated with
Bray–Curtis dissimilarity (ANOVA F(3,546) = 2.9, p = 0.03) with factor-level significance, suggesting
that the association was driven by twins with the greatest difference in IMD (β = 0.36, p = 0.008),
as shown in Figure 4. Although only significant at factor-level, the same trend was seen for IMD
and difference in weighted-UniFrac distance (β = 0.3, p = 0.02) as shown in Figure 4. No differences
were observed between OTUs in discordant twin pairs. Analysis using a less stringent definition of
discordance found similar but smaller differences, other than discordance for education where there
was greater effect observed for the same de novo Clostridiales OTU observed in the more stringent
analysis (logFC = 1.09, q = 0.019), as shown in Additional File 5.
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4. Discussion

Differences in health status by socioeconomic factors are well established, with an emerging
focus on understanding the biological mechanisms underlying these relationships [44,45]. Current
knowledge of the potential role of the microbiome in health inequalities is limited. To the best of
our knowledge, this study is the first to examine the association between individual SES and the
composition of the gut microbiome. We found associations between three different measures of SES
and the composition of the gut microbiota in adulthood. Lower individual income was associated with
reduced alpha diversity measures. Alpha diversity captures the evenness and richness of microbial
composition within an individual, with lower alpha diversity generally seen in combination with
worse health status [46]. In this study, adjustment for individual health status (BMI and proportion
of health deficits) and healthy diet did not fully attenuate the association. This suggests that there
are microbiome differences independent of these effects, although there are limits to the variation
captured by the summary measures used. The associations found for area-level SES suggest that
spatial- or community-level exposures may contribute to human gut microbiome composition, though
the specific mechanisms through which these influence the microbiome requires further investigation.

Our study is consistent with one previous study that found an association between lower
neighborhood-level SES and reduced alpha diversity in the colonic microbiota among forty-four
healthy volunteers [27]. Our study expands upon these findings using a much larger sample with a
wider range of health phenotypes and SES measured at the individual as well as area level. We similarly
observed a greater abundance of Bacteroides with higher SES. Unlike this study, we generally observed
a higher abundance of Prevotella within the least deprived groups. Miller et al. (2016) [27] posit that
diet underlies differences in microbiota composition; our results indicate that whilst diet may be a
mediating factor, specifically in taxa abundance, it does not completely explain variance of alpha and
beta diversity associated with SES, at least when using the HEI as a summary of dietary intakes.

The rich measurement of our cohort allowed us to control for potential mediators of the
relationship between SES and the microbiome, specifically existing health deficits, BMI, and diet,
which have previously been shown to be associated with the gut microbiome. Importantly, some
SES associations remained upon adjustment for these factors, while the significance of diet and BMI
in particular was attenuated by adjustment for SES. This suggests that SES may be an important
confounding factor in microbiome studies that has not been previously accounted for and should
be explored in future analysis. The lack of mediation of SES by current measures of diet or frailty
may, in part, reflect the imperfect representation of the HEI and FI. Future studies should consider
the limitation of such measures, for example, elements of diet not captured by the HEI, such as food
quality, diversity, or a specific dietary constituent (e.g., meat intake or fiber) could be driving the
different associations observed with SES. Such limitations could be overcome by utilizing dietary and
health matched individuals in future comparisons. In addition to diet and health status, there are a
range of SES-associated factors that were unexplored in this analysis and could also contribute to the
associations observed, such as historical medication use, pet ownership [47], social relationships and
stressors, and host environment [48,49].

There are some limitations of our data. Associations observed here were small in magnitude,
but the range of SES may have been restricted by the TwinsUK volunteer sample. This cohort
exhibits a volunteer bias and disproportionately comprises individuals with average income and
educational levels, thus is both more socially homogeneous and more affluent on average than the
general population [50]. Further population-based studies are needed, as those of differing cultural
backgrounds may exhibit distinct socio-microbiome associations from this British cohort.
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Caution should be applied when attempting to interpret OTU-level results, due to the limitations
in 16S taxonomic assignment [51]. Bearing this in mind, some observations which may be indicative of
community changes in differing socioeconomic groups warrant further investigation. Many of the
identified OTU-level associations with SES markers are consistent with existing health associations
for specific OTUs, summarized in Table 2. For example, lower levels of deprivation correlate
with key health-associated bacteria such as Faecalibacterium prausnitzii and Akkermansia muciniphila,
both proposed to reduce host inflammation [52,53], whereas higher levels of deprivation were
associated with Streptococcus anginosus, which has been identified as a member of a dysbiotic
microbiota [54]. OTUs assigned to paraphyletic taxa such as Clostridiales, Lachnospiraceae,
and Ruminococcaceae, members of which are nearly ubiquitous in the gut assemblages [55], are
both health-associated (e.g., Prevotella are reduced in obesity and diabetes associated microbiotas) and
pathogenic (e.g., Prevotella stercorea is associated with carcinomas); therefore it is unsurprising that
OTUs assigned to these taxa above species-level conflict in the direction of their relationship with
socioeconomic variables.

A strength of the current study is the analysis of the gut microbiome in a large, well-characterized
cohort and use of both individual and area-level SES measures. Building on the descriptive analysis
provided here, future work could measure and explore important mediating factors to further elucidate
the relationship between social factors and the microbiome. A further area of interest is determination
of the influences of SES on microbiota composition throughout the human life course. Early SES and
later life SES indicators are correlated [56], consistent with the low number of twin pairs discordant for
SES; we hypothesize that adult SES measures are capturing cumulative exposures shaped by the social
environment across the life course. As the colonization of the microbiome is influenced by early life
exposures [57], these could be inducing founder-effects that drive differences in the microbiota between
socioeconomic classes. Further longitudinal SES–microbiome studies should resolve these effects.
In addition, geospatial analysis of the spatial structure of 16S data may elucidate how environmental
or ecological factors contribute to the area-level differences identified here.
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Table 2. Summary of taxa assigned to OTUs found to be differentially abundant between the most-deprived and least-deprived measures of socioeconomic status
in at least two models. Only taxa with multiple OTUs assigned to it, or with multiple SES factors associated with it, and with q-value < 0.01 are discussed. OTUs
relatively enriched in the least deprived compared to highest for each SES variable are indicated with (+); those enriched in the most deprived compared to the least
indicated with (−); where multiple directions of association were observed, this is indicated with (+/−). The lowest assigned taxa level is indicated; number of OTUs
assigned within this taxa at the lowest level is included. Categories refer to the current general consensus of the genera’s relationship with health where (A) generally
positive health associations, (B) generally positive health associations, but opportunistic pathogens, (C) generally negative health associations, and (D) paraphyletic
taxa/mixed consensus/not enough information. Where relationships are shown in red, they are contrary to the literature consensus on direction of health association.

Assigned Taxa # i. IMD ii. IMD
Adj

iii.
Education

iv. Ed.
Adj v. Income vi. Inc.

Adj Category Health Associations

Akkermansia
muciniphila (s) 1 − − A Disrupts obesity-associated host metabolism [58].

Associated with reduction of inflammation [53].

Anaerofustis (g) 1 − − D
Decreases where soluble maize fiber used as supplement in

adolescents [59,60].
Positively associated with infection in rabbit models [41].

Anaerostipes (g) 1 + A

Butyrate producers that co-occur with other beneficial
microbes [61].

Suggestion that excessive short chain fatty acids (SCFA)
production promotes gastrointestinal symptoms associated

with Rett syndrome [62].

Bacteroides (g)
Bacteroides coprophilus (s) 6 − + + + + B

Member of core microbiome [63].
Degrade dietary polysaccharides (glycans) generating

beneficial SCFA [64].
Depletion associated with irritable bowel disorder IBD [65].

Barnesiellaceae (f) 4 + + C

Associated with the mucosal microbiota in patients with
primary sclerosis cholangitis (PSC) [66] and potentially

Parkinson’s disease [67].
Negatively associated with bacteraemia [68].

Blautia (g)
Blautia producta (s) 4 − − +/− D

Converts plant lignan precursors to enterolactone [69] which
may explain its negative association with cancers, such as

colorectal cancer (CRC) [70].
Species in genera have been linked with both obese and

lean [71].

Christensenellaceae (f) 2 − A Implicated in human longevity [72] and better represented in
lean and older individuals [73,74].
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Table 2. Cont.

Assigned Taxa # i. IMD ii. IMD
Adj

iii.
Education

iv. Ed.
Adj v. Income vi. Inc.

Adj Category Health Associations

Clostridiales (o)
Clostridiaceae (f)

Clostridium (g)
13 +/− − +/− +/− D

Decreased abundance correlates with inflammatory bowel
disease [75] and colorectal cancer [76].

Some members associated with promotion of obesity [69].

3 4 − + C

Phyla contains Escherichia coli and opportunistic pathogen
Klebsiella pneumoniae.

Associated with the development of ulcerative colitis [77].
Bacterially produced β-lactamases are responsible for

pyogenic liver abscess [78].

Eubacterium dolichum (s) 2 − − C
Previously identified within this cohort as being associated

with health deficit and higher visceral fat mass [3,79].
Associated with the “obese” gut microbiota [80,81].

Faecalibacterium
prausnitzii (s) 1 + + + A

Key butyrate producer to the colonic epithelium [82].
Negatively associated with pathogenesis of Crohn’s disease,
inflammatory bowel disease, and prostate cancer [52,82–84].

Proposed mechanism of action is via production of the
anti-inflammatory 15 kDa protein [52].

Lachnospiraceae (f)
Lachnospira (g) 11 − +/− +/− + − − D

Murine models observe improvement to colonization
resistance [85].

Induce hyperglycemia in obese mice [86] and negatively
associated with resistant starch [87].

Implicated in deficit of caspase-1 which is suggested as
having a protective effect in modulation of gut

microbiota–brain pathways [88].

Prevotella (g)
Prevotella copri (s)

Prevotella stercorea (s)
5 +/− + + + B

Reduced in obese patients compared to healthy controls [89].
P. copri has been inferred in the pathogenesis of rheumatoid
arthritis [90] and P. stercorea has been observed as associated

with carcinoma-in-adenoma [91].

RF39 (o) 3 +/− D Correlates with E. coli under certain dietary conditions in
bovine models [92].

Rikenellaceae (f) 2 + + − A

Lower abundances associated with lean subjects [74];
depleted in patients with chronic HIV [93].
Target for microbial intervention in obesity

management [94].
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Table 2. Cont.

Assigned Taxa # i. IMD ii. IMD
Adj

iii.
Education

iv. Ed.
Adj v. Income vi. Inc.

Adj Category Health Associations

Rumminococcaceae (f)
Ruminococcus (g)

Ruminococcus gnavus (s)
11 +/− +/− +/− +/− − D

Dominant and prevalent members of the non-individual
specific gut microbiota [55,95].

Associated with diets high in resistant starch [96].
R. gnavus observed to be enriched in Crohn’s disease (CD)

patients [97].
Keystone member of the mucus associated microbiome [98].

S24-7 (f) 3 − + D
Mouse models suggest role in collagen induced

arthritis [99,100]—although the cited papers note different
directions of effect.

Streptophyta (o)
Streptococcus (g)

Streptococcus anginosus (s)
4 − − − C

S. anginosus a feature of negatively health-associated
community assemblages [54].

Increased in colorectal cancer patients [101] and individuals
suffering from non-alcoholic fatty liver disease [102].
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5. Conclusions

This study found significant relationships between both area-based and individual socioeconomic
factors, and stool 16S rRNA microbiota composition in a large sample of British twins. Associations
were observed in models adjusting for health-related factors known to impact the microbiome, with
suggestion that individual-level SES attenuate microbiota–health associations. These findings support
the hypothesis that differences in the microbiota between social groups might be a novel biological
mediator of the well-documented differences in health outcomes across the socioeconomic spectrum.
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