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Abstract: Filamentous fungal pathogens have evolved diverse strategies to infect a variety of hosts
including plants and insects. The dynamic infection process requires rapid and fine-tuning regulation
of fungal gene expression programs in response to the changing host environment and defenses.
Therefore, transcriptional reprogramming of fungal pathogens is critical for fungal development and
pathogenicity. Histone post-translational modification, one of the main mechanisms of epigenetic
regulation, has been shown to play an important role in the regulation of gene expressions, and is in-
volved in, e.g., fungal development, infection-related morphogenesis, environmental stress responses,
biosynthesis of secondary metabolites, and pathogenicity. This review highlights recent findings and
insights into regulatory mechanisms of histone methylation and acetylation in fungal development
and pathogenicity, as well as their roles in modulating pathogenic fungi–host interactions.

Keywords: filamentous fungal pathogens; histone methylation; histone acetylation; fungal pathogenicity;
pathogenic fungi–host interactions

1. Introduction

Filamentous fungal pathogens such as phytopathogenic fungi and entomopathogenic
fungi, have a great impact on crop agriculture. Phytopathogenic fungi cause serious plant
diseases that severely decrease crop yield and quality [1]. In contrast, entomopathogenic
fungi that specifically infect insects are a promising environmentally friendly alternative
in controlling agricultural pests [2]. Better understanding of the underlying mechanisms
in fungal pathogenicity and fungi–host/environment interactions is of benefit for the
prevention of crop diseases caused by phytopathogenic fungi, as well as the development
of approaches to improve the efficacy of insect–pathogenic fungi.

To successfully infect and colonize the host (plants or insects), pathogenic fungi have
evolved complicated and delicate infection strategies which involve host cuticle adhesion
and degradation, infection structure differentiation, suppression of host immunity by effec-
tors and toxins, stress management, and nutrient assimilation [3]. The dynamic infection
process requires rapid and fine-tuning regulation of their gene expression programs in
response to the changing host environment and defenses [4–6]. Gene expressions through
a variety of regulatory mechanisms at transcriptional levels have been elucidated, among
which the histone modifications, one of the main epigenetic regulatory mechanisms, appear
to be important especially in shaping fungal pathogenicity [5,6]. Epigenetic regulations
refer to changes in gene expression that do not involve changes to the underlying DNA
sequence—a change in phenotype without a change in genotype, including DNA methyla-
tion, histone modifications, and non-coding RNAs (ncRNA)-associated gene silencing [5,6].
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Here, we describe recent progress in studies of epigenetic regulation in filamentous fungal
pathogens, especially in phytopathogenic fungi and entomopathogenic fungi, with a focus
on the roles of histone modifications in fungal development and pathogenicity, as well
as fungi–host interactions. Since most histone modification enzymes are first identified
in model yeasts and nonpathogenic model fungi, and are also well studied in human
opportunistic fungi, these important research progresses are also briefly introduced in
this review.

2. Histone Modifications

In eukaryotic cells, genomic DNA is packed into a highly organized nucleoprotein
complex known as chromatin. As the basic structural subunit of the chromatin, each nucleo-
some consists of around 146 base pairs of DNA wrapped around an octamer of core histone
proteins, including two subunits of each histone H2A, H2B, H3, and H4. Post-translational
modifications of histone N-terminal tails, such as methylation, acetylation, phosphorylation,
and ubiquitination, regulate chromatin architecture, and consequently, the accessibility
of the transcription machinery to DNA [7] (Figure 1). In general, open chromatin (eu-
chromatin) enables gene transcription, while closed chromatin (heterochromatin) leads to
gene repression [8,9]. Different modifications to the same site and multiple modifications
to different sites coordinate or antagonize to form a “histone code” that mediates a com-
plicated and precise gene regulation web, which finally impacts intracellular biological
processes and phenotypic plasticity in response to stimuli from the environment and the
interacting host [10]. Many different types of post-translational histone modifications have
been described, of which the best understood in filamentous fungal pathogens are the
histone lysine methylation and lysine acetylation.
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Figure 1. A schematic model of histone lysine methylation and acetylation and their regulatory roles 
in filamentous fungal pathogens. Histone lysine methyltransferases (HKMTs), histone lysine deme-
thyltransferases (HKDMs), histone acetylases (HATs), and histone deacetylases (HDACs) for each 
lysine residue reported in filamentous fungal pathogens are depicted. Detailed information about 
these enzymes for respective lysine residues in specific fungal species is included in the text. These 
histone modifications affect chromatin structures to regulate gene transcription. In general, modifi-
cations with methylation of H3K4, H3K36, and H3K79, as well as histone acetylation, result in a 
relaxed and open chromatin (euchromatin) that provides accessibility to the transcription machin-
ery and thus enables gene activation. In contrast, modifications with methylation of H3K9, H3K27, 
and H4K20, as well as histone deacetylation, lead to a condensed and less accessible chromatin (het-
erochromatin) that restricts DNA accessibility to the transcription machinery and represses gene 
transcription. Gene regulation mediated by histone modifications finally controls multiple pheno-
typic plasticity, including conidiation, biosynthesis of secondary metabolite toxins, infection struc-
ture differentiation, effector production, stress responses, and virulence in filamentous fungal path-
ogens. SM, secondary metabolite; DON, deoxynivalenol; ROS, reactive oxygen species. 
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demethyltransferases (HKDMs), histone acetylases (HATs), and histone deacetylases (HDACs) for
each lysine residue reported in filamentous fungal pathogens are depicted. Detailed information
about these enzymes for respective lysine residues in specific fungal species is included in the text.
These histone modifications affect chromatin structures to regulate gene transcription. In general,
modifications with methylation of H3K4, H3K36, and H3K79, as well as histone acetylation, result in a
relaxed and open chromatin (euchromatin) that provides accessibility to the transcription machinery
and thus enables gene activation. In contrast, modifications with methylation of H3K9, H3K27,
and H4K20, as well as histone deacetylation, lead to a condensed and less accessible chromatin
(heterochromatin) that restricts DNA accessibility to the transcription machinery and represses
gene transcription. Gene regulation mediated by histone modifications finally controls multiple
phenotypic plasticity, including conidiation, biosynthesis of secondary metabolite toxins, infection
structure differentiation, effector production, stress responses, and virulence in filamentous fungal
pathogens. SM, secondary metabolite; DON, deoxynivalenol; ROS, reactive oxygen species.

2.1. Histone Methylation

Histone lysine methylation is a dynamic and reversible histone modification, which
plays an important role in modulating the accessibility of DNA to the transcription ma-
chinery and providing signal or docking sites for chromatin remodelers, and subsequently
regulates gene transcription. The site-specific methylation is catalyzed by histone lysine
methyltransferases (HKMTs), mostly with a catalytic Set (Su(var)3–9, enhancer-of-zeste and
trithorax) domain, which transfer a methyl group from S-Adenosyl-L-Methionine (SAM) to
the lysine residues on the N-terminal of H3 or H4 [11]. Based on the relationship between
sequence and domain structures, including the catalytic domain, HKMTs discovered so
far can be classified into six groups: KMT1-6 [12]. Conversely, the methyls on histone
lysine residues are removed by histone lysine demethyltransferases (HKDM). HKDMs
can be classified into five groups: KDM1-5, based on the same guidelines used to classify
KMTs [13]. Histone lysine methylation sites discovered in fungi include H3K4, K9, K36,
K79, and H4K20. Monomethylation, demethylation, and trimethylation (me1/2/3) can
occur on these sites [7]. Depending on their modifying histone lysine sites and methyl
number, histone methylation can either activate or repress gene transcription. Methylation
at all these sites is reported to regulate fungal pathogenicity, which is herein discussed
as follows.

2.1.1. H3K4 Methylation

H3K4 methylation is specifically catalyzed by the KMT2 proteins, typified by Set1 that
functions as a key component of the COMPASS (Complex Proteins Associated with Set1)
complex. COMPASS is a highly conserved protein complex in eukaryotes, which was first
discovered in Saccharomyces cerevisiae [14]. COMPASS is composed of Set1 protein and three
structure proteins Swd3, Bre2, and Swd1, which function together to identify substrates [15].
Two types of enzymes, KDM1 and KDM5, are reported to catalyze H3K4 demethylation in
filamentous fungi [16,17]. The role H3K4 methylation plays in the fungi–host interaction
has been reported in various pathogenic fungi. In the human opportunistic pathogen
Candida albicans, Set1-mediated H3K4me3 activates mitochondrial protein genes to estab-
lish defenses against oxidative stress from host cells during infection [18]. Set1-mediated
H3K4me3 in another opportunistic fungal pathogen Candida glabrata, is necessary for the
azole-induced expression of ergosterol biosynthesis genes that mediate drug resistance [19].
In phytopathogenic fungi, virulence of the wheat and barley pathogen Fusarium gramin-
earum [20], the rice pathogen Fusarium fujikuroi [21], the rice blast fungus Magnaporthe
oryzae [22], and the Brassica anthracnose pathogen Colletotrichum higginsianum is positively
regulated by H3K4 methylation [23]. H3K4me deposited by methyltransferase FgSet1
activates the transcription of genes related to biosynthesis of two toxins, deoxynivalenol
(DON) and aurofusarin in F. graminearum [20]. In F. fujikuroi, the methyltransferase Set1
and the demethylase KDM5 are antagonists for H3K4me [21]. H3K4me2/3 at gibberellic
acids (GAs) clusters activates the GA gene expression, which increases the biosynthesis of
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the toxin GA and contributes to fungal pathogenicity. Furthermore, H3K4me3 activates
the transcription of the conidiation-specific transcription factor gene aba1 and increases
conidiation. H3K4me catalyzed by MoSet1 together with other COMPASS subunits (Mo-
Bre2, MoSPP1, and MoSwd2) at the TSS region of pathogenicity related genes facilitates
infection structure formation in M. oryzae [22,24]. CclA, a S. cerevisiae Bre2 homolog in C.
higginsianum, is required for the genome-wide H3K4me3 that facilitates vegetative growth
(spore gemination, mycelial growth, and asexual sporulation), as well as fungal virulence
(appressorial penetration on host plant), yet inhibits the production of some secondary
metabolites, including terpenoid compounds [23]. Methylation of H3K4 (H3K4me) can also
regulate fungal pathogenicity in a negative way. In the phytopathogenic fungus Botrytis
cinerea, which causes gray mold disease in more than 200 plant species, knockout of the
H3K4 demethylase gene Jar1 (belonging to KDM5 family) causes abnormal genome-wide
H3K4me accumulation and attenuates fungal virulence [17]. The mutant displays defects
in stress adaptation, reactive oxygen species (ROS) production, and infection structure
(appressorium and infection cushion) formation resulting from the downregulation of
genes related with ROS production, stress response, carbohydrate transmembrane trans-
port, and secondary metabolites, etc. In entomopathogenic fungi, only positive regulation
of H3K4me on fungal pathogenicity has been reported. In the entomopathogenic fungus
Metarhizium robertsii, the infection-related morphogenesis is under coordinated regulation
by the KMT2-Cre1-Hyd4 regulatory pathway [25]. KMT2-mediated H3K4me3 upregulates
the expression of the key transcription factor Cre1 that further activates the downstream
hydrophobin gene hyd4 to facilitate fungal appressorium formation and virulence. Sim-
ilarly, the Set1/KMT2-Cre1-hydrophobin regulatory pathway is later shown to regulate
fungal virulence in another important entomopathogenic fungus Beauveria bassiana [26]. In
addition, Set1/KMT2 also modulates asexual cycle and stress responses in B. bassiana.

2.1.2. H3K9 Methylation

H3K9 methylation is specifically catalyzed by KMT1 proteins, the biggest family
in HKMT, exemplified by Schizosaccharomyces pombe Clr4 (Cryptic loci regulator 4) and
Neurospora crassa DIM5 (Defective In Methylation 5) [7]. H3K9 methylation is usually
considered as a hallmark of gene repression. It is closely associated with DNA methylation
and heterochromatin formation, which maintains genome stability [27]. Normal genome-
wide H3K9me distribution is essential for both pathogens and symbionts in fungi–host
interactions. In the entomopathogenic fungus B. bassiana, deletion of dim5 downregu-
lates genes related to cuticle infection and cell wall composition that contribute to fungal
virulence [28]. In the phytopathogenic fungus Botrytis cinerea, the loss of dim5 results in
nearly abolished H3K9me3 and causes downregulation of pathogenicity genes associated
with host signal sensing, host tissue colonization, stress response, toxin synthesis, and
response to host immunity [29]. In the maize pathogen Fusarium verticillioides, H3K9me3 is
largely attenuated by dim5 disruption, leading to significant defects in fungal virulence,
and unexpectedly, increased expression of melanin synthesis genes for osmotic stress toler-
ance [30]. In the mango pathogen Fusarium mangiferae, the loss of kmt1 almost completely
inhibits the biosynthesis of the toxins fusapyrone and deoxyfusapyrone [31]. In the plant
endosymbiotic fungus Epichloë festucae, genes associated with biosynthesis of lolitrems, and
ergot alkaloids are silenced via H3K9me3 catalyzed by Clr4 (KMT1) under non-symbiotic
culture conditions. These genes are activated by the removal of H3K9me3 when the fungus
interacts with the plant host [32]. Expression of effector genes in Leptosphaeria maculans,
which causes stem canker of oilseed rape, is also repressed by DIM5 and HP1 (Heterochro-
matin Protein 1) involved in heterochromatin formation and maintenance during axenic
growth [33].

2.1.3. H3K27 Methylation

H3K27 methylation is catalyzed by KMT6 that functions as a key component of the
PRC2 (Polycomb Repressive Complex 2) complex. In N. crassa, PRC2 is composed of
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the Set-domain-containing component Ezh1 or Ezh2 (belonging to KMT6 family) with
methyltransferase activity, as well as three other proteins, Eed, Npf, and Su(z)12 [34]. Npf
is dispensable but is essential to the formation of local H3K27me3 at the telomeres or
subtelomeres of chromosomes [35]. Ezh2 homolog, together with other PRC2 members,
in budding yeast were first discovered in human opportunistic fungus Cryptococcus ne-
oformans [36]. Similar to H3K9 methylation, H3K27 methylation is also considered as a
gene silencing marker. Secondary metabolism gene clusters in fungi are usually modified
with H3K27 methylation, which regulates the synthesis of metabolites [37]. Regulation of
H3K27me on the target genes also affects fungi–host interactions. In the plant endosym-
biotic fungus E. festucae, H3K27me3 catalyzed by EzhB (KMT6), together with H3K9me3
catalyzed by ClrD (KMT1), silences lolitrems and ergot alkaloids gene clusters under ax-
enic growth condition. H3K27me3 diminishes so that alkaloid biosynthesis is induced in
planta [32]. In plant pathogens, H3K27me is also pivotal in fungal pathogenicity. KMT6 in
M. oryzae is responsible for H3K27me3 which silences virulence-associated genes (such as
effectors) during vegetative growth. During the infection process, H3K27me3 is removed,
immediately activating the virulence-related genes [38]. Similar biological function of
KMT6-mediated H3K27 methylation in fungal virulence has also been reported in Usti-
laginoidea virens and F. graminearum [39,40]. Furthermore, deletion of F. graminearum BP1, a
reader of H3K27me, attenuates fungal virulence [40].

2.1.4. H3K36 Methylation

H3K36 methylation is catalyzed by Set2 (belonging to the KMT3 family) conserved
from yeasts to human. In fact, Set2 is also an RNA polymerase II-interacting protein,
which interacts with the C terminal domain of RNA polymerase II during transcription
elongation [41]. H3K36 methylation catalyzed by Set2 is also produced during transcription
elongation. In yeasts, the single methyltransferase Set2 catalyzes H3K36me1/2/3 [41].
However, in filamentous fungi, another histone methyltransferase which is homologous to
Drosophila melanogaster Ash1 (discs absent, small or homeotic-1) is also identified to catalyze
H3K36 methylation [42,43]. H3K36me1/2 and H3K36me2/3 demethylation are catalyzed
by KDM2 and KDM4, respectively, in fungi [13]. H3K36 methylation regulates both gene ac-
tivation and silencing, which influences fungal normal growth and the interaction between
fungi and hosts. In the model fungus N. crassa, transcription of the circadian gene frequency
(frq) is repressed by Set2-mediated H3K36me so that frq is transcribed in a rhythmic man-
ner, which ensures normal development of the fungus [44]. The H3 lysine 36 trimethylation
(H3K36me3) catalyzed by Set2 facilitates host colonization in F. verticillioides and E. festucae.
In F. verticillioides, genes involved in toxin and pigment synthesis (Fumonisin B1 (FB1)
and bikaverin) are activated by Set2-mediated H3K36me3 [45]. In E. festucae, transcription
of effector genes can be regulated in both positive and negative ways by Set2-mediated
H3K36me [46]. Ash1, another H3K36 methyltransferase, functions together with Set2 to
activate the expression of toxin synthesis related genes in the plant pathogen F. fujikuroi [43].
Besides H3K36 methyltransferases, H3K36 demethyltransferases also takes an active part
in fungi–host interactions. KDM4 homolog in B. cinerea that demethylates H3K36me3 has
been proved to affect fungal virulence and stress response in a positive way by regulating
light-responsive genes [47].

2.1.5. H3K79 Methylation

H3K79 methylation is specifically catalyzed by the Dot1 (disruptor of telomeric silenc-
ing 1) protein (belonging to the KMT4 family), which is the only histone methyltransferase
without a SET domain [48]. Methylation at this site is unique as it is located at the globular
domains of histone H3 instead of unstructured histone tails. Dot1 was first discovered in S.
cerevisiae [49] and Dot1-mediated H3K79 methylation is found to activate genes by prevent-
ing SIR proteins (related with heterochromatin formation) to bind DNA regions [50,51].
The role of Dot1 and H3K79 methylation in filamentous fungi is poorly understood. In the
industrial filamentous fungus Penicillium oxalicum, the loss of Dot1 downregulates genes
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involved in extracellular glycoside hydrolase biosynthesis [52]. In Aspergillus flavus, an
opportunistic fungal pathogen of oil crops and animals, Dot1 positively regulates fun-
gal colonization on maize seeds, indicating that Dot1 might be associated with fungal
pathogenicity [53].

2.1.6. H4K20 Methylation

H4K20 methylation is specifically catalyzed by the KMT5 family. While fruit flies and
mammals possess two types of KMT5, KMT5A and KMT5B/C, responsible for H4K20me1
and H4K20me2/3, respectively [54], fungi possess only one KMT5, named as Set9, which
catalyzes H4K20me1/2/3 [55]. KMT5-mediated H4K20 methylation is usually considered
as a gene silencing mark. Studies on H4K20 methylation in fungi mainly focus on its role
in the cell cycle and DNA repair. In the fission yeast S. pombe, H4K20me2 catalyzed by Set9
participates in the cell cycle checkpoint. When DNA damage is detected at the checkpoint,
H4K20me2 and H2A phosphorylation sites are exposed and bind with the Crb2 protein
(related to DNA damage checkpoint) to start DNA repair [55]. In the rice blast fungus
M. oryzae, KMT5 is proved to be responsible for H4K20me3. Deletion of kmt5 slightly
inhibits fungal vegetative growth but has no impact on conidium germination, conidiation,
appressorium formation, or pathogenicity [22]. Recently, in the phytopathogenic fungus F.
graminearum, KMT5 has been reported to catalyze H4K20me1/2/3 and be required for full
virulence on wheat [56].

2.2. Histone Acetylation

Histone acetylation/deacetylation is one of the best-characterized dynamic and re-
versible histone modifications established by the opposing functions of histone acetyl-
transferases (HATs) and histone deacetylases (HDACs). In general, histone acetylation is
associated with transcriptional activation, whereas histone deacetylation has the opposite
effect on gene transcription.

2.2.1. Histone Acetyltransferases (HATs)

Histone acetyltransferases (HATs) are enzymes that acetylate lysines within the amino-
terminal tails of histone proteins by transferring an acetyl group from acetyl-coenzyme A
(acetyl-CoA) to form
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-N-acetyl lysine. This modification neutralizes the positive charge
of lysines and results in a more relaxed, open, and transcriptionally active chromatin
(euchromatin) structure, enabling active gene transcription [57]. There are two general
categories of HATs based on their cellular locations and functions: type A and type B. Type
A HATs are located in the nucleus and acetylate nucleosomal histones. Type B HATs are
cytoplasmic enzymes that acetylate newly synthesized histones leading to their transport
from the cytoplasm to the nucleus, where they are deposited onto newly replicated DNA
and have no direct impact on transcription. Based on the homology of conserved structural
motifs, type A HATs can be further classified into five families: GNAT (Gcn5-related N-
acetyltransferases), MYST (MOZ, YBF2/SAS3, SAS2, and TIP60), p300/CBP (CREB-binding
protein), basal transcription factors, and nuclear receptor coactivators [58]. Among them,
HATs belonging to GNAT, MYST, as well as the p300/CBP family, have been well-studied
in filamentous fungi, which are summarized as follows.

• GNAT Family

HATs of GNAT family have high similarity with yeast histone acetyltransferase Gcn5
(General control non-derepressible 5). Gcn5 acts as the catalytic subunit and coordinates
with other different regulatory factors in multiple high-molecular-weight protein com-
plexes such as SAGA (Spt-Ada-Gcn5-Acetyltransferase), ADA (Ada2-Gcn5-Ada3), and
SLIK/SALSA (SAGA-like). Gcn5 can acetylate nucleosomal H2B lysines K11, K16, H3
lysines K9, K14, K18, K23, and K27 in either the manner of acting alone or being asso-
ciated with the HAT complexes. Because of different histone sites targeted by Gcn5 for
transcriptional regulation, Gcn5 has been found to be functionally differentiated in the
fungi that adapt to different hosts and environments. Gcn5 was the first identified HAT via



J. Fungi 2022, 8, 565 7 of 23

a screen of sensitive yeast mutants in growth under conditions of amino acid limitation.
Deletion of gcn5 can not derepress the expressions of amino acid biosynthesis genes [59].
Additionally, Gcn5 can also regulate the cell cycle, pseudohyphal development and adap-
tation to environmental stimuli in yeast [60,61]. In the human opportunistic fungus C.
neoformans, Gcn5 regulates the expression of specific genes such as Kre61 that encode a
β-glucan synthase involved in cell wall biosynthesis, which enables the fungus to respond
appropriately to hosts [62]. To sense the N-acetylglucosamine (GlcNAc) on host cell sur-
face and survive in various host niches, the commensal and pathogenic yeast of humans,
C. albicans GCN5-related N-acetyltransferase can bind GlcNAc through its N-terminal
β-N-acetylglucosaminidase domain, which further activates N-acetyltransferase activity in
the C-terminal GCN5-related N-acetyltransferase domain, resulting in promoter histone
acetylation and transcription of all GlcNAc-induced genes [63].

Growing evidence implicates the regulatory role of Gcn5 in fungal morphogenesis,
stress responses, and virulence of pathogenic filamentous fungi. Fungal conidia are required
for the infection cycle of a filamentous fungal pathogen on plants and insects. Gcn5 in
the SAGA complex activates an asexual development pathway by acetylating H3K14 on
the chromatin of brlA promoter, the central transcription factor gene regulating fungal
conidiation [64]. In B. bassiana, the absence of gcn5 blocks the normal infection against
Galleria mellonella through cuticular penetration, which could be largely attribute to the
repression of two cuticle-degrading proteinase genes, CDEP1 and CDEP2, in the ∆gcn5
mutant (although whether they are direct targets of GCN5 is not confirmed) [64]. Another
GNAT family HAT, Spt10, has also been characterized in B. bassiana, which modulates
development, cell cycle progression, multi-stress responses, and virulence [65]. Deletion of
gcn5 in Ustilago maydis (corn smut) results in long mycelial cells and fuzz-like colonies and
influences dimorphism and virulence [66]. In the phytopathogenic fungus A. flavus, Gcn5
is also crucial for morphological development, aflatoxin biosynthesis, stress responses, and
pathogenicity [67]. F. graminearum Gcn5 is essential for the acetylation of H3K9, H3K18, and
H3K27. Deletion of FgGcn5 results in reduced perithecium formation, increased sensitivity
to oxidative and osmotic stresses, and most importantly, no production of the mycotoxin
deoxynivalenol (DON) that is a virulence factor enabling the fungus to spread from infected
florets into the wheat rachis [68].

Interestingly, several studies show that alterations of histone acetylation in fungi could
be triggered by the interacting bacteria via targeting fungal Gcn5. The intimate contact
between Aspergillus nidulans and the soil-dwelling bacterium Streptomyces rapamycinicus
triggers the fungal SAGA/ADA complex containing Gcn5 and Ada2 proteins, and sub-
sequently leads to an increased acetylation of H3K9 specific for the induction of the sec-
ondary metabolite gene cluster involved in orsellinic acid biosynthesis in A. nidulans [69].
The bacterium Pseudomonas piscium isolated from the wheat head microbiome secrets the
compound phenazine-1-carboxamide that directly inhibits the activity of Gcn5 in F. gramin-
earum, leading to the deregulation of histone acetylation, repression of gene expression,
and suppression of fungal growth and pathogenicity [70]. Therefore, the findings that the
bacteria-induced or repressed gene expressions in fungi are mediated by histone acety-
lation via Gcn5, have revealed a possible mechanism by which fungi integrate stimuli
from interacting species. However, whether plant or insect hosts could also target fungal
Gcn5 to manipulate the pathogen global transcription still remains unknown, and therefore
needs more attention. A comprehensive understanding of the mechanisms underlying the
fungi–microbe interactions will provide new opportunities to control plant diseases caused
by pathogenic fungi.

Notably, HATs of the GNAT family can also catalyze non-histone proteins [71]. Gcn5 di-
rectly acetylates Rph1, the Jmjc-domain-containing demethylase that catalyzes the removal
of H3K36me2/me3, and subsequently the autophagic degradation of Rph1 dependent on
the Gcn5-containing SAGA complex results in the derepression of DNA-damage genes
to regulate cell homeostasis under DNA damage stress [72]. Autophagy in M. oryzae is
important for the establishment of rice blast disease, and Gcn5 negatively regulates light-
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and nitrogen-starvation-induced autophagy by acetylating the autophagy protein Atg7
in cytoplasm [73]. In contrast, another histone acetyltransferase Hat1, which encodes a
subunit of a type B HAT, is phosphorylated by the protein kinase Gsk1 and translocated
with the protein chaperone Ssb1 into the cytoplasm to acetylate Atg3 and Atg9, both of
which are critical for appressorium development and pathogenicity of M. oryzae [74].

• MYST Family

The MYST family is named after the founding members, including MOZ (monocytic
leukemia zinc-finger protein), YBF2 (yeast binding factor 2)/SAS3 (something about si-
lencing 3), SAS2 (something about silencing 2), and TIP60 (Tat interactive protein-60). The
MYST proteins are the largest HAT family, mediate a diverse variety of biological functions,
and preferentially acetylate histones H4 and H2A [75]. These MYST-related proteins show a
high degree of sequence conservation in the acetyl-CoA binding and zinc finger regions [76].
In fungi, the most studied MYST histone acetyltransferases are SAS2, SAS3, and ESA1
(essential Sas2-related acetyltransferase 1).

Sas2 is the catalytic subunit of the SAS HAT complex (Sas2p-Sas4p-Sas5p) and respon-
sible for the acetylation of H4K16 [77]. Sas2 is implicated in the regulation of transcriptional
silencing via interacting with the chromatin assembly factor Asf1 to promote silencing at
the HML mating-type loci and telomeres, since deletion of Sas2 leads to the derepression of
HML and a telomere proximal reporter gene [76]. Sas2 also regulates DNA replication and
cell cycle progression [78]. In the necrotrophic fungal pathogen B. cinerea, Sas2 regulates
the transcription of plant cell wall degradation and oxidative stress-response genes by
controlling the acetylation level of H4K16, thereby affecting the virulence and oxidative
sensitivity [79].

Sas3, as a catalytic subunit of the NuA3 (nucleosomal acetyltransferase of histone H3)
complex, is responsible for H3 acetylation (specifically acetylate H3K9 and H3K14) [80].
Since Sas3 and Gcn5 have overlapping patterns of acetylation, deletion of Sas3 alone does
not produce any remarkable phenotypic changes in S. cerevisiae. However, its simultaneous
disruption of Gcn5 causes extensive, global loss of H3 acetylation and cell cycle arrest
that is synthetically lethal to cells [81]. Unlike Sas3 deletion in yeast, Sas3 disruption in
M. oryzae alone has a profound effect on pre-penetration development, including asexual
reproduction, germination, and appressorium formation [82]. In F. graminearum, Sas3 is
indispensable for the acetylation of H3K4, while FgGcn5 is essential for the acetylation of
H3K9, H3K18, and H3K27. Both are required for DON biosynthesis and pathogenicity [68].
Two Mysts in A. flavus, including MystA (Sas2 orthologue) and MystB (Sas3 orthologue),
with opposite functions have been identified. MystA acetylates H4K16 and plays a negative
role in sclerotia formation and aflatoxin B1 production, while MystB acetylates H3K14,
H3K18, and H3K23 and positively affects sclerotia formation and aflatoxin B1 produc-
tion [83]. Deletion of Hat1, the Sas3 homolog in the insect pathogen M. robertsii, results in a
decrease in global H3 acetylation and activation of orphan secondary metabolite genes [84].
Mst2 (Sas3 orthologue) in B. bassiana has shown to mediate global gene transcription
and/or post-translation through H3K14 acetylation, which enables regulating multiple
stress responses and plays an essential role in sustaining the biological control potential of
the fungus against arthropod pests [85].

Esa1 is the catalytic subunit of the NuA4 (nucleosomal acetyltransferase of histone
H4) complex that is more complex and consists of 13 proteins. Esa1/NuA4 is capable of
acetylating multiple sites, most notably H4K5, K8 and K12, H2AK7 and H2BK16 [86]. Esa1
is involved in chromatin remodeling, transcriptional activation, and elongation [87,88]. In
S. cerevisiae, Esa1 is essential for cell viability and cell cycle progression and regulates telom-
eric heterochromatin plasticity via H4K12 acetylation [89–91]. Esa1 contributes mainly to
acetylation of H4K5 and H4K12, and the esa1 mutant exhibits sensitivity to thermal, geno-
toxic, and oxidative stresses in C. albicans [92]. Overexpression of Esa1 increases secondary
metabolites production through enhancing H4K12 acetylation in A. nidulans [93]. H4 acety-
lation mediated by NuA4 complex is important for fungal growth, conidiation, sexual
development, and pathogenicity in F. graminearum [94]. Interestingly, Esa1 is also implicated
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in acetylating non-histone substrates. In yeast, Esa1 controls key metabolic target-regulating
gluconeogenesis by acetylating K19 and 514 of phosphoenolpyruvate carboxykinase [95].
Esa1 is required for autophagy by acetylating the autophagy signaling component Atg3 in S.
cerevisiae [96], which resembles the role of Gcn5 in the acetylation of Atg7 in M. oryzae [73].
However, further research is needed to explore whether Esa1-mediated acetylation in
autophagy regulation also plays an important role in pathogenic fungi.

• Rtt109

Rtt109 (regulator of Ty1 transposition gene product 109, a structural homolog of
p300/CBP) is fungal-specific, responsible for the acetylation of H3K9, H3K27, and mostly
H3K56 [97]. Activation of the acetyltransferase activity of Rtt109 needs two histone chaper-
ones, Asf1 (anti-silencing function protein 1) and Vps75 (vacuolar protein sorting-associated
protein 75). Distinct histone chaperones help direct Rtt109 substrate selection for different
biological processes; Rtt109-Asf1 acetylates H3K56, while Rtt109-Vps75 acetylates H3K9
and H3K27 [98,99]. Rtt109-mediated H3K56 acetylation correlates with actively transcribed
genes and associates with the elongating form of polymerase II [97]. Yeast cells lacking
Rtt109 increase genomic instability and sensitivity to DNA damage stress [100]. Rtt109 reg-
ulates environmentally stimulated white-opaque switching and is required for C. albicans
pathogenicity, suggesting a unique target for therapeutic antifungal compounds [101,102].
In the human opportunistic pathogen Aspergillus fumigatus, the loss of Rtt109 also at-
tenuates virulence in the G. mellonella model, as well as hypersensitivity to genotoxic
agent [103]. Deletion of rtt109 in B. bassiana abolishes H3K56 acetylation and triggers H2A-
S129 phosphorylation that affects global gene activity, and consequently results in increased
sensitivity to multiple stresses and reduced virulence through normal cuticle infection [104].
In addition, Rtt109 mediates morphogenesis, aflatoxin synthesis, and pathogenicity by
acetylating H3K9 in A. flavus [105].

2.2.2. Histone Deacetylases (HDACs)

Histone deacetylases (HDACs) are a group of enzymes that catalyze the deacetylation
by removing acetyl residues from the ε-amino group of lysine residues in the histone
N-terminal tails. This restores the positive charge on the histone tails [106]. In contrast to
histone acetylation, deacetylation causes histones to tightly bind to the DNA, which leads
to highly condensed chromatin (heterochromatin) and DNA not accessible for transcription.
HDACs are found in large multi-protein complexes with transcriptional co-repressors, and
are generally related to transcription repression [58]. Based on phylogenetic analysis and
sequence homology, HDACs are divided into four classes [107]. Class I HDACs are homol-
ogous to yeast Rpd3 (Reduced potassium dependency 3), which contain HDAC1, HDAC2,
HDAC3, and HDAC8. Class II HDACs are homologous to yeast Hda1 (Histone deacetylase
1), which include HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10. Class I and
II HDACs depend on the presence of Zn2+ that acts as a coactivator for deacetylase activ-
ity. Class III HDACs are homologous to yeast Sir2 (NAD+-dependent silent information
regulator 2). Class I, II, and III HDACs have been extensively studied in fungi. However,
Class IV HDAC has only one member, HDAC11, that is highly conserved and presents in
all eukaryotes except fungi [108].

• Class I HDACs

Rpd3 (Reduced potassium dependency 3) is the founding member of the Class I
HDACs in S. cerevisiae, which deacetylates the histones H3 and H4 [109]. In filamentous
fungi, the fungus-specific C-terminal region with only a few acidic amino acids is required
for both the nuclear localization and catalytic activity of the enzyme [110]. Rpd3 functions
in two distinct complexes. The smaller complex (Rpd3S) is recruited to nucleosomes with
Set2 mediated-H3K36 methylation via its unique subunit Eaf3, leading to the deacetylation
of transcribed regions and repression of intragenic transcription initiation [111,112]. In
contrast, the large complex (Rpd3L) is recruited to promoters by site-specific DNA binding
proteins to function in transcription repression [113,114]. Yeast Rpd3 functions as an
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important co-factor with different factors in the regulatory network that controls gene
expression in response to environmental stress [115]. In B. bassiana, Rpd3 plays essential
roles in regulating transcription and posttranscriptional lysine modification of genes in
the central development pathway, and the deletion of Rpd3 causes severe growth defects,
reduction in conidiation, and drastic attenuation in virulence [116]. Dep1, a component of
Rpd3L complex, controls vegetative development, ROS accumulation, and pathogenesis in
F. pseudograminearum [117]. However, Rpd3 disruption in several filamentous fungi, such
as A. nidulans, A. fumigatus, B. cinerea and M. oryzae, is lethal [110,118,119]. Overexpression
of Rpd3 in B. cinerea and M. oryzae results in dramatically impaired infection structure
formation, oxidative stress response, and virulence [118,120]. Transcription of enzymatic
genes are negatively controlled by Rpd3-mediated H3 deacetylation in B. cinerea [118].
Moreover, Rpd3 is implicated to be potentially involved in the TOR (target of rapamycin)-
mediated signaling pathway to regulate fungal reproduction and pathogenic development
in M. oryzae [119]. The line of evidence shows that Rpd3 is essential for the survival of
plant pathogenic fungi, suggesting that RPD3 could be a promising target for identification
and development of new agrochemicals that can effectively control fungal diseases in crop
plants [121].

Hos2 (Hda one similar 2), another member of Class I HDACs, is a component of the
Set3 (Su(var)3–9, enhancer-of-zeste and trithorax 3) complex (Set3C) [122]. Hos2 specifically
deacetylates the H3 and H4 lysines, and antagonizes the MYST acetyltransferase Esa1 in
the DNA damage response [123,124]. In contrast to other Class I HDACs, Hos2 is directly
required for gene activation in S. cerevisiae [123]. Growing lines of evidence indicate that
Hos2 plays important roles in fungal pathogenicity. In Cochliobolus carbonum, a fungal
pathogen of maize, Hos2 affects extracellular depolymerase expression and virulence [125].
F. graminearum HDF1, an ortholog of Hos2, is involved in spore formation, DON produc-
tion, and plant infection [126]. The Set3/Hos2 complex has distinct regulatory functions in
different pathogenic fungi. Set3C in C. albicans attenuates cAMP-PKA signaling to repress
yeast-to-filament transition and modulate white–opaque switching [127,128]. However, in
U. maydis, Hos2 acts as a downstream component of the cAMP-PKA pathway to directly
control the expression of mating-type genes via H4K16 deacetylation, and thus is required
for the dimorphic switch and pathogenic development [129]. The relationship whereby
Hos2 functions downstream of cAMP pathway has also been found in M. oryzae, indicating
that it is likely to be conserved in filamentous fungal pathogens [130]. M. oryzae Hos2, as
the core component of the Tig1 complex, deacetylates H3K18 and H4K16 and is required
for full virulence through transcriptional regulation of ROS detoxifying genes and effector
genes [130,131]. Moreover, Hos2 in B. bassiana not only directly deacetylates H4K16 but
also indirectly affects H3K56 acetylation and phosphorylation of H2A serine129 (H2A-S129)
and cyclin-dependent kinase 1 (CDK1) tyrosine 15 (CDK1-Y15), which further regulates
sensitivity to DNA damage and oxidative stress, cell cycle, and fungal virulence [132].
When penetration into the insect hemocoel occurs, M. robertsii HDAC1 is downregulated
due to the decreased HAT1-mediated H3K4 acetylation in its promoter bound chromatin,
which further leads to the derepression of H3K56 acetylation and activation of the reg-
ulatory protein COH1 (colonization of hemocoel 1) gene. COH1 physically contacts the
transcription factor COH2 (colonization of hemocoel 2) to reduce COH2 stability, which
thus switches off genes for cuticle penetration and switches on key genes for hemocoel
colonization. This regulatory cascade precisely controls a distinct set of genes of M. robertsii
in response to cuticle and hemocoel microenvironments during infection of insects [133].

• Class II HDACs

HDA is a Class II histone deacetylase complex consisting of three subunits: the cat-
alytic subunit Hda1 (Histone deacetylase 1) and accessory factors Hda2 and Hda3. HDA
complex specifically deacetylates acetylated lysines on H3 (K9, K14, K18, K23, and K27)
and H2B (K11 and K16) [134], and antagonizes and competes with Gcn5 for space on
promoters [135]. Disruption of HDA increases promoter H3K18 acetylation and transcrip-
tional activation in the trehalose metabolic pathway, which results in resistance to DNA
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damage and osmotic stresses and finally promotes yeast longevity [136]. Hda1 functions
as a central mediator controlling mating and virulence by transcriptionally regulating
genes required for adaptation and virulence [137]. Several studies show that Hda1 can
modulate the expression of secondary metabolite genes, either positively or negatively
in filamentous fungal pathogens [138–141]. Hda1 in F. fujikuroi is required for normal
germination, vegetative growth, and fungal virulence [139]. In U. maydis, Hda1 is essential
for teliospore development, and acts as a repressor of the biotrophic marker gene mig1 that
encodes a small, secreted, cysteine-containing hydrophilic protein specifically expressed
during infection [142,143].

Some Class I and Class II HDACs have also been proved to target nonhistone proteins.
Rpd3 has been identified as a negative regulator of autophagy since deletion of Rpd3
increases Atg3 acetylation and accelerates autophagy in yeast [96]. Hda1 and Rpd3 deacety-
late Hsp90, an essential molecular chaperone required for drug resistance and pathogenesis
in C. albicans, leading to its compromised chaperone function [144]. The acetylation and
deacetylation state of Eaf1 (the platform protein of NuA4) at K173, regulated via the op-
posing actions of Esa1/NuA4 and Hda1, mediates merge and separation of the NuA4 and
SWR1 (ATP-dependent chromatin remodeling complex) in C. albicans that controls the
expression of hypha-specific genes to modulate the yeast-hyphal transition [145].

• Class III HDACs

Class III HDACs are sirtuin family enzymes that are related to the transcriptional
repressor Sir2 (Silent information regulator 2) in budding yeast [146]. In contrast to Class
I and II HDACs, the sirtuins catalyze deacetylation by a different mechanism that de-
pends on the cofactor NAD+ [147]. Sir2 deacetylates lysines on H3 and H4 histones, and
generally represses transcription via the promotion of heterochromatin formation [148].
Sir2-dependent hypoacetylated heterochromatin also represses rDNA recombination and
controls genome stability at the telomeric and subtelomeric regions [149–151]. This is
particularly important for microbial pathogens that utilize genome plasticity as a strat-
egy to rapidly and reversibly adapt to different environmental niches [149]. Therefore,
Sir2 has been involved in the regulation of fungal virulence. In C. albicans, Sir2 controls
phenotypic switching and chromosome stability by organizing chromatin structure [152].
In the opportunistic fungal pathogen C. glabrata, Sir2 suppresses the expression of EPA1
that encodes the major epithelial adhesin important for fungal survival and proliferation
in the host environment [153]. The loss of Sir2 in C. neoformans shortens the replicative
lifespan, impairs fitness, and decreases virulence [154,155]. Aside from pathogenic yeasts,
the regulatory role of Sir2 in filamentous fungal pathogens has been poorly studied. In M.
oryzae, Sir2 is dispensable for appressorium development and rice cuticle penetration but
is essential for biotrophic growth due to its role in neutralizing host ROS [156]. The un-
derlying mechanism is that Sir2 deacetylates a JmjC domain-containing protein (a histone
demethylase) to alleviate SOD1 (superoxide dismutase) transcript repression and detoxify
host ROS. In B. bassiana, Sir2 regulates a distinct set of cellular targets that affect conidiation,
carbon utilization, stress responses, blastospore development, and virulence [157]. In
addition to deacetylation of specific histone lysines (H3K9, H3K56, H4K5, H4K12, and
H4K16), Sir2 can also target a large set of cytoplasmic proteins, including a benzoquinone
oxidoreductase implicated in the detoxification of cuticular compounds and two fungal
LysM effectors critical for virulence.

Since HDACs are involved in regulating genes required for fungal survival, develop-
ment, and pathogenicity, they are considered as potential targets of antifungal agents [107].
The epigenetic manipulation by HDAC inhibitors (HDACIs) is emerging as a promising
approach in the control of pathogenic fungi [158]. Trichostatin A (TSA), suberoylanilide
hydroxamic acid (SAHA), and sodium butyrate (NaBut) that can manipulate fungal histone
acetylation levels, have been discovered as antifungal compounds [159,160]. TSA and
SAHA mainly play a role in hijacking the activity of Class I and II HDACs by binding to
the Zn2+ sites via a hydroxamic acid group [158]. NaBut is a short chain fatty acid and
inhibits HDACs activity, while its precise action mechanism remains unknown [158]. TSA
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treatment significantly delays the growth and germination of the human opportunistic
fungus A. fumigatus via the inhibition of the RpdA C-terminal [110]. TSA treatment also
enhances C. albicans sensitivity to azoles and the related antifungals [161]. Treatment of the
rice blast fungus M. oryzae with HDAC inhibitors of the Rpd3/Hda1 family and TSA results
in the inhibition of appressorium formation and decreased pathogenicity, respectively [162].
In the human pathogenic fungus C. neoformans, both of TSA and NaBut can attenuate
fungal virulence by affecting their growth at 37 ◦C, capsule expansion, and melanin syn-
thesis [163]. Furthermore, NaBut conducts a more stable and intense effect than TSA on
the damage of virulence factors in C. neoformans. Otherwise, a synthetic fungal-specific
HDACI, MGCD290, described to be specific for Hos2 in Candida species, also functions as
an inhibitor of several clinical pathogens’ growth, such as Candida and Aspergillus species, in
combination with fluconazole, voriconazole, and posaconazole [164]. Apart from the wide
application of HDACIs in clinical fungal pathogens, the impact of epigenetic modifying
agents on phytopathogenic fungi and entomopathogenic fungi, as well as their applications,
have not been fully understood, which still require further studies.

3. Concluding Remarks and Perspectives

Epigenetic mechanisms such as histone modifications have been elucidated to play
a pivotal role in regulating gene expression in filamentous fungal pathogens, and thus
modulate a wide range of biological processes, including fungal sporulation, morphological
differentiation, environmental stress responses, biosynthesis of secondary metabolites, and
pathogenicity (Figure 1, Table 1). Precise control of gene expressions is important for
fungal pathogens to cope with host defense, as well as the changing host environmental
conditions, such as osmotic and oxidative stresses, to facilitate infection. The roles of
histone modifications in pathogenic fungi are summarized in Table 2.

Table 1. Enzymes of histone methylation and acetylation and their regulatory roles in filamentous
fungal pathogens.

Histone
Modifications

Enzymes

Phenotypic Plasticity

Ref. No.
Conidiation

Secondary
Metabolite
Synthesis

Infection
Structure

Differentiation
Effector

Production
Stress

Response Virulence

Histone
methylation

KMT1 + * +/− + - + + [28–31,33]

KMT2 + + + ND + + [18,20–26]

KMT3 + + ND ND ND + [43,45]

KMT4 + + ND ND - + [53]

KMT5 ND + ND ND - + [56]

KMT6 + ND ND - - + [38,39]

Histone
demethylation

KDM4 + ND + ND + + [47]

KDM5 + + + ND + + [17,21]

Histone
acetylation

Gcn5 + + ND ND + + [64–68]

Sas2 ND - ND ND + + [79,83]

Sas3 + +/− + ND + + [68,82–85]

Esa1 + + ND ND ND + [94]

Rtt109 + + ND ND + + [104,105]

Histone
deacetylation

Rpd3 +/− ND - ND - +/− [116–120]

Hos2 + + + + +/− + [125,126,
129–132]

Hda1 + +/− ND - ND + [138–143]

Sir2 + ND + ND + + [156,157]

* +, positively regulation; −, negatively regulation; ND, not detected.
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Table 2. Pathogenic fungal species included in this review and the respective virulence factors directly
regulated by histone modification enzymes.

Fungal
Classification Fungal Species Enzymes Modifications Virulence Factors Ref. No.

Phytopathogenic
fungi

Aspergillus flavus

KMT4 ND * ND [53]

Gcn5 H3K14 ac ND [67]

Sas2 H4K16 ac aflatoxin [83]

Sas3 H3K14/K18/K23
ac aflatoxin [83]

Rtt109 H3K9 ac ND [105]

Botrytis cinerea

KDM5 H3K4deme ND [17]

KMT1 H3K9me ND [29]

KDM4 H3K36deme ND [47]

Sas2 H4K16 ac ND [79]

Rpd3
H3K9/K14/K27
deac, H3K/H4K

deac
ND [118]

Colletotrichum higginsianum CclA/COMPASS H3K4me ND [23]

Cochliobolus carbonum Hos2 ND ND [125]

Fusarium fujikuroi
KMT2, KDM5 H3K4me/deme GA [21]

KMT3, Ash1 H3K36me GA [43]

Hda1 H3K9 deac ND [139]

Fusarium graminearum

KMT2 H3K4me DON [20]

KMT5 H4K20me ND [56]

Gcn5 H3K9/K18/K27 ac DON [68]

Sas3 H3K4 ac DON [68]

Esa1 H4K ac ND [94]

Hos2 ND ND [126]

Fusarium mangiferae KMT1 H3K9me ND [31]

Fusarium pseudograminearum Dep1/Rpd3L ND ND [117]

Fusarium verticillioides
KMT1 H3K9me ND [30]

KMT3 H3K36me FB1 [45]

Leptosphaeria maculans KMT1 H3K9me Effectors (AvrLm1,
AvrLm4-70) [33]

Magnaporthe oryzae

KMT2 H3K4me VelC, MgCONx2,
MGG_04682 [22]

KMT6 H3K27me Effectors (BAS4, BAS2,
AVR-Pi9, SLP1) [38]

KMT5 H4K20me ND [22]

Gcn5 non-histone ac Atg7 [73]

Hat1 non-histone ac Atg3, Atg9 [74]

Sas3 ND ND [82]

Rpd3 ND ND [119,120]

Hos2 H3K18/H4K16
deac ND [130,131]

Sir2 non-histone deac Jmjc [156]

Ustilago maydis
Gcn5 ND ND [66]

Hos2 H4K16 deac mating-type genes [129]

Hda1 ND mig1 [142,143]

Ustilaginoidea virens KMT6 H3K27me
Effectors (Uv8b_6470,

Uv8b_2964, Uv8b_2286,
Uv8b_3638, Uv8b_562)

[39]
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Table 2. Cont.

Fungal
Classification Fungal Species Enzymes Modifications Virulence Factors Ref. No.

Entomopathogenic
fungi

Beauveria bassiana

KMT2 H3K4me ND [26]

KMT1 H3K9me ND [28]

Gcn5 H3K9/K14/K18/K27
ac CDEP1, CDEP2 [64]

Spt10 H3K56 ac ND [65]

Sas3 H3K14 ac ND [85]

Rtt109 H3K56 ac ND [104]

Rpd3 H3K9/K14/K27
deac, H4K12 deac ND [116]

Hos2 H4K16 deac ND [132]

Sir2
H3K9/K56 deac,
H4K5/K12/K16

deac
ND [157]

Metarhizium robertsii

KMT2 H3K4me Cre1 [25]

Sas3 ND ND [84]

HAT1 H3K4 ac HDAC1 [133]

HDAC1 H3K56 deac COH1 [133]

Human
opportunistic

pathogens

Aspergillus fumigatus
Rtt109 H3K9/K56 ac ND [103]

Rpd3 ND ND [110]

Candida albicans

KMT2 H3K4me SOM1, TOM5 [18]

Gcn5 non-histone ac GlcNAc [63]

Esa1 H4K5/K12 ac ND [92]

Rtt109 H3K56 ac ND [101,102]

Hos2/Set3C ND ND [127,128]

Hda1, Rpd3 non-histone deac Hsp90 [144]

Esa1/Hda1 non-histone
ac/deac Eaf1 [145]

Sir2 ND ND [152]

Candida glabrata Sir2 ND EPA1 [153]

Cryptococcus neoformans
KMT6 H3K27me ND [36]

Gcn5 ND Kre61 [62]

Sir2 ND ND [154,155]

* ND, not detected; me, methylation; deme, demethylation; ac, acetylation; deac, deacetylation.

Histone modifications regulate gene transcription via changing the chromatin struc-
ture and controlling the access of transcription factors to gene promoters [9,106]. Generally,
methylation of H3K4, H3K36, and H3K79, as well as histone acetylation, activate gene tran-
scription, while methylation of H3K9, H3K27, and H4K20, as well as histone deacetylation,
are associated with transcriptional repression. Histone modifications usually distribute
across the fungal genome and regulate global gene expression. Single deletion of genes
responsible for histone modifications usually has pleiotropic effects on asexual develop-
ment and virulence in filamentous fungal pathogens, and their key targets contributing
to fungal pathogenicity are not identified in most studies. Several studies have revealed
that histone modifications can directly regulate several key genes involved in secondary
metabolite biosynthesis, appressorium formation, and adaptation to the host microenviron-
ment [25,37,133]. Therefore, fully understanding the function of histone modifications in
fungal development and pathogenicity requires further identification of their key targets.
Furthermore, although enzymes for histone modifications are highly conserved in fungi,
they regulate various aspects of growth, development, and pathogenesis in different fila-
mentous fungal pathogens. How these enzymes are recruited to the specific gene bound
chromatin has not been fully understood. Since most of these enzymes do not contain
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DNA-binding motifs, it is implicated that they have to associate with other regulatory fac-
tors, such as transcription factors that bind their corresponding DNA elements, chromatin
binding proteins that recognize the existing histone modifications, and non-coding RNAs
that interact with specific DNA sequences, for specific and timely recruitment to target
genes [165–168].

It is becoming clearer that the antagonistic activity of modification writers and their corre-
sponding erasers determines the dynamic regulation of gene expression in fungi [124,135,145].
However, the coordinated functions of different layers of epigenetic modifications, i.e.,
crosstalk among DNA methylation, histone modifications, ncRNAs, and other regulatory
factors, remain to be addressed in the regulation of fungal pathogenicity. Increasing ev-
idence has shown that multiple regulatory modifications are tightly interconnected to
regulate gene transcription [169]. Recent studies in entomopathogenic fungi illustrate
novel cascades that histone modifications directly regulate transcription factors to manip-
ulate infection-related morphogenesis and response to distinct host microenvironments
during infection, respectively [25,133]. Furthermore, the specific environment-sensing path-
ways that control fungal virulence via epigenetic regulators remain poorly characterized.
Several studies indicate that histone modification activity integrates with the upstream
signaling pathways such as the cAMP-PKA pathway to control pathogenic development
and fungal virulence [22,127,129]. Whether other signaling pathways activate or are regu-
lated by epigenetic regulatory components in response to host environmental cues needs
further investigation.

In addition, small RNAs (sRNAs), another type of epigenetic regulator, have been
recently recognized as trafficking effectors to mediate bidirectional transkingdom RNAi
in interacting organisms [170,171]. These small regulatory molecules can be encapsulated
in extracellular vesicles and translocated between filamentous fungal pathogens and their
hosts. Fungal sRNAs are delivered into host cells to suppress host immunity for successful
infection [172,173]. Conversely, host sRNAs serve as a defense strategy by exporting them
to the invading fungus to suppress virulence genes [174–176]. Interestingly, fungal small
secreted protein-type effectors are likely to hijack host epigenetic components and induce
epigenetic changes in the host to enhance host susceptibility and facilitate pathogen infec-
tion [177]. The plant pathogen Verticillium dahliae is able to secrete an effector (secretory
silencing repressor 1, VdSSR1) to the plant nucleus to interfere with the nuclear export of
AGO1-miRNA complexes, resulting in the inhibition of antifungal RNAi and increased
virulence in plants [178]. The cytoplasmic effector PsAvh23 produced by the soybean
root rot pathogen Phytophthora sojae binds to the ADA2 subunit of SAGA complex in the
host, and disrupts the association of ADA2 with the catalytic subunit GCN5 to suppress
H3K9 acetylation and thus increase plant susceptibility [179]. PsAvh52, another early-
induced RxLR effector secreted from P. sojae, recruits a host cytoplasmic transacetylase
into the nucleus that acetylates histones H2A and H3, and thus promotes susceptibility to
the pathogen [180]. Nuclear Localized Effector1 (RiNLE1) of the arbuscular mycorrhizal
(AM) fungus Rhizophagus irregularis is translocated into the host nucleus where it interacts
with the plant core nucleosome protein H2B and impairs the mono-ubiquitination of H2B,
which results in the suppression of defense gene expression [181]. Aside from effectors,
filamentous fungal pathogens have also utilized toxins to cause host transcriptional re-
programming via altering the action of epigenetic enzymes. Phytopathogenic fungi are
known to produce HDAC inhibitors such as HC toxin to interfere with host defense gene
expression through inhibiting HDAC activity in maize [6,182]. In turn, it has also been
reported that the interacting bacteria can target fungal Gcn5 to change fungal histone
acetylation that results in the induction of secondary metabolite synthesis or inhibition of
fungal pathogenicity [69,70]. However, the molecular mechanism that allows host plants
or insects to trigger epigenetic changes, especially histone modifications in filamentous
fungal pathogens, is far from being completely understood. Functional characterization of
effectors (sRNAs and proteins) and their target epigenetic components in the interacting
species are expected to illustrate the molecular bases underlying transcriptional reprogram-
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ming in pathogenic fungi–host interactions, which will further provide novel targets for
prevention of fungal plant diseases and genetic improvement in entomopathogenic fungi
for more effective control of insect pests.
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