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A B S T R A C T   

Phytic acid (inositol hexaphosphate/IP6) is a versatile chemical that is abundant in nature and is required for a 
variety of biological processes. It is harnessed in a wide range of fields, including drug discovery, daily supplies, 
chemical industries, medicine, and dentistry. IP6 is becoming increasingly popular in dentistry, with promising 
results. Several properties, such as cariostatic ability, beneficial impact on enamel disintegration, and anti- 
plaque, anti-tartar, and dental adhesive-forming properties, have been investigated thus far. Due to many con
straints in the literature, there was a point in time when IP6 received less attention, which impacted knowledge 
in this field. Nevertheless, the positive outcomes of the flourishing of IP6 have recently been reconsidered from a 
number of papers that have improved our understanding of its modes of action in the aforementioned appli
cations. The role of phytic acid in refining the properties and manoeuvring of dental resources is being inves
tigated in novel endeavors in treating diseases of pulp and tissues supporting tooth structure, but to show its 
novel therapeutic potential, more precisely calibrated clinical trials are needed. This review examines and dis
cusses the various uses proposed in the literature, as well as the applications of IP6 in dentistry.   

1. Introduction 

Phytic acid (PA) ubiquitously exists in nature as inositol phosphate 
(IP6) in various food grains, legumes, nuts and seeds. The literature goes 
back to Pfeffer’s recognition of the substance in 1872. S. Posternak later 
labelled it “la phytine” in 1903, and Anderson published its structure in 
1914. The highest concentrations of phytates were detected in plant 
seeds and grains, namely, wheat, soybeans, and nuts [Irvine and Schell, 
2001]. They are most frequently found in nature as calcium, magne
sium, and potassium salt mixtures and are also referred to as phytins. 
Crops and cereals with the highest phytate content supply a significant 
portion of inositol and phosphorous (usually accounting for 60–90 % of 
total phosphorous), as well as a significant cation loading site (phytate 
salts) and a high-energy phosphoryl group. It is also found in mammals; 
its concentration varies between 10 and 100 mmol/LD [Chatree et al., 
2020]. On average, vegetarians consume between 2000 and 2600 mg of 

phytate daily. It enters the bloodstream after being swiftly absorbed in 
the GI tract. The large intestine of the human body also contains it 
biologically. The application of phytic acid for dental use is still in its 
infancy, with minimal research. Hence, this review was conducted to 
provide a sufficient background on phytic acid application in dentistry. 

2. Properties of phytic acid 

The therapeutic efficacy of IP6 has kindled the interest of scientists. 
IP6 has good chelation capabilities and antioxidant potential. Other 
functions include antiplatelet aggregation and lipid-lowering effects. IP6 
suppresses human platelet aggregation in vitro in a dose-dependent 
manner [Vucenik et al., 2004]. In pancreatic beta cells, HIV-1 virus 
multiplication is inhibited, and the insulin supply is controlled. It pre
vents kidney stone formation by inhibiting urine calcium oxalate crys
tallization [Grases et al., 1998]. It is used as an implant coating for 
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magnesium alloys, which improves corrosion resistance while also 
stimulating new bone development. IP6 reduces the caries-preventive 
effect of fluoride [Cerklewski, 1992]. Nordbö and Rölla studied the 
ability of IP6 to prevent plaque [Nordbö and Rölla, 1972], and Cole and 
Bowen investigated its impact on dental plaque using rats [Cole et al. 
1980]. IP6 has the ability to attach to hydroxyapatite and form a layer 
on the surface that prevents hydroxyapatite crystal formation and 
disintegration, thus preventing caries formation. In 1983, Prosser et al. 
developed IP6-based dental cement that had a fast setting time and was 
acid resistant [Prosser et al., 1983]. Recent research has investigated the 
potential use of IP6 in dental applications, including as a chelating agent 
in endodontics and an anti-staining agent in oral hygiene aids. 

3. Therapeutic effect of IP6 in the dental domain 

IP6 has recently reawakened interest in the dental field, with several 
research papers examining potential features such as the addition of an 
etchant, a chelating agent, and an anti-plaque agent to oral hygiene 
products. 

3.1. Anti-cariogenic potential of IP6 

The importance of IP6 in the field of dentistry stems from its capacity 
to reduce the caries-preventive effects of fluoride by preventing its 
bioavailability from the dietary matrix when calcium is present. To in
crease the resistance of enamel to acid assault, IP6 can adsorb hy
droxyapatite and create a monomolecular layer on the crystal surface. 
This layer serves as a diffusion barrier for ions, increasing the resistance 
of enamel to acid attack. 

3.1.1. Effect of phytic acid on biofilm formation 
Grases et al. reported that the use of an IP6 mouthwash reduces the 

amount of biofilm available [Grases et al, 2009]. This effect is associated 
with the ability of IP6 to modify the binding affinity of enamel as well as 
its capacity to prevent the crystallization of hydroxyapatite and brushite 
[Grases et al, 2000]. 

Milleman et al. analysed the effect of adding 0.85 % w/w IP6 to a 
tooth cream, which outperformed a control dentifrice for stain removal. 
IP6 is likely to be present in dentifrices both to remove stains and to 
inhibit the acquisition of new stains, which are assumed to be zipping to 
apatite crystal surfaces. By chelating with calcium, this would impair 
protein binding to surfaces, affecting pellicle and dye molecule adhesion 
as well as ionic crosslinking [Milleman et al., 2018]. 

3.1.2. Effect on enamel crystal growth 
IP6 quickly adheres to enamel crystals, forming a coating that is only 

one molecule thick on the crystal surface, increasing the resistance of 
teeth to acidic attack by serving as an ionic dissemination barrier while 
also restricting hydroxyapatite development. Since IP6 is so enormous 
that it cannot permeate within the crystal, it mostly forms a coat on 
hydroxyapatite. On the crystal surface, salt complexes form and pre
cipitate. The level of IP6 on the surface of HA remained mostly unaltered 
after partial disintegration or water washing, demonstrating that IP6 
was compactly amalgamated to HA surfaces. Inhibiting the ability of 
salivary gland proteins and microorganisms to adhere to enamel by 
changing the properties of hydroxyapatite via the adsorption of IP6 is 
one way to avoid the formation of plaque [Magrill, 1973; Koutsoukos 
et al., 1981; Klasa et al., 2013]. 

3.2. Enriched properties of Restorative cements with IP6 

An acid-base reaction produced fast-setting cement when IP6 was 
introduced to the aluminosilicate glass. Due to the decreased mineral 
content of dentine, the resultant cement was more resistant to acid and 
had better adherence to the enamel. Additionally, the mechanical 
characteristics of zinc phosphate cements were improved by IP6. The 

compressive strength doubled when the IP6 concentration increased 
from 0 % to 2 %. The maximum compressive strength was achieved by 
replacing a portion of the orthophosphoric acid with 3–5 % IP6. The 
increased conversion of zinc phytate to zinc phosphate when some of the 
orthophosphoric acid was replaced with phytic acid has been used as a 
justification for the reduced washout of the final cement mix. This 
characteristic could be particularly helpful in fields such as orthodon
tics, where many adhesives are exposed to saliva [Li et al., 1994]. IP6 
significantly slowed the hardening phase of calcium silicate-based pastes 
without affecting their tensile strength. [Uyanik et al., 2019]. 

According to Meininger et al., phytic acid was utilized as a sup
pressor in calcium phosphate-related cements to fulfil clinical standards 
for the amalgamation time of cement [Meininger et al., 2017]. The 
findings from an experiment by Hurle et al. [Hurle et al., 2018] on the 
effects of phytic acid on the hydration and kinetics of brushite cements 
were consistent with those of Meininger et al. It was feasible to increase 
the cement’s injectability by forming a chelated complex between cal
cium ions and the phosphate groups of IP6, which had a significant 
delaying impact on the hydration of cement and a gradual increase in 
adhesive viscosity. 

3.3. Influence of phytic acid on oral microflora 

IP6 has anti-biofilm capabilities against aerobic and anaerobic bac
teria, as well as drug-resistant bacteria. Since IP6 regularly demonstrates 
a wide range of antimicrobial activities, it is likely that membrane film 
disruption serves as the main mechanism of bactericidal action. Its 
germicidal effect on P. aeruginosa and E. coli is mediated by disruption of 
the cell membrane, which increases cell permeability, modifies cell 
shape and decreases the intracellular ATP content. At lower concen
trations, IP6 inhibited S. aureus, E. coli, and P. aeruginosa. IP6 has also 
exhibited antibiofilm efficacy against E. faecalis [Nassar and Nassar, 
2017; Nassar et al., 2021; Nassar et al., 2023]. 

According to Grenby, 1967 streptococci and lactobacilli are vulner
able to IP6 acquired through the diet [Grenby, 1967]. Furthermore, IP6 
has ferric chelation capabilities. Because ferrous iron is a crucial 
component for bacterial propagation and biofilm disposition, treatments 
with iron-chelating agents are effective against perilous organisms. 
Therefore, it is probable that the iron chelation of IP6 helps to explain its 
all-encompassing antibacterial and antibiofilm actions. 

3.4. Phytic acid as a chelating and etching agent 

IP6 considerably enhanced the binding effectiveness of the resin to 
dentine. IP6 was found to be more efficacious than phosphoric acid and 
ethylenediaminetetraacetic acid (EDTA) in removing the smear layer in 
very small quantities, with few side effects on the dentine-pulp complex, 
negligible nanoleakage and mild collagen degradation [Kong et al., 
2017; Forgione et al., 2021; Nassar et al., 2013]. The micro tensile bond 
strength increased when 1 % IP6 etchant was used to etch dentin [Nassar 
et al., 2021]. However, IP6 had no effect on the shear bond strength to 
coronal dentin [Elsayed et al., 2023]. It has been suggested that IP6 has 
less of an erosive effect on radicular dentin [Naeem et al., 2021; Afshan 
et al., 2020]. IP6 binds to demineralized and mineralized dentin in a 
concentration-dependent manner [Forgione et al., 2023]. 

Phytic acid etchant has been shown to stabilize the dentine collagen 
network morphology and produce enhanced resin-dentine bonding on 
demineralized dentine matrix either in the absence or presence of 
moisture [Kong et al., 2015]. IP6 can reverse the negative effects of 
sodium hypochlorite on dentin-resin bond strength and reduces chlorine 
depletion [Nassar et al., 2020]. IP6 does not alter the pulp-lysing po
tential of sodium hypochlorite [Chundi et al., 2022]. IP6 exhibited 
decreased microhardness and increased surface roughness on the dentin 
root canal [Muana et al., 2021]. 
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3.5. Phytic acid in the Regeneration of tooth and its surrounding 
structures 

The effects of ordinary bioactive glass and IP6-derived bioactive 
glass (PSC) on dental stem cells and odontoblast growth were compared 
by Cui et al. in 2017[Cui et al., 2017]. The formation of hydroxycar
bonate apatite was increased by PSC, which could be essential for 
imitating an immediate connection between the biomimetic substance 
and the pulp dentin complex. One study reported that IP6 can trigger the 
release of tTGF-β and bone morphogenic protein 2 and can promote cell 
migration [Deniz Sungur et al., 2019; Atesci et al., 2020]. In the pres
ence of IP6, calcium release from human periodontal ligament cells and 
enhanced cell viability in osteogenic media were observed [Aryal et al 
2023]. The surface modification of titanium surfaces composed of phytic 
acid and calcium hydroxide improved bone formation and osseointe
gration [Liu et al., 2019; Dong et al., 2023]. 

3.6. Influence of phytic acid on the mechanical properties of dental 
materials 

In 1980, the idea of using IP6 was proposed when it was integrated 
with a glass ionomer, resulting in a mixture that quickly formed due to 
the acid-base reaction. The mechanical properties of cements made from 
zinc phosphate were improved by adding IP6. With a 2 % increase in the 
IP6 concentration, the compressive strength quadrupled. By substituting 
3–5 % IP6 for phosphoric acid, which enhanced the strength, the 
maximum compressive strength was obtained. When phytates were 
added separately, the reaction occurred quickly, the setting time was 
short, and the hardening time could be adjusted by changing the amount 
of water added or the ratio of acid to water, leading to a setting time that 
was more advantageous. IP6 is more stable than zinc phosphate, and it 
was expected that when some of the phosphoric acid was substituted 
with IP6, leakage from the resultant cement decreased [Li et al., 1994]. 
IP6 can enhance the microshear bond strength of glass ionomer cement 
when used as a dentin conditioner [Souparnika et al., 2023]. The above 
studies suggest that IP6 has substantial advantages in enhancing the 
mechanical properties of cements. 

4. Conclusion 

In conclusion, phytic acid is a potential natural compound in 
dentistry, with recent advancements in formulation and clinical testing 
indicating its growing relevance in oral health. Despite its potential, 
further research, refinement of delivery systems, and regulatory 
approval are essential for maximizing its benefits in improving dental 
care. 
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