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Introductory Paragraph
Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit
development. Solanum is one of the largest angiosperm genera1 and includes annual and
perennial plants from diverse habitats. We present a high quality genome sequence of
domesticated tomato, a draft sequence of its closest wild relative, S. pimpinellifolium2, and
compare them to each other and to potato (S. tuberosum). The two tomato genomes show
only 0.6% nucleotide divergence and signs of recent admixture, but show >8% divergence
from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but
similar to soybean, tomato and potato, small RNAs map predominantly to gene-rich
chromosomal regions, including gene promoters. The Solanum lineage has experienced two
consecutive genome triplications: one that is ancient and shared with rosids, and a more
recent one. These triplications set the stage for the neofunctionalization of genes controlling
fruit characteristics, such as colour and fleshiness.

Main Text
The genome of the inbred tomato cultivar ‘Heinz 1706’ was sequenced and assembled using
a combination of Sanger and “next generation” technologies (Supplementary Section 1). The
predicted genome size is ~900 Mb, consistent with prior estimates3, of which 760 Mb were
assembled in 91 scaffolds aligned to the 12 tomato chromosomes, with most gaps restricted
to pericentromeric regions (Fig. 1A; Supplementary Fig. 1). Base accuracy is approximately
one substitution error per 29.4 kb and one indel error per 6.4 kb. The scaffolds were linked
with two BAC-based physical maps and anchored/oriented using a high-density genetic
map, introgression line mapping and BAC fluorescence in situ hybridisation (FISH).

The genome of S. pimpinellifolium (accession LA1589) was sequenced and assembled de
novo using Illumina short reads, yielding a 739 Mb draft genome (Supplementary Section
3). Estimated divergence between the wild and domesticated genomes is 0.6% (5.4M SNPs
distributed along the chromosomes (Fig. 1A, Supplementary Fig. 1)). Tomato chromosomes
consist of pericentric heterochromatin and distal euchromatin, with repeats concentrated
within and around centromeres, in chromomeres and at telomeres (Fig. 1A, Supplementary
Fig. 1). Substantially higher densities of recombination, genes and transcripts are observed
in euchromatin, while chloroplast insertions (Supplementary Sections 1.22-1.23) and
conserved miRNA genes (Supplementary Section 2.9) are more evenly distributed
throughout the genome. The genome is highly syntenic with those of other economically
important Solanaceae (Fig. 1B). Compared to the genomes of Arabidopsis4 and sorghum5,
tomato has fewer high-copy, full-length LTR retrotransposons with older average insertion
ages (2.8 versus 0.8 mya) and fewer high-frequency k-mers (Supplementary Section 2.10).
This supports previous findings that the tomato genome is unusual among angiosperms by
being largely comprised of low-copy DNA6,7.

The pipeline used to annotate the tomato and potato8 genomes is described in
Supplementary Section 2. It predicted 34,727 and 35,004 protein-coding genes, respectively.
Of these, 30,855 and 32,988, respectively, are supported by RNA-Seq data, and 31,741 and
32,056, respectively, show high similarity to Arabidopsis genes (Supplementary section
2.1). Chromosomal organisation of genes, transcripts, repeats and sRNAs is very similar in
the two species (Supplementary Figures 2-4). The protein coding genes of tomato, potato,
Arabidopsis, rice and grape were clustered into 23,208 gene groups (≥2 members), of which
8,615 are common to all five genomes, 1,727 are confined to eudicots (tomato, potato, grape
and Arabidopsis), and 727 are confined to plants with fleshy fruits (tomato, potato and
grape) (Supplementary Section 5.1, Supplementary Fig. 5). Relative expression of all tomato
genes was determined by replicated strand-specific Illumina RNA-Seq of root, leaf, flower
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(2 stages) and fruit (6 stages) in addition to leaf and fruit (3 stages) of S. pimpinellifolium
(Supplementary Table 1).

sRNA sequencing data supported the prediction of 96 conserved miRNA genes in tomato
and 120 in potato, a number consistent with other plant species (Fig. 1A, Supplementary
Figures 1 and 3, Supplementary Section 2.9). Among the 34 miRNA families identified, 10
are highly conserved in plants and similarly represented in the two species, whereas other,
less conserved families are more abundant in potato. Several miRNAs, predicted to target
TIR-NBS-LRR genes, appeared to be preferentially or exclusively expressed in potato
(Supplementary Section 2.9).

Supplementary section 4 deals with comparative genomic studies. Sequence alignment of 71
Mb of euchromatic tomato genomic DNA to their potato8 counterparts revealed 8.7%
nucleotide divergence (Supplementary Section 4.1). Intergenic and repeat-rich
heterochromatic sequences showed more than 30% nucleotide divergence, consistent with
the high sequence diversity in these regions among potato genotypes8. Alignment of tomato-
potato orthologous regions confirmed 9 large inversions known from cytological or genetic
studies and several smaller ones (Fig. 1C). The exact number of small inversions is difficult
to determine due to the lack of orientation of most potato scaffolds. 18,320 clearly
orthologous tomato-potato gene pairs were identified. Of these, 138 (0.75%) had
significantly higher than average non-synonymous (Ka) versus synonymous (Ks) nucleotide
substitution rate ratios (ω), suggesting diversifying selection, whereas 147 (0.80%) had
significantly lower than average ω, suggesting purifying selection (Supplementary Table 2).
The proportions of high and low ω between sorghum and maize (Zea mays) are 0.70% and
1.19%, respectively, after 11.9 Myr of divergence9, suggesting that diversifying selection
may have been stronger in tomato-potato. The highest densities of low-ω genes are found in
collinear blocks with average Ks >1.5, tracing to a genome triplication shared with grape
(see below) (Fig. 1C, Supplementary Fig. 6, Supplementary Table 3). These genes, which
have been preserved in paleo-duplicated locations for more than 100 Myr10,11 are more
constrained than ‘average’ genes and are enriched for transcription factors and genes
otherwise related to gene regulation (Supplementary Tables 3-4).

Sequence comparison of 32,955 annotated genes in tomato and S. pimpinellifolium revealed
6,659 identical genes and 3,730 with only synonymous changes. A total of 22,888 genes had
non-synonymous changes, including gains and losses of stop codons with potential
consequences for gene function (Supplementary Tables 5-7). Several pericentric regions,
predicted to contain genes, are absent or polymorphic in the broader S. pimpinellifolium
germplasm (Supplementary Table 8, Supplementary Fig. 7). Within cultivated germplasm,
particularly among the small-fruited cherry tomatoes, several chromosomal segments are
more closely related to S. pimpinellifolium than to ‘Heinz 1706’ (Supplementary Figures
8-9), supporting previous observations on recent admixture of these gene pools due to
breeding12. ‘Heinz 1706’ itself has been reported to carry introgressions from S.
pimpinellifolium13, traces of which are detectable on chromosomes 4, 9, 11 and 12
(Supplementary Table 9).

Comparison of the tomato and grape genomes supports the hypothesis that a whole-genome
triplication affecting the rosid lineage occurred in a common eudicot ancestor11 (Fig. 2B).
The distribution of Ks between corresponding gene pairs in duplicated blocks suggests that
one polyploidisation in the solanaceous lineage preceded the rosid-asterid (tomato-grape)
divergence (Supplementary Fig. 10).

Comparison to the grape genome also reveals a more recent triplication in tomato and
potato. While few individual tomato/potato genes remain triplicated (Supplementary Tables
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10-11), 73% of tomato gene models are in blocks that are orthologous to one grape region,
collectively covering 84% of the grape gene space. Among these grape genomic regions,
22.5% have one orthologous region in tomato, 39.9% have two, and 21.6% have three,
indicating that a whole genome triplication occurred in the Solanum lineage, followed by
widespread gene loss. This triplication, also evident in potato (Supplementary Fig. 11) is
estimated at 71 (+/-19.4) mya based on Ks of paralogous genes (Supplementary Fig. 10),
and therefore predates the ~7.3 mya tomato-potato divergence. Based on alignments to
single grape genome segments, the tomato genome can be partitioned into three non-
overlapping ‘subgenomes’ (Fig. 2A). The number of euasterid lineages that have
experienced the recent triplication remains unclear and awaits complete euasterid I and II
genome sequences. Ks distributions show that euasterids I and II, and indeed the rosid-
asterid lineages, all diverged from common ancestry at or near the pan-eudicot triplication
(Fig. 2B), suggesting that this event may have contributed to formation of major eudicot
lineages in a short period of several million years14, partially explaining the explosive
radiation of angiosperm plants on earth15.

Supplementary section 5 reports on the analysis of specific gene families. Fleshy fruits
(Supplementary Fig. 12) are an important means of attracting vertebrate frugivores for seed
dispersal16. Combined orthology and synteny analyses suggest that both genome
triplications added new gene family members that mediate important fruit-specific functions
(Fig. 3). These include transcription factors and enzymes necessary for ethylene biosynthesis
(RIN, CNR, ACS) and perception (LeETR3/NR, LeETR4)17, red light photoreceptors
influencing fruit quality (PHYB1/PHYB2) and ethylene- and light-regulated genes
mediating lycopene biosynthesis (PSY1/PSY2). Several cytochrome P450 subfamilies
associated with toxic alkaloid biosynthesis show contraction or complete loss in tomato and
the extant genes show negligible expression in ripe fruits (Supplementary Section 5.4).

Fruit texture has profound agronomic and sensory importance and is controlled in part by
cell wall structure and composition18. More than 50 genes showing differential expression
during fruit development and ripening encode proteins involved in modification of wall
architecture (Fig. 4A and Supplementary Section 5.7). For example, a family of xyloglucan
endotransglucosylase-/hydrolases (XTHs) has expanded both in the recent whole genome
triplication and through tandem duplication. One of the triplicated members, SlXTH10,
shows differential loss between tomato and potato (Fig. 4A, Supplementary Table 12),
suggesting genetically driven specialisation in the remodelling of fruit cell walls.

Similar to soybean and potato and in contrast to Arabidopsis, tomato sRNAs map
preferentially to euchromatin (Supplementary Fig. 2). sRNAs from tomato flowers and
fruits19 map to 8,416 gene promoters. Differential expression of sRNAs during fruit
development is apparent for 2,687 promoters, including those of cell wall-related genes (Fig.
4B) and occurs preferentially at key developmental transitions (e.g. flower to fruit, fruit
growth to fruit ripening, Supplementary Section 2.8).

The genome sequences of tomato, S. pimpinellifolium and potato provide a starting point for
comparing gene family evolution and sub-functionalization in the Solanaceae. A striking
example is the SELF PRUNING (SP) gene family, which includes the homolog of
Arabidopsis FT, encoding the mobile flowering hormone florigen20 and its antagonist SP,
encoding the ortholog of TFL1. Nearly a century ago, a spontaneous mutation in SP
spawned the “determinate” varieties that now dominate the tomato mechanical harvesting
industry21. The genome sequence has revealed that the SP family has expanded in the
Solanum lineage compared to Arabidopsis, driven by the Solanum triplication and tandem
duplication (Supplementary Fig. 13). In potato, SP3D and SP6A control flowering and
tuberisation, respectively22, whereas SP3D in tomato, known as SINGLE FLOWER
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TRUSS, similarly controls flowering, but also drives heterosis for fruit yield in an epistatic
relationship with SP23,24,25. Interestingly, SP6A in S. lycopersicum is inactivated by a
premature stop codon, but remains functionally intact in S. pimpinellifolium. Thus, allelic
variation in a subset of SP family genes has played a major role in the generation of both
shared and species-specific variation in Solanaceous agricultural traits.

The genome sequences of tomato and S. pimpinellifolium also provide a basis for
understanding the bottlenecks that have narrowed tomato genetic diversity: the
domestication of S. pimpinellifolium in the Americas, the export of a small number of
accessions to Europe in the 16th Century, and the intensive breeding that followed. Charles
Rick pioneered the use of trait introgression from wild tomato relatives to increase genetic
diversity of cultivated tomatoes26. Introgression lines exist for seven wild tomato species,
including S. pimpinellifolium, in the background of cultivated tomato. The genome
sequences presented here and the availability of millions of SNPs will allow breeders to
revisit this rich trait reservoir and identify domestication genes, providing biological
knowledge and empowering biodiversity-based breeding.

Methods Summary
A total of 21 Gb of Roche/454 Titanium shotgun and matepair reads and 3.3 Gb of Sanger
paired-end reads, including ~200,000 BAC and fosmid end sequence pairs, were generated
from the ‘Heinz 1706’ inbred line (Supplementary Sections 1.1-1.7), assembled using both
Newbler and CABOG and integrated into a single assembly (Supplementary Sections
1.17-1.18). The scaffolds were anchored using two BAC-based physical maps, one high
density genetic map, overgo hybridization and genome-wide BAC FISH (Supplementary
Sections 1.8-1.16 and 1.19). Over 99.9% of BAC/fosmid end pairs mapped consistently on
the assembly and over 98% of EST sequences could be aligned to the assembly
(Supplementary Section 1.20). Chloroplast genome insertions in the nuclear genome were
validated using a matepair method and the flanking regions were identified (Supplementary
Sections 1.22-1.24). Annotation was carried out using a pipeline based on EuGene that
integrates de novo gene prediction, RNA-Seq alignment and rich function annotation
(Supplementary Section 2). To facilitate interspecies comparison, the potato genome was re-
annotated using the same pipeline. LTR retrotransposons were detected de novo with the
LTR-STRUC program and dated by the sequence divergence between left and right solo
LTR (Supplementary Section 2.10). The genome of S. pimpinellifolium was sequenced to
40x depth using Illumina paired end reads and assembled using ABySS (Supplementary
Section 3). The tomato and potato genomes were aligned using LASTZ (Supplementary
Section 4.1). Identification of triplicated regions was done using BLASTP, in-house
generated scripts and three way comparisons between tomato, potato and S.
pimpinellifolium using MCscan (Supplementary Sections 4.2-4.4). Specific gene families/
groups (genes for ascorbate, carotenoid and jasmonate biosynthesis, cytochrome P450s,
genes controlling cell wall architecture, hormonal and transcriptional regulators, resistance
genes) were subjected to expert curation/analysis, (Supplementary Section 5). PHYML and
MEGA were used to reconstruct phylogenetic trees and MCSCAN was used to infer gene
collinearity (Supplementary Section 5.2).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A. Multi-dimensional topography of tomato chromosome 1 (chromosomes 2-12 are
shown in Supplementary Figure 1).
(a) Left: contrast-reversed, DAPI-stained pachytene chromosome; centre and right: FISH
signals for repeat sequences on diagrammatic pachytene chromosomes: TGR1 purple, TGR4
blue, telomere repeat red, Cot 100 DNA (including most repeats) green. (b) Frequency
distribution of recombination nodules representing crossovers on 249 chromosomes. Red
stars mark 5 cM intervals starting from the end of the short arm (top). Scale is in
micrometers. (c) FISH-based locations of selected BACs (horizontal blue lines on left). (d)
Kazusa F2-2000 linkage map. Blue lines to the left connect linkage map markers on the (c)
BAC-FISH map, (e) heat maps and (f) DNA pseudomolecule. (e) From left to right: linkage
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map distance (cM/Mb, turquoise); repeated sequences (% nucleotides/500 kb, purple); genes
(% nucleotides/500 kb, blue); chloroplast insertions; RNA-Seq reads from leaves and
breaker fruits of S. lycopersicum and S. pimpinellifolium (number of reads/500 kb, green
and red, respectively); microRNA genes (transcripts per million/500 kb, black); small RNAs
(thin horizontal black lines, sum of hits-normalized abundances). Horizontal grey lines
represent gaps in the pseudomolecule (f). (f) DNA pseudomolecule consisting of nine
scaffolds. Unsequenced gaps (approximately 9.8 Mb, Supplementary Table 13) are indicated
by white horizontal lines. Tomato genes identified by map-based cloning (Supplementary
Table 14) are indicated on the right. For more details, see legend to Supplementary Figure 1.
B. Syntenic relationships in the Solanaceae.
COSII-based comparative maps of potato, eggplant, pepper and Nicotiana with respect to
the tomato genome (Supplementary section 4.5, Supplementary Fig. 14). Each tomato
chromosome is assigned a different colour and orthologous chromosome segment(s) in other
species are shown in the same colour. White dots indicate approximate centromere
locations. Each black arrow indicates an inversion relative to tomato and “+1”indicates a
minimum of one inversion. Each black bar beside a chromosome indicates translocation
breakpoints relative to tomato. Chromosome lengths are not to scale, but segments within
chromosomes are.
C. Tomato-potato syntenic relationships.
Dot plot of tomato and potato genomic sequences based on collinear blocks Supplementary
Section 4.1). Red and blue dots represent gene pairs with statistically significant high and
low ω (Ka/Ks) in collinear blocks, which average Ks≤0.5, respectively. Green and magenta
dots represent genes in collinear blocks which average 0.5<Ks≤1.5 and Ks>1.5,
respectively. Yellow dots represent all other gene pairs. Blocks circled in red are examples
of pan-eudicot triplication. Inserts represent schematic drawings of BAC-FISH patterns of
cytologically demonstrated chromosome inversions (also in Supplementary Fig. 15).
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Figure 2. The Solanum whole genome triplication
A. Based on alignments of multiple tomato genome segments to single grape genome
segments, the tomato genome is partitioned into three non-overlapping ‘subgenomes’ (T1,
T2, T3), each represented by one axis in the 3D plot. The ancestral gene order of each
subgenome is inferred according to orthologous grape regions, with tomato chromosomal
affinities shown by red-shaded (inner) bars. Segments tracing to pan-eudicot triplication (γ)
are shown by green-shaded (outer) bars with colours representing the seven putative pre-γ
eudicot ancestral chromosomes10, also coded a-g.
B. Speciation and polyploidisation in eudicot lineages. Confirmed whole-genome
duplications and triplications are shown with annotated circles, including “T” (this paper)
and previously discovered events α, β, γ10,11,14. Dashed circles represent one or more
suspected polyploidies reported in previous publications that need further support from
genome assemblies27,28. Grey branches indicate unpublished genomes. Black and red error
bars bracket, respectively, the likely timings of divergence of major asterid lineages and of
“T”. The post-“T” subgenomes, designated T1, T2, and T3, are further detailed in
Supplementary Fig. 10.
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Figure 3. Whole genome triplications set the stage for fruit-specific gene neofunctionalisation
The genes shown represent a fruit ripening control network regulated by transcription
factors (MADS-RIN, CNR) necessary for production of the ripening hormone ethylene, the
production of which is regulated by ACC synthase (ACS). Ethylene interacts with ethylene
receptors (ETRs) to drive expression changes in output genes, including phytoene synthase
(PSY), the rate-limiting step in carotenoid biosynthesis. Light, acting through phytochromes,
controls fruit pigmentation through an ethylene-independent pathway. Paralogous gene pairs
with different physiological roles (MADS1/RIN, PHYB1/PHYB2, ACS2/ACS6, ETR3/
ETR4, PSY1/PSY2), were generated during the eudicot (γ, black circle) or the more recent,
Solanum (T, red circle) triplications. Complete dendrograms of the respective protein
families are shown in Supplementary Figures 16 and 17.
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Figure 4. The tomato genome allows systems approaches to fruit biology
A. Xyloglucan transglucosylase-hydrolases (XTHs) differentially expressed between mature
green and ripe fruits (Supplementary Section 5.7). These XTH genes and many others are
expressed in ripening fruits and are linked with the Solanum triplication, marked with a red
circle on the phylogenetic tree. Red lines on the tree denote paralogs derived from the
Solanum triplication, and blue lines are tandem duplications.
B. Developmentally regulated accumulation of sRNAs mapping to the promoter region of a
fruit-regulated cell wall gene (Pectin acetylesterase, Solyc08g005800). Variation of
abundance of sRNAs (left) and mRNA expression levels from the corresponding gene
(right) over a tomato fruit developmental series (T1 – bud, T2 – flower, T3 – fruit 1- 3mm,
T4 – fruit 5-7mm, T5 – fruit 11-13mm, T6 – fruit mature green, T7 – breaker, T8 – breaker
+3days, T9 – breaker+7days). The promoter regions are grouped in 100nt windows. For
each window the size class distribution of sRNAs is shown (21 – red, 22 – green, 23 –
orange, 24 – blue). The height of the box corresponding to the first time point shows the
cumulative sRNA abundance in log scale. The height of the following boxes is proportional
to the log offset fold change (offset = 20) relative to the first time point. The expression
profile of the mRNA is shown in log2 scale.
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