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Abstract

Aging reduces the number of mesenchymal stem cells (MSCs) in the bone marrow which leads to 

impairment of osteogenesis. However, if MSCs could be directed toward osteogenic 

differentiation, they could be a viable therapeutic option for bone regeneration. We have 

developed a method to direct the MSCs to the bone surface by attaching a synthetic high affinity 

and specific peptidomimetic ligand (LLP2A) against integrin α4β1 on the MSC surface, to a 

bisphosphonate (alendronate, Ale) that has high affinity for bone. LLP2A-Ale increased MSCs 

migration and osteogenic differentiation in vitro. A single intravenous injection of LLP2A-Ale 

increased trabecular bone formation and bone mass in both xenotransplantation and immune 

competent mice. Additionally, LLP2A-Ale prevented trabecular bone loss after peak bone 

acquisition was achieved or following estrogen deficiency. These results provide a proof of 

principle that LLP2A-Ale can direct MSCs to the bone to form new bone and increase bone 

strength.
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Introduction

A decrease in the number of mesenchymal stem cells (MSCs) in the bone marrow with 

aging leads to reduced osteogenesis and bone formation 1–3. Bone regeneration through 

induction of MSCs could promote osteogenesis and provide a rational therapeutic strategy 

for preventing age-related osteoporosis. Both autologous and allogeneic stem cells have 

been successfully infused for the treatments of degenerative heart, neuronal diseases or for 

injury repair 4–6. However, systemic infusions of MSCs in vivo have failed to promote an 

osteogenic response in bone due to the inability of MSCs to home to the bone surface unless 

they were genetically modified 7–10 or following certain conditions such as injuries 8,11,12. 

This has become a major obstacle for MSC transplantation13,14. Even if the transplanted 

MSCs make it to “bone”, they are usually observed engrafted in the upper metaphysis, the 

epiphysis, within bone marrow sinusoids or the Haversian system 14–16 rather than at the 

bone surface. Subsequently, the cells are removed from bone marrow within 4–8 weeks and 

do not show long term engraftment14,15,17.

MSCs within the bone marrow have multi-lineage potential that give rise to a number of cell 

types including osteoblasts, chondrocytes and adipocytes 18,19. MSCs undergo osteogenic 

differentiation in the bone marrow 9,20, and mobilization of the osteoblastic progenitors to 

the bone surface is a critical step in osteoblast maturation and formation of mineralized 

tissue 21,22. Bone cells at all maturation stages are dependent on cell-matrix and cell-cell 

interactions23,24. Once the osteoblastic progenitors are “directed” to the bone surface, they 

synthesize a range of proteins including osteocalcin, osteopontin, bone sialoprotein, 

osteonectin, collagen-I and fibronectin that will further enhance the adhesion and maturation 

of osteoblasts25,26. These interactions are largely mediated by transmembrane integrin 

receptors that primarily utilize an arginine-glycine-aspartate (RGD) sequence to identify and 

bind to specific ligands. MSCs express integrins α1, 2, 3, 4, 6, 11, CD51 (integrin αV), and 

CD29 (integrins β1) 27, while integrins with β1 subunit are reported to be expressed in the 

osteoblasts 23,25. Integrin α5 is required for MSC osteogenic differentiation 28, and 

overexpression of α4 integrin in MSCs has been reported to increase homing of MSCs to 

bone 29. These studies suggest a therapeutic strategy for bone regeneration could be directed 

toward the integrins that are present on the MSCs surface and could bring the MSCs to the 

bone surface.

We used a one-bead-one compound (OBOC) combinatorial library method to develop a high 

affinity and specific peptidomimetic ligand, LLP2A, against activated α4β1 integrin (IC50 = 

2 pM) 30. However, scrambled LLP2A ligand, loses its affinity to α4β130. We conjugated 

the LLP2A to a bisphosphonate, alendronate, which served as a bone seeking component, to 

“direct” cells and the compound to bone. We hypothesized this hybrid compound, LLP2A-

alendronate (LLP2A-Ale, Supplementary Fig. 1), could be used to direct MSCs to bone and 

augment bone formation.
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Results

General in vivo and in vitro effects

We treated the mice with a wide range of LLP2A-Ale doses (0.03 nmol – 2 nmol) and did 

not observe any organ toxicity as evaluated by standard measurements of weight, kidney and 

liver function, and calcium metabolism. Also, we did not observe extraskeletal calcifications 

in mice treated with either LLP2A or LLP2A-Ale.

We used color-coded peptide-beads (rainbow beads) to semi-quantitatively determine the 

integrin profiles of MSCs undergoing osteogenic differentiation 31. We found that α4β1 

integrin was highly expressed in the osteoprogenitor cells and had high affinity to LLP2A 

(Supplementary Fig. 2). LLP2A-Ale increased both MSC osteoblast maturation and function 

(Fig. 1a, c) as well as their migration (Fig. 1d, e) but did not affect their chondrogenic or 

adipogenic potentials.

LLP2A-Ale increases MSCs bone homing and retention

To determine if LLP2A-Ale could direct transplanted MSCs to bone, we performed a 

xenotransplantation study. We intravenously (IV) injected human MSCs (huMSCs) or with 

LLP2A-Ale to NOD/SCID/MPSVII mice. Twenty-four hours after the IV injection, we 

observed a number of huMSCs adjacent to the periosteal, endocortical and trabecular bone 

surfaces in the lumbar vertebral bodies (LVB) only in mice co-injected with LLP2A-Ale and 

huMSCs (Fig. 2a).

At three weeks, huMSC cells were observed adjacent to the bone surface and embedded 

within in the bone matrix only in the huMSC+LLP2A-Ale treated group, suggesting that 

there was retention of the transplanted huMSCs (Supplementary Fig. 3a) in bone. We 

observed significantly higher levels of procollagen type I amino-terminal prepeptide 

(P1NP), an early osteoblast differentiation marker, in LLP2A-Ale or MSC treated groups. 

While osteocalcin, an osteoblast maturation marker, and bone formation parameters were 

significantly higher in LLP2A-Ale and MSCs + LLP2A-Ale treated groups compared to 

PBS or MSC controls (P < 0.05) (Fig. 2b–c).

In mice that were treated with green fluorescent protein (GFP) labeled mouse MSCs or with 

LLP2A-Ale, the combination treatment significantly increased the number of the GFP-

positive osteoblasts and osteocytes at both the trabecular (Fig. 2d) and cortical bone regions 

(Supplementary Fig. 3b) of the LVB at three weeks. Collectively, these data demonstrate 

that LLP2A-Ale can direct transplanted MSCs to bone, and this increased the MSCs homing 

and retention to bone and enhanced endosteal and periosteal bone formation in this 

xenotransplantation model.

LLP2A-Ale augments bone formation in immunocompetent mice

To determine if LLP2A-Ale could augment endogenous bone formation in immune 

competent mice without MSC transplantation, we used two-month-old female 129SvJ mice 

that received two doses of LLP2A-Ale that represented the significantly effective dose and 

maximum anabolic dose in our preliminary studies. Two days after the IV injections, 
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expressions of LLP2A, Runx2, or bromodeoxyuridine+ (Brdu) cell populations were mainly 

found expressed within the bone marrow in the LLP2A-treated group but expressed at the 

bone surface in the LLP2A-Ale group (Supplementary Fig. 4). LLP2A and Brdu were not 

detectable in the LVB by 21 days.

LLP2A-Ale increased the distal femoral (DF) trabecular bone volume (BV/TV) and 

thickness from baseline; and both doses of LLP2A-Ale increased BV/TV (Fig. 3a–c) with 

increased maximum load and strength as compared to the control groups at 12-weeks (P < 

0.05) (Fig. 3d). LLP2A-Ale dose-dependently increased osteocalcin (Fig. 3e), did not 

change total TGF-β1 (Supplementary Fig. 5b), and increased surface-based bone formation 

parameters at the DF (P < 0.05) (Fig. 3f). More importantly, LLP2A-Ale treatment 

increased osteoblast surface and formed bridges between adjacent trabeculae (Fig. 3g). Bone 

formation rates on the endocortical surfaces of the tibial shafts were increased in groups that 

had LLP2A component (P < 0.05) (Fig. 3h, i).

LLP2A-Ale prevents trabecular bone losses induced by aging or estrogen deficiency

The C57BL/6 mice usually achieve their peak bone mass by six to eight weeks of age and 

this is followed by a approximately 50% decline in both bone formation and bone mass from 

2–4 months of age 32,33. LLP2A-Ale prevented age-related trabecular bone loss after peak 

bone acquisition was achieved (Fig. 4a) with increased bone formation parameters at the DF 

(P < 0.05) (Fig. 4b, c) as well as at the LVB (P < 0.05) (Fig. 4d, e). Osteoblast bridges were 

observed in both trabecular bone sites (Fig. 4e). These data suggest that one IV injection of 

LLP2A-Ale prevented age-related reductions in trabecular bone mass and bone formation 

for up to eight weeks in C57BL/6 mouse strain.

To determine whether LLP2A-Ale could prevent bone loss in a disease state, 10-week-old 

ovariectomized (OVX) mice were treated with PBS, Ale, LLP2, LLP2A-Ale or PTH 2-

weeks after ovariectomy (Fig. 5a). LLP2A-Ale treatment increased osteoblast numbers 

(osteoblast surface) and their activities (mineralizing surface) and BFR/BS at the LVB (P < 

0.05) (Fig. 5b–d). Both LLP2A-Ale and PTH increased endocortical bone formation from 

OVX (P < 0.05) (Fig. 5e, f). Cortical bone thickness and maximum stress were not 

significantly altered by OVX, Ale, and LLP2A, one single IV injection of LLP-Ale or four 

weeks of PTH treatment (Fig. 5e). This data suggested the activation of endosteal bone 

formation by LLP2A-Ale that was comparable to that of PTH in this acute estrogen 

deficiency model.

Discussion

MSCs are precursors of osteoblasts. MSCs do not readily migrate to the bone and this 

creates a major obstacle for the use of MSCs for bone regeneration. We have developed a 

ligand that targets integrin α4β1, a protein highly expressed by MSCs undergoing osteoblast 

differentiation. Instead of using genetically modified MSCs, we attached LLP2A to a 

bisphosphonate to guide the MSCs to the bone surface. Bisphosphonates are prescribed to 

reduce bone resorption and improve bone strength. Since we used approximately 1/10th of 

the therapeutic dose of alendronate in our compound, we did not observe any anti-resorptive 

effects. We observed an uncoupling of bone remodeling with bone formation and no 
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significant changes in bone resorption during this short-term study period. This uncoupling 

of bone remodeling in favor of bone formation is also observed with short term treatment 

with the anabolic agent, hPTH (1–34)34. We hypothesized that we would also see a return to 

coupling of bone turnover with this intervention after a longer treatment period. 

Additionally, the current alendronate concentrations used in these studies did not suppress 

TGF-β1 secretion, a growth factor critical in coupling bone resorption and endogenous stem 

cell recruitment to bone35.

By using a xenotransplantation model, LLP2A-Ale increased homing and retention of the 

transplanted MSCs to bone, which indicates a breakthrough in the application of using 

transplanted MSCs to augment bone formation. The transplanted human or mouse MSCs 

were found embedded in bone matrix as osteocytes or adjacent to the bone surface as 

osteoblasts. Apart from increasing bone formation rates at both the endocortical and 

trabecular surfaces, the periosteal bone formation rate was also increased following MSC 

transplantation and LLP2A-Ale treatment. This is important as the total cross-sectional area 

increase by periosteal expansion is the most significant determinant of bone strength 36. Our 

finding that LLP2A-Ale can direct transplanted human MSCs to the bone is of major 

significance. This approach provides a means to overcome a major obstacle for using MSCs 

in the treatment of bone degenerative diseases and as such represents a new and novel 

treatment option for osteoporosis.

Furthermore, LLP2A-Ale might also increase endogenous MSC osteoblast differentiation 

and augment bone formation. Although we could not directly track the endogenous MSCs 

lineage commitment to osteoblasts as there is no single marker that allows us to define or 

track the migration of the endogenous MSCs to bone or their osteoblast differentiation in 

vivo. However, we were able to partially overcome this limitation by using control groups 

with equivalent doses of alendronate and LLP2A. Since LLP2A is a specific ligand for 

activated α4β1 integrin, our findings support the previous report that targeting α4 alone 

could increase MSC bone homing 37. However, LLP2A by itself failed to induce any 

significant changes in bone architectures. In contrast, LLP2A-Ale enhanced osteoblast 

maturation and functions as evidenced by increased osteocalcin levels and increased bone 

formation that was primary seen at the trabecular and endocortical bone surfaces that are in 

close contact with bone marrow. LLP2A-Ale not only increased vertebral maximum load, 

but also increased the maximum bone stress, a parameter that is independent of bone shape, 

suggesting LLP2A-Ale treatment increased bone quality in addition to the increase in bone 

mass. Similarly, LLP2A-Ale prevents trabecular bone loss after the peak bone mass has 

been achieved and partially prevents rapid trabecular bone loss induced by ovariectomy. 

Collectively, our findings demonstrate that LLP2A-Ale might be able to increase the 

migration of endogenous MSCs to bone, stimulate osteoblastic differentiation, augment 

bone formation and increase bone mass in young mice and prevent trabecular bone losses 

associated with aging or estrogen deficiency. These results differ from what we observed in 

NOD/SCID/MPSVII mice received MSC + LLP2A-Ale treatment, where the combination 

treatment also increased periosteal bone formation. This may due to either the lack of 

periosteal effects by LLP2A-Ale itself or it may require more than one injection or longer 

treatment period to achieve cortical bone responses.
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In summary, we have shown that LLP2A-Ale augments endogenous bone formation and 

directs the transplanted MSCs to the bone to augment bone formation and bone mass. This 

novel approach to increase the homing and retention of the MSCs to bone should now be 

examined in both preclinical and clinical studies for the treatment of osteoporosis and 

fracture repair.

Methods

Synthesis of LLP2A-Ale

LLP2A-Ale was synthesized through conjugation of Ale-SH to LLP2A-Mal via Michael 

addition. The synthetic scheme is shown in supplementary Fig. 1. LLP2A-Ale was made 

through conjugation of LLP2A-maleimide (LLP2A-Mal) with thiolyated aledronate (Ale-

SH). In brief, Ale-SH was dissolved in PBS buffer (pH7.2) containing 5% dimethyl 

sulfoxide (DMSO), then a solution of LLP2A-Mal (1.2 eq.) in a small amount of DMSO 

was added to the Ale-SH solution. The resulting mixture was stirred at room temperature for 

1 h and lyophilized. The powder was re-dissolved in a small amount of water and passed 

through a Varian MEGA BOND ELUT C18 column and eluted. The eluents were collected 

and checked by Mass Spec and the eluents with pure product were combined and 

lyophilized to yield a white powder. MALDI-TOF MS: Calculated: 1899.83 (bisphosphonic 

acid). Found: 1900.78 (MH+).

In vitro cell differentiation arrays of MSCs into osteogenic, chondrogenic or 
adipogenic lineages—Mouse MSCs were obtained under a material transfer agreement 

between UC Davis and Texas A&M Institute for Regenerative Medicine. These cells were 

relatively pure population of stromal cells that were negative for CD11b, CD45 and CD34 

and positive for CD29, CD31, CD106. For osteogenic differentiation, the passage 6 mouse 

MSCs were used. On days 14 of the culture, a set of cells was used for RNA extraction and 

RT-PCR for osteoblast gene markers, Runx2 and Bglap1. At days 21, another set of cells 

were with 0.2% crystal violet in 2% ETOH and then photographed. The numbers of purple-

stained colonies bigger than 1 mm in diameter were recorded. The plates were then eluted 

with 0.2% Triton TX100. The total eluted solution was run in spectrophotometer at 590 nm 

absorbance. The same set of plates was then stained with alizarin red (AR) to monitor 

mineralization nodule formation. For the chondrogenesis micromass culture, the MSCs were 

cultured using a STEMPRO Chondrogenesis Differentiation Kit (GIBCO Invitrogen Cell 

Culture) and stained with Alcian. For adipogenesis differentiation, the MSCs were cultured 

using a STENPRO Adipogenesis Differentiation Kit (GIBCO Invitrogen Cell Culture) and 

stained with Oil Red O for lipoid deposits.

In Vitro migration assays for migration of mouse bone marrow stromal cells 
(BMSCs)—Cell migration assays were performed using Transwell migration chambers 

(diameter 6.5 mm, pore size 8μmm; Corning Inc.) coated with 0.5 μg/ml type I collagen. The 

coated filters were and placed into the lower chamber containing serum-free medium 

supplemented with 45nM LLP2A-Ale. BMSCs were added to the upper compartment of the 

transwell chamber and allowed to migrate to the underside of the top chamber for 10 hours. 

None migrated cells on the upper membrane were removed and the migrated cells were 
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fixed, stained with crystal violet and counted. Subsequently, stained cells were eluted from 

membranes and absorbance measurements were performed using optical density (OD) 

590nm. Experiments were performed in triplicate.

Human mesenchymal stem cell (huMSC) culture—Bone marrow aspirates from 

human healthy donors were purchased from Lonza. For MSC isolation and expansion, bone 

marrow aspirates were passed through 90um pore strainers for isolation of bone spicules. 

Then, bone marrow aspirates were diluted with equal volume of PBS and centrifuged over 

Ficoll (GE Healthcare) for 30 minutes at 700 × g. Next, mononuclear cells and bone spicules 

were plated in plastic culture flasks, using MEM-alpha (HyClone Thermo Scientific) 

supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals). After 2 days, non-

adherent cells were removed by 2–3 washing steps with PBS. MSCs from passages 6 were 

used for this experiment 14.

All animals were treated according to the USDA animal care guidelines with the approval of 

the UC Davis Committee on Animal Research. We published the methods for Micro-CT, 

biochemical markers of bone turnover, bone histomorphometry, immunohistochemistry and 

biomechanical testing previously 38–40.

Histochemical analyses of enzyme activity—Following sacrifice, small portions of 

organs were harvested and frozen in Optimal Cutting Temperature embedding media 

(Sakura) and sectioned at 12 μm. GUSB -specific histochemical analysis was performed 

using naphthol-AS-BI-β-D-glucuronide (Sigma-Aldrich) as a substrate, followed by 

counterstaining with methyl green 14.

Statistics—The group means and standard deviations (SDs) were calculated for all 

outcome variables. Repeated measures analysis of variance (ANOVA) was used to evaluate 

parameters derived from repeated in-vivo micro-CT scans such as the trabecular bone 

volume (BV/TV) and Bonferroni posthoctests were used to compare time (age)-dependent 

changes within the same treatment group or between the treatment groups at the same time 

point. The nonparametric Kruskal-Wallis test was used to determine differences between the 

groups for the other outcome measures obtained at the end of the studies (SPSS Version 12, 

SPSS Inc.). Differences were considered significant at P < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. LLP2A-Ale increases MSC migration and BMSC osteoblastic differentiation
Primary BMSCs were cultured in osteogenic medium (control, Con) or with LLP2A-Ale 

(45nM) for 14–21 days. (a) Representative plates for total colony forming units (CFU-F) 

stained with crystal violet. (b) Osteoblastic units (CFU-Ob) stained with Alizarin Red in the 

same plates. (c) Relative Runx2 and Bglap1 expression at days 14 of the culture. (d) 

Transwell assays for the migration of mouse MSCs with control or addition of LLP2A-Ale 

cultured in serum-free media for 10 hours. The migrated cells were counted and then (e) the 

crystal violet staining was eluted and read at OD 590 nm. N. migrated cell/FV, number of 

migrated cells per field of view. *, P < 0.05 verse control. All the experiments were done in 

triplicate. Data are represented as Mean ± SD.
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Figure 2. LLP2A-Ale increases homing and retention of the transplanted MSC to bone
Three-month-old MSPVII mice received a single intravenous injection of PBS, huMSCs (5 

× 105), LLP2A-Ale, or huMSCs + LLP2A-Ale. The mice were sacrificed at 24 hours (a) or 

after three weeks (b) n = 6~12/group. Following sacrifice, lumbar vertebral bodies (LVB) 

were harvested. Frozen LVB sections were obtained and stained using naphthol-AS-BI-β-

Dglucuronid as a substrate. At 24-hours after the transplantation, human MSCs, make 

visible by red staining (yellow arrows) accumulated in bone marrow, adjacent to both 

trabecular and periosteal bone surfaces in mice treated with huMSCs + LLP2A-Ale (a). (c) 

Serum bone turnover markers and bone formation measured at the 5th LVB three weeks 

after the injection and MSC transplantation. (d) Mice received one single intravenous dose 

of LLP2A-Ale (0.9 nmol/mouse) and GFP-MSC (5 × 105) or GFP-MSC. n = 6/group. Mice 

were sacrificed three weeks after the injection. Representative LVB images were taken from 

mice received GFP-MSC or GFP-MSC + LLP2A-Ale. GFP+ brown stained cells were 

sparsely observed within bone marrow, adjacent to the trabecular bone surface and within 

bone matrix (white arrows) in GFP-MSC + LLP2A-Ale treated mice. MS/BS, mineralizing 

surface; BFR/BS, bone surface-based bone formation rate. a, P < 0.05 vs. PBS; b, P < 0.05 

vs. MSC; c, P < 0.05 vs. LLP2A-Ale; d, P < 0.05 vs. MSC + LLP2A. Data are represented 

as Mean ± SD.
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Figure 3. LLP2A-Ale increases trabecular bone mass in immune competent mice
(a) Two-month-old female 129SvJ mice received a single intravenous injection of PBS, 

alendronate (Ale), LLP2A or LLP2A-Ale [Low (0.36nmol/mouse or High (0.9nmol/

mouse)]. n = 8/group. (b) Representative 3-dimensional thickness maps from microCT scans 

of trabecular bone from the distal femur metaphyses at baseline (8-week-old) or (c) from the 

same animals and at the same bone sites 4 weeks after a single injection (12-week-old). The 

width of the trabecular is color-coded, the blue-green color represents thin trabeculae and 

yellow-red color represents thick trabeculae. (d) Maximum load and maximum stress of the 

6th lumbar vertebral bodies at 12 weeks of age, 4 weeks following one injection. (e) Bone 

turnover markers measured from the serum. (f) Surface-based bone histomorphometry was 

performed on the right distal femurs. Ob/BS, osteoblast surface; MS/BS, mineralizing 

surface; BFR/BS, bone surface-based bone formation rate. (g) Representative images from 

the trabecular bone of the distal femurs. Yellow arrowheads illustrate osteoblastic bridges 

between the trabeculae in an LLP2A-Ale treated mouse. (h) Surface-based bone 

histomorphometry was performed at the endosteal surface (Ec) and the periosteal surface 

(Ps) four weeks after the injections. Maximum stress of the femurs performed four weeks 

after the injections. (i) Representative cross sections of the tibial shafts from PBS, LLP2A, 

LLP2A or LLP2A-Ale treatment groups. Yellow arrows illustrate double labeled bone 

surfaces. a, P < 0.05 vs. PBS; b, vs. LLP2A; c, vs. Ale; d, vs. LLP2A-Ale-L. Data are 

represented as Mean ± SD.
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Figure 4. LLP2A-Ale prevents age-related trabecular bone loss
(a) Eight-week-old female C57BL/6 mice received one single intravenous injection of PBS 

or LLP2A-Ale (0.9nmol/mouse, n = 6/group). Repeated microCT scans were performed at 

the distal femurs to obtain changes of trabecular bone volume/tissue volume (BV/TV) over 

the experimental period. (b) Trabecular bone area, osteoblast surface (Ob/BS), mineralizing 

surface (MS/BS) and bone formation rate/bone surface (BFR/BS) performed at the distal 

femoral metaphyses. (c) Representative distal femur sections from PBS or LLP2A-Ale-

treated mice at 16 weeks. White squares represent selected areas under higher magnification 

fluorescence images that demonstrate mineral apposition. White arrows illustrate the 

distances between the double labels. (d) Trabecular bone area, Ob/BS, MS/BS and BFR/BS 

performed at the 5th lumbar vertebral body (LVB) sections from PBS or LLP2A-Ale-treated 

mice at 16 weeks. (e) Representative images taken from the trabecular bone at the 5th-LVB. 

Yellow arrow heads illustrates osteoblastic bridges in a LLP2A-Ale treated mouse. #, P < 

0.05 vs. PBS at the same time point (8 or 16 weeks). *, P < 0.05 from the baseline. Data are 

represented as Mean ± SD.
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Figure 5. LLP2A-Ale partially prevents trabecular bone loss and increases endosteal bone 
formation in ovariectomized mice
(a) Eight-week-old female C57BL/6 mice were ovariectomized. One single intravenous 

injection of LLP2A-Ale was given two-weeks after OVX. PTH was given subcutaneously at 

25 μg/kg/d, 5x/week for 4 weeks. Mice were sacrificed at 14 weeks of age. n = 6~8/group. 

(b) Histomorphometric analyses of the 5th lumbar vertebral bodies included trabecular bone 

area (%), osteoblast surface (Ob/BS), mineralizing surface (MS/BS) and bone formation 

rate/bone surface (BFR/BS). (c) Representative images from the trabecular bone at the 5th 

lumbar vertebral bodies. White arrowheads illustrate osteoblasts. (d) Representative 

fluorescent images from the trabecular bone at the 5th lumbar vertebral trabeculae. Yellow 

arrows illustrate double labeled trabecular bone surfaces. (e) Histomorphometry analyses of 

the right mid-femurs included bone formation at the endosteal (Ec) or periosteal (Ps.) bone 

surfaces, and cortical bone thickness. Three-point bending was performed on left femurs to 

obtain maximum stress of the femurs. (f) Representative images from the mid-femur 

sections. Short yellow arrows illustrated double labeled endocortical bone surfaces. a, p < 

0.05 versus Sham; b, P < 0.05 vs. OVX+PBS, c, P < 0.05 vs. OVX+ LLP2A; d, P < 0.05 vs. 

OVX+Ale. Data are represented as Mean ± SD.
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