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Abstract: Breast cancer is one of the most common malignancies for women, which accounts 

for 30% of all female malignancies. The formation of breast cancer stem cells (BCSCs) is 

attributed to the acquisition of stemness of tumor cells. With self-renewal potential, these stem 

cells are insensitive to either radiotherapy or chemotherapy but are significant in regulating 

tumor behaviors and drug resistance. MicroRNA (miRNA) is a kind of noncoding small RNA 

for negatively regulating gene expressions. Research findings suggest that many miRNAs 

specifically regulate the expression of target genes and signal pathways of BCSCs. They play 

an important role in self-renewal, growth, and metastasis of breast cancer cells as potential tar-

gets for treating breast cancer. These signal pathways include phosphatase and tensin homolog 

deleted on chromosome 10-phosphatidylinositol 3-kinase/Akt, Wnt/β-catenin, Notch, and 

so on. This paper reviews the progress of research about miRNAs in self-renewal, metastasis, 

epithelial–mesenchymal transition and metastasis, mediation of resistance to chemotherapies, 

and treatment of breast cancer.
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Introduction
Tumorigenic stem cells only make up a small proportion of numerous stem cells in 

breast cancer tissues.1 These stem cells have abilities to develop into other tumorigenic 

and nontumorigenic cells, which are known as breast cancer stem cells (BCSCs). In 

BCSCs, CD44, as a surface marker, is highly expressed, whereas CD24 is lowly or not 

expressed.2 Both CD24 and CD44 get involved in biologic behaviors of tumor cells, 

including adhesion, migration, and metastasis.3,4 High expression of aldehyde dehydro-

genase 1 is another feature of BCSCs.5 Instead of a single population transformed from 

ordinary stem cells, BCSCs are attributable to the stemness of tumor cells.6 Previous 

studies have discovered that more BCSCs are seen in poorly differentiated and highly 

malignant breast cancer tissues than highly differentiated, low-grade malignancies.7 

BCSCs are insensitive to radiotherapies and chemotherapies, no matter in vivo or 

vitro.8 After adjuvant therapies, BCSCs increase considerably,9,10 thus possibly leading 

to recurrence and metastasis of breast cancer. Hence, research on BCSCs is of great 

significance for treating breast cancer.

As noncoding RNA molecules with about 22 nucleotides, microRNAs (miRNAs) 

complementarily bind with 3′ noncoding region of target RNAs, to degrade target 

mRNAs or inhibit their translations and negatively regulate gene expressions.11 

MiRNAs main function is to posttranscriptionally downregulate gene expression by 

binding directly to its mRNA target or by cleaving target mRNA by binding to its 

3′-untranslated region (UTR) region. MiRNAs are closely connected with formation 
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and development of tumors and cancer stem cells (CSCs). 

Because of amplification, each miRNA can increase the con-

trol over its target gene. If the target gene is an oncogene, the 

cancer does not develop (oncosuppressor-miRs); if the target 

gene is a tumor suppressor, the cancer develops (oncomiRs).12 

MiRNAs play a pivotal role in stem cell biology, differentia-

tion, and oncogenesis, and are of high interest as potential 

breast cancer therapeutics. However, their expression and 

function during normal mammary differentiation and in 

breast cancer remain to be elucidated.13

These years, regulating BCSCs by miRNAs has become 

one of the hot research topics on breast cancer. For instance, 

miR-221/222, miR-140, miR-21, and miR-22 are carci-

nogenic, whereas miR-200 family, miR-128, miR-99a, 

miR-29b, let-7 miRNA, miR-600, miR-34, and miR-30 are 

effective for tumor suppression. Secreted in the form of exo-

somes, miRNAs play an important role in transmitting signals 

between cells.14 This paper reviews research progression of 

miRNAs in self-renewal, metastasis, epithelial–mesenchymal 

transition (EMT) and metastasis, mediation of resistance to 

chemotherapies, and treatment of breast cancer.

MiRNAs, self-renewal, and apoptosis 
of BCSCs
B lymphoma Mo-MLv insertion region 1 homolog 
(BMi1), a self-renewal factor
BMI1 is a member of the polycomb repression complex 1 

family and regulates the self-renewal of normal and malignant 

stem cells by preventing senescence and apoptosis. BMI1 is 

an independent prognostic factor of triple-negative breast 

cancer (TNBC) and is essential for the self-renewal of BCSCs. 

BMI1 was shown to be overexpressed in several human breast 

cancer cell lines.15 By regulating the expressions of BMI1 

and Suz12 (polycomb repressive complex 2 subunit) that are 

involved in self-renewal of BCSCs, miR-200c could suppress 

the colony formation of BCSCs in vitro and the tumor formation 

induced by stem cells in vivo.16 High expression of miR-200c 

was associated with significantly better overall survival.17 

miR-200c, as a tumor suppressor in breast cancer both in vitro 

and in vivo, could be a potential therapeutic target in breast 

cancer.18 When the expression of miR-200 is downregulated, 

mammary epithelial cells will transform to stem-cell-like 

phenotypes.19 Through ectopic expression of BCSCs, miR-128 

may lower the expression of BMI1 and ABCC5, inhibit breast 

cancer progression, and induce apoptosis in vivo and vitro.20

PTeN-Pi3K/Akt pathway
Phosphatase and tensin homolog deleted on chromosome 

10 (PTEN) protein, which activates lipid phosphatase and 

protein phosphatase, suppresses cancer through phospho-

rylating and targeting downstream molecules of phosphati-

dylinositol 3-kinase (PI3K) to block PI3K/Akt pathway. 

Once it is ectopically expressed through the PTEN-PI3K/Akt 

pathway, miR-221/222 may increase BCSCs, enhance tumor-

forming abilities of breast cancer cells, suppress expression 

of recoverable PTEN of endogenous miR221/222, inhibit 

Akt phosphorylation, and reverse the acquisition of cell 

stemness.21 MiR-99a targets the downstream factor mecha-

nistic target of rapamycin kinase and the downstream gene 

HIF-1α (hypoxia-inducible factor 1 alpha subunit) of PI3K/

Akt, in order to reverse phenotypes of malignant BCSCs.22 

When R273H of P53 mutates, miR-30a would not inhibit the 

expression of IGF-1R (insulin-like growth factor 1 receptor) 

anymore, but activate the AKT (serine/threonine kinase) sig-

naling pathway. Further suppression of miR-30a would slow 

down or reverse tumor progression of p53R273H.23 Under 

nonadherent conditions, miR-30a may negatively regulate 

gene expressions of protein AVEN (apoptosis and caspase 

activation inhibitor) to inhibit the growth of BCSCs.24

wnt/β-catenin signal pathway
Wnt/β-catenin pathway is a signal pathway for regulating dif-

ferentiation of human stem cells,25 playing a crucial regulatory 

role in multiple development stages of mammary glands and 

serving the important functions for stabilizing the quantity of 

BCSCs.26,27 During the progression of breast cancer, estrogenic 

elements and abnormal methylation of CpG islands in the 

promoter region of miR-140 disinhibit pathways regulating 

BCSCs such as Wnt, SOX2 (sex-determining region Y-box 

2), and SOX9 (sex-determining region Y-box 9). Thus, carci-

noma in situ may progress to infiltrating cancer.28 For TNBC, 

the expression level of miR-29b is negatively correlated to 

the potential of BCSCs. Apart from inhibiting the expression 

of SPIN1 (spindlin 1), miR-29b may also inhibit growth, 

self-renewal, and invasion of TNBC cells by suppressing 

Wnt/β-catenin and AKT signal pathways.29 Yu et al have 

discovered that the expression of let-7 is downregulated in 

BCSCs.30 In vitro, let-7 directly inhibits H-RAS (HRas proto-

oncogene) and HMGA2 (high-mobility group AT-hook 2), 

which are related to self-renewal and pluripotent potential 

of stem cells. In immunodeficient mouse models, growth of 

tumor cells and oncogenesis will be inhibited if the expression 

of let-7 (microRNA let-7) is induced. When it targets onco-

genes such as RAS (Ras oncogene) and MYC (MYC proto-

oncogene), let-7 has feedback effects upon LIN28, which is a 

downstream gene of Wnt/β-catenin pathway, thus inhibiting 

itself from forming loops.31,32 It can maintain stemness and 

facilitate metastasis of tumors for HER2-positive and TNBC.33  
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In addition, miR-600 targets SCD1 enzyme that gets involved 

in the modification of WNT proteins, thereby inhibiting the 

activity of Wnt/β-catenin pathways and promoting differen-

tiation of BCSCs.34 In Bodal et al’s study, miR-146 variant 

allele was found to be marginally associated with increased 

breast cancer risk.35 Other research also reported similar 

association of pre-miR-146 single-nucleotide polymorphism 

with cancer risk. MiR-146b can be the promising markers 

for differential diagnostics of various phenotypes of breast 

cancer.36 MiR-146a and miR-146-5p silence BRCA1 gene 

through binding to its 3′-UTR, accompanied by a reduced 

homologous recombination rate and an increased prolif-

eration, thus triggering the formation of triple-negative and 

basal-like sporadic BC cases.37 Downregulation of miR-146a 

and miR-146b expression in breast tissues was related to the 

development and deterioration of breast cancer. MiR-146a and 

miR-146b might act as potential biomarkers for young women 

with breast cancer.38 MiR-146a, an miRNA upregulated in 

human BCSCs, also activates the Notch signal pathway by 

targeting Numb, a suppressor of the Notch signal pathway. 

Some findings suggest that the downregulation of miR-200 

members and the upregulation of miR-146 are involved in 

the activation of the Notch signal pathway in the BCSCs and 

normal mammary stem/progenitor cells.39

Notch signal pathway
Notch signal pathway is one of the important signal pathways 

for regulating self-renewal and apoptosis of BCSCs. It is 

associated with the regulation of cell fate at several distinct 

developmental stages of the mammary gland and has been 

implicated in cancer initiation and progression.40 So far, 

four Notch receptors (Notch1–4) have been discovered in 

vertebrates. Once they are bound to Delta-Serrate LAG2, 

Notch receptors are split to activate the signal pathway. The 

intracellular domain of Notch enters the cell nucleus after 

it falls off cell membrane and interacts with DNA-binding 

proteins of the CSL family, to induce transcription of target 

genes. By specific inhibition of the Notch pathway, it is 

possible to significantly reduce the number of BCSCs and 

brain metastasis of breast cancer.41 In the MCF-7 cell line, 

miR-34a downregulates the Notch1 receptor, inhibits stem-

ness of breast cancer, and makes breast cancer cells more 

sensitive to paclitaxel by inhibiting the Notch pathway.42 

miR-200 family miRNAs suppress the Notch signaling by 

targeting Notch pathway components, such as JAG1 and the 

mastermind-like Notch co-activators, Maml2 and Maml3.39,43 

Moreover, overexpression of Notch signaling can also be sup-

pressed by the induction of miR-9 and miR-34c expression, 

thus reducing metastatic behaviors in TNBC.44

The characteristics of BCSCs and normal 
mammary stem cells
Understanding the similarity and difference of stem cell prop-

erties between human BCSCs and normal mammary stem 

cells will clarify the roles of BCSCs in human breast cancer 

development and progression.39 Mammary gland stem cells 

have self-renewal ability, which is the basis for producing 

tubular and lobular structure of the mammary glands and can 

differentiate into all the series of mammary epithelial cells. 

Breast stem cells guarantee the maintenance of regenera-

tion, lactation, and degenerative cycle of mammary gland. 

Mammary gland stem cells are thought to have multiple 

functions in regulating mammary gland development, tissue 

maintenance, major growth, and structural remodeling. 

In addition, accumulative evidence suggests that breast 

cancers are initiated and maintained by a subpopulation of 

tumor cells with stem cell features (called CSCs).45

BCSCs are the first CSCs prospectively identified from 

human solid tumors. BCSCs and normal mammary stem 

cells share a part of the genetic and epigenetic properties that 

are associated with the regulation of tissue stem cells.39 To 

maintain tissue homeostasis, normal stem cells must be able to 

undergo a large number of mitoses, and in many tissues, they 

must be able to migrate to different regions of the organ. Both 

properties are reminiscent of two hallmark properties of cancer 

cells, immortality and invasion. The functional similarities of 

cancer cells with normal tissue stem cells suggest that activa-

tion of normal stem cell self-renewal and/or differentiation 

pathways accounts for many of the properties associated with 

malignancies.16 The characteristics of BCSCs are as follows 

1) they have unlimited self-renewal ability, which can generate 

heterogeneous tumor cells; 2) they have the ability of multi-

potential differentiation and high tumorigenicity; 3) they have 

the drug resistance to conventional chemotherapeutics; and 

4) they have the ability of strong migration and invasion.46

Others
MiR-34c, with low expressions in BCSCs of MCF-7 and 

SK-3rd cell lines, induces self-renewal of cells through 

hypermethylation in the promoter region of BCSCs.43 The 

downregulation of miR-30, particularly miR-30e, often 

contributes to stemness acquisition by breast cancer tissues. 

The high expression of miR-30e could inhibit self-renewal 

abilities of BSCSs by suppressing the expression of Ubc9 

(hypothetical protein) and apoptosis caused by ITGB3 

(integrin subunit beta 3) silencing. Besides, experiments with 

mice have demonstrated that low expression of miR-30 is 

fairly important for maintaining self-renewal and antiapop-

totic properties of BCSCs.47
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To sum up, signal pathways regulating self-renewal and 

differentiation of stem cells such as Wnt/β-catenin, Notch, 

PTEN-PI3K/Akt, and BMI1 pathways often exhibit abnormal 

expressions in breast cancer, leading to the acquisition of 

stem cell phenotypes while developing potentials of self-

renewal, differentiation, and antiapoptosis.48

epigenetic regulation over the effects of 
BCSCs for promoting eMT by miRNAs
CSCs have features necessary for inducing tumor metas-

tasis (for instance, they are tumor-derived, invasive, and 

metastatic),49 playing an important role in neoplasm recur-

rence and metastasis.50 EMT is often activated in the process 

of breast cancer invasion and metastasis. In this process, 

mammary epithelial cells lose the epithelial cell marker 

E-cadherin, intercellular junctions, and cell polarity, while cell 

mobility increases, all of which lead to tumor progression.51 

Furthermore, EMT induction may make breast cancer cells 

acquire stem-cell-like properties,52 thus further impacting 

self-renewal and differentiation of breast cancer cells.

BCSCs stimulate EMT by releasing transforming growth 

factor beta (TGF-β).52 Meanwhile, miR-200 family regulates 

self-renewal and EMT of BCSCs.53 In terms of breast can-

cer, this family often shows high expressions in epithelial 

cells, but low expressions in mesenchymal cells, positively 

correlated to the expression of E-cadherin.54 It consists of 

five members, including two conserved genomic clusters, 

miR-200a, miR-200b, miR-149, miR-200c, and miR-141. Of 

these members, miR-200b-200a and miR-200c-141 clusters 

exhibit low expressions in BCSCs.55 The high expression of 

SIRT1 inhibits miR-200a, which may cause the mesenchymal 

transition of normal mammary epithelial cells.56 While attack-

ing BMI1, miR-200c inhibits the growth of normal mammary 

cells and reverses the tumorigenicity of BCSCs.16 In addi-

tion, it may regulate the expression of E-cadherin and EMT 

by inhibiting miR-200c.55 ZEB1 (zinc finger E-box binding 

homeobox 1) and ZEB2 (zinc finger E-box binding homeo-

box 2) have 17 conservative binding sites for miR-200 family 

altogether. Accordingly, miR-200 owns multiple sites for 

binding with ZEB1 and ZEB2,57 which thus play an important 

role in regulating EMT. ZEB1/miR-200 axis can interact with 

other pathways to regulate EMT and biology of BCSCs.58

EMT is a prerequisite for tumor metastasis. In BCSCs, 

miR-200 also acts on SUZ12. Composed of SUZ12 (SUZ12 

polycomb repressive complex 2 subunit) and other proteins, 

PCR2 controls the expression of E-cadherin. miR-200/

SUZ12/E-cadherin axis is critical for maintaining BCSCs 

and regulating metastasis of breast cancer. Both the 

overexpression of miR-200b and the low expression of 

SUZ12 result in lower expression of E-caherin to inhibit 

oncogenesis, growth, and invasion while playing certain 

roles in preventing tumor recurrence in transplanted tumor 

models treated with chemotherapies.59 Stem-cell-like breast 

cancer cells will be transformed into non-stem-cell-like 

ones if miR-200 is retransferred to them, and their EMT 

will be reversed.19 Additionally, miR-200c may directly act 

on class III β-tubulin (TUBB3) to recover antimicrotubule 

effects of paclitaxel and reverse drug resistance. Han and 

some other researchers have discovered that the formation 

of stem-cell-like cells with EMT potential is associated with 

HIF-1α and regulated by miR-21.60 MiR-21 inhibits the 

expression of PTEN and activates AKT/ERK1/2 pathways to 

promote EMT,61 mediating invasion and metastasis of breast 

cancer.62 In MCF-7 cell lines, EMT and level of HIF-1α may 

be reversed and lowered by suppressing the expression of 

miR-21 in BCSCs.60 Concerning estrogen-receptor-positive 

breast cancer, miR-22 promotes EMT and metastasis through 

hypermethylation of miR-200 promoter and downregulation 

of ZEB1/2-induced expression of BCSCs. The high expres-

sions of miR-22 in non-TNBC are significantly correlated 

to high-grade cancer cells and relatively poor prognosis of 

tumor cells.63

Compared with other molecular subtypes, TNBC has 

more BCSCs. The expression of miR-205 is downregulated 

in breast cancer cells, which is associated with the recur-

rence of TNBC.64 It also targets ZEB1 and ZEB2, producing 

synergistic effects with the miR-200 family.55 When Notch 

pathway is activated, hairy and enhancer of split 1 (HES1), 

an inhibitory factor, acts upon the miR-205 promoter and 

inhibits the expression of miR-205 to upregulate ZEB1/2 

and then targets Notch2, thus affecting differentiation, EMT, 

and oncogenesis of breast cancer cells.65

Apart from regulating self-renewal of BCSCs as men-

tioned above, miR-34c’s downregulation also promotes EMT 

and inhibits the expression of Notch4, thus suppressing tumor 

metastasis. In addition, E12 and E47, as transcription factors, 

are effective for upregulating the expression of miR-495 to 

inhibit the expression of E-cadherin while promoting stem-

ness acquisition, invasion, and metastasis of breast cancer 

cells.66 By downregulating TGF-β signal pathway and several 

genes regulating stem cells (including JAK1 [Janus kinase 1], 

AKT3 [serine/threonine kinase 3], STAT3 [signal transducer 

and activator of transcription 3], SOX4 [sex-determining 

region Y-box 4], EZH1 [enhancer of zeste 1 polycomb 

repressive complex 2 subunit], and HMGA2 [high mobility 

group AT-hook 2]), miR-93 reduces the number of BCSCs 
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and reverses EMT. At the same time, its anticancer effects 

impact normal mammary stem cells as well.67

To sum up, miRNAs’ signal pathways are somewhat 

associated with the stemness of stem cells and the acquisition 

of drug resistance, which is in accordance with the view that 

“EMT mediated by TGF-β signal pathway may promote the 

expression of stem cell surface markers in normal breast can-

cer cells, which will thus acquire stemness”. Both miR-200 

family and miR-34 affect several different “carcinogenic” 

tendencies of BCSCs, which suggests that these miRNAs, 

with multiple roles against breast cancer, are possibly good 

tools for treatment. Furthermore, breast cancer with different 

molecular subtypes differs in the number of BCSCs and the 

corresponding miRNA expression profiles, which partially 

explains the reason why TNBC is more malignant.

MiRNA-mediated resistance to 
chemotherapies
CSCs could acquire the stemness from other mature tissues 

and cells after induction.68 With a low renewal rate, these 

stem cells may avoid the cytotoxic effects of chemotherapy 

targeting rapidly dividing cells, and thus mediate cancer 

recurrence.69 Existing therapies are not quite ideal for killing 

CSCs,10 so it is of great significance for curing breast cancer 

by killing BCSCs with miRNA. At present, mesenchymal 

stem cells (MSCs) that contain specific miRNAs are used 

for specifically targeting and attacking BCSCs for curing 

cancer, which has been one of the new research interests for 

treating breast cancer over the past 5 years.

Research suggests that drugs targeting drug-resistant 

miRNAs are potent for making breast cancer cells regain 

their sensitivity to chemotherapies.70 Directly inhibiting the 

expressions of BMI1 and ABCC5, miR-148 and miR-128 

strengthen the effects of doxorubicin for promoting apop-

tosis and causing damages to DNA.20,71 For breast cancer, 

the low expression of miR-128 is associated with chemo-

therapy resistance and relatively poor prognosis of patients. 

By downregulating the expression of miR-128 in BCSCs, 

cancer cells will become more resistant to chemotherapies.71 

Overexpression of miR-16 or inhibition of its target WIP1 

may weaken self-renewal abilities of BCSCs in mice, thus 

making MCF7 sensitive to doxorubicin.72

As an integral part of tumor microenvironment, MSCs 

can be easily obtained and directly used without MHC pair-

ing. Mature miRNAs or precursor RNAs may be transferred 

through exosomes.73 MSCs target tumor cells by releasing 

exosomes that contain miRNAs with such effects (e.g., 

miR-16).74 Hence, MSC is regarded as an ideal tool for 

transferring noncoding RNAs like miRNAs. Research has 

proven that co-culture of MSCs with exosomes of miR-23b 

and breast cancer cells may mediate tumor dormancy by sup-

pressing MARCKS (myristoylated alanine rich protein kinase 

C substrate) genes that regulate cell cycle and motility.75 

MiR-127, miR-197, miR-222, miR-223,76,77 miR-21, and 

miR-34a78,79 have been also proven to play some roles in 

tumor cell dormancy, whereas MSC is communicating with 

breast cancer cells. This treatment strategy is still being 

studied. BCSCs are mostly distributed in hypoxic tumor 

regions. If tumor volume is too large, the efficiency of MSCs 

in transferring anticancer miRNAs would be impacted. So 

far, this problem is still unsolved. Another important ques-

tion is whether normal cells are impacted while MSCs are 

excreting exosomes with miRNAs. These questions need to 

be further explored in future basic research.

Future
As more and more in-depth researches are performed, the 

biologic functions of miRNAs have been discovered more 

and more extensively, which would bring new hope for treat-

ing breast cancer. It has been discovered that miRNAs may 

create more chances for diagnosing and treating breast cancer 

in BCSCs. The utilization of miRNAs for treatment would 

weaken self-renewal abilities and antiapoptotic properties 

of BCSCs, and reverse drug resistance. By eradicating stem 

cells, progression, recurrence, and metastasis of breast cancer 

would be prevented. Some practices have demonstrated that 

the content of class-III β-tubulin will decline, and cytotoxic-

ity of paclitaxel will significantly increase if solid lipid nano-

particles with miR-200c are integrated into BCSCs.80 Other 

molecular markers of BCSCs such as miR let-7, miR-16, 

miR-128, and miR-148 are also potential antitumor targets.81 

It is a new therapeutic strategy for transferring miRNAs 

through MSCs and having them act on target BCSCs. The 

clinical safety and therapeutic effects of this strategy remain 

to be further explored.

Previous studies have suggested that the expression 

profiles of miRNAs varied according to various molecular 

subtypes and exhibit some relations with prognosis.82 BCSCs 

widely exist in various subtypes of breast cancer cell lines. 

In fundamental studies, most BCSCs were extracted from 

multiple subtypes of breast cancer cell lines such as MCF-7, 

SKBR-3, and MDA-MB-3 according to molecular mark-

ers with flow cytometry. Compared to breast cancer cells, 

miRNAs have broader effects on BCSCs. For instance, 

let-7c and let-7f are mostly abnormally expressed in luminal 

A breast cancer, which is different from other molecular 
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subtypes, whereas the abnormal expression of let-7 in BCSCs 

has certain impact upon several cell lines (including MCF-7, 

MDA-MB231, and SKBR-3), thus affecting the biologic 

behaviors of breast cancer.83 Apart from luminal A, triple-

negative and HER2-positive types are also included in these 

cell lines, perhaps because BCSCs do not come from normal 

BCSCs, but from the acquisition of stemness by breast cancer 

cells. Hence, targeted attack of BCSCs by miRNAs would be 

more effective than the direct attack of breast cancer cells.

Breast cancer drug resistance is one of the important 

causes that inhibit the prognosis of patients with breast can-

cer. These years, researches on miRNA and breast cancer 

drug resistance have been growing, whereas there is still a 

relative lack of reports on miRNA regulation or even rever-

sion of drug resistance of BCSCs. Drug-resistant breast 

cancer cells have more or less some stem cell traits, and the 

number of BCSCs increases significantly after treatment. 

As a result, breast cancer becomes more malignant and drug 

resistant. Certain potent anticancer miRNAs related to stem 

cells, including miR-200 and let-7, with potential effects for 

increasing chemotherapy sensitivity, are likely to become a 

tool for predicting drug resistance. At present, lots of mol-

ecules and drugs for regulating signal pathways of breast 

cancer are being tested in clinical practices, whereas miRNAs 

are still explored in subclinical animal experiments only. 

This may be due to the complicated mechanisms of BCSCs. 

Further, which miRNA should be chosen, how to precisely 

transform miRNAs into BCSCs, and whether the transferred 

miRNAs or miRNA inhibitors also impact normal cells all 

remain unanswered. In the future, highly specific small-

molecule drugs are expected to regulate miRNA activity and 

potentially eradicate BCSCs to treat breast cancer.
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