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Infection with SARS-CoV-2 triggers the simultaneous activation of innate inflammatory
pathways including the complement system and the kallikrein-kinin system (KKS)
generating in the process potent vasoactive peptides that contribute to severe acute
respiratory syndrome (SARS) and multi-organ failure. The genome of SARS-CoV-2
encodes four major structural proteins – the spike (S) protein, nucleocapsid (N) protein,
membrane (M) protein, and the envelope (E) protein. However, the role of these proteins in
either binding to or activation of the complement system and/or the KKS is still
incompletely understood. In these studies, we used: solid phase ELISA, hemolytic
assay and surface plasmon resonance (SPR) techniques to examine if recombinant
proteins corresponding to S1, N, M and E: (a) bind to C1q, gC1qR, FXII and high
molecular weight kininogen (HK), and (b) activate complement and/or the KKS. Our data
show that the viral proteins: (a) bind C1q and activate the classical pathway of
complement, (b) bind FXII and HK, and activate the KKS in normal human plasma to
generate bradykinin and (c) bind to gC1qR, the receptor for the globular heads of C1q
(gC1q) which in turn could serve as a platform for the activation of both the complement
system and KKS. Collectively, our data indicate that the SARS-CoV-2 viral particle can
independently activate major innate inflammatory pathways for maximal damage and
efficiency. Therefore, if efficient therapeutic modalities for the treatment of COVID-19 are
to be designed, a strategy that includes blockade of the four major structural proteins may
provide the best option.
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INTRODUCTION

Coronaviruses (CoVs) are a group of related viruses which cause
mild to severe diseases in both humans and animals. However, 3
of the last 7 pathogenic coronaviruses reported have caused
much more severe and often fatal respiratory infections in
humans and have been responsible for deadly pneumonia
outbreaks in the 21st century (1–9). Coronaviruses cause a
lethal disease called severe acute respiratory syndrome (SARS),
in which the subsequent edema in the lungs prevents oxygen
uptake, resulting in deadly hypoxia (4, 5). Since the first major
outbreak of SARS in 2002, there have been two major
coronavirus pandemics: MERS-CoV (Middle Eastern
Respiratory Syndrome Coronavirus) in 2012, which affected 27
countries in the Middle East, Africa and South Asia, and the
present COVID-19 pandemic, which is caused by SARS-CoV-2
(1–9). Therefore, as the virus adjusts and adapts to its
environment, it will certainly mutate through either
immunologic shift or immunologic drift, releasing respectively
new strains or variants that cause novel pandemics in the future
(1–9). In fact, the new variants of SARS-CoV-2 that appeared
very recently in the UK and S. Africa and now also showing up in
the US and other parts of the world are almost certainly the
beginning of what is to come. Therefore, complete
understanding of the molecular structures and the mutations
that trigger and/or exacerbate the diseases caused by SARS-CoV-
2 may help us identify novel pharmacological targets for the
development of therapies that challenge present as well as
future pandemics.

The genome of the SARS-CoV-2 encodes four major
structural proteins: the spike (S) protein, nucleocapsid (N)
protein, membrane (M) protein, and the envelope (E) protein,
all of which are required to produce a structurally complete viral
particle (1, 2). Among these structural proteins however, the S
protein takes center stage in SARS-CoV-2 infection as it is
singularly responsible for viral attachment, fusion, and entry
into target cells. Infection with SARS-CoV-2 is initiated when the
spike (S) protein interacts with its cognate host cell surface
receptor (5, 10). SARS-CoV-2 infects human lung alveolar type
II epithelial cells by attaching via its S protein to angiotensin
converting enzyme 2 (ACE-2) expressed at the cell surface (9).
Viral entry is facilitated when the type II transmembrane serine
protease (TMPRSS2) cleaves the viral S protein into S1 and
S2, with the latter causing membrane fusion (7–9). This is
followed by simultaneous activation of powerful, cross-reactive
inflammatory pathways in plasma resulting in rapid production
of vasoactive peptides, which in turn recruit leukocytes which
secrete inflammatory cytokines that contribute to the vascular
leakage and edema culminating in severe acute respiratory
syndrome. Foremost among these cross-reactive innate
pathways are the complement system, the coagulation system,
and the kallikrein-kinin system (KKS), each of which is able to
generate activation byproducts that collectively contribute to the
‘cytokine storm ’ , multi-organ inflammation, bilateral
pneumonia, and progression to the acute respiratory distress
syndrome (ARDS) requiring ventilatory support (5, 9–13). The
question is: which of the SARS-CoV-2-associated molecular
Frontiers in Immunology | www.frontiersin.org 2
structures are responsible for the activation of the innate
immune pathways?

The present studies were undertaken to examine in detail if
any of the highly conserved SARS-CoV-2 proteins–which are
encoded by all the coronaviruses–can activate the complement
and/or the kinin system. Furthermore, since gC1qR (14, 15), the
receptor for globular heads of C1q as well as for high molecular
weight kininogen (HK), is often overexpressed and released by
infected cells, we hypothesized that, if any of the SARS-CoV-2
structural proteins bind gC1qR, then a virus decorated with
gC1qR, or released viral proteins bound to gC1qR, may provide a
suitable complex for the assembly and activation of the
complement system, the KKS and–directly or indirectly–the
coagulation system (9, 11–13). Therefore, we also examined if
any of the SARS-CoV-2 structural proteins directly interact with
gC1qR in a manner that activates the complement system and/or
the KKS.
MATERIALS AND METHODS

Chemicals and General Reagents
Recombinant proteins corresponding to the structural proteins
of SARS-CoV-2 (S1, N and a fusion protein of M-E), were
purchased from ViroGen Corporation (Brighton, MA), and the
M and E proteins were purchased from MyBioSource, Inc. (San
Diego, CA), as was biotinylated anti complement C4d fragment.
Bradykinin (BK) ELISA kit was purchased from Enzo Life
Sciences Inc. (East Farmingdale, NY), and normal human
plasma from random donors was purchased from Oklahoma
Blood Institute (Oklahoma City, OK).

Expression of Recombinant gC1qR
The strategies for expression and purification of mature gC1qR
and deletion mutants have been described previously (14–19).

Solid-Phase Microplate Binding Assay
The interaction of viral proteins with gC1qR was assessed by a
standard ELISA. Briefly, microtiter plate wells were coated in
duplicates (60 min, at 37°C or overnight, 4°C) with 100 µl of
either, concentrations of viral proteins (S1, N, M, E or a fusion
M-E) ranging from 2-10 µg/ml, or heat inactivated BSA, in
carbonate buffer, pH 9.6 (15 mMNa2CO3 and 35 mMNaHCO3).
The unbound protein was removed from each well; the wells
washed 2x with TBST (20 mM Tris-HCl pH 7.5, 150 mM NaCl,
and 0.05% Tween-20), and the unreacted sites blocked by
incubation (30 min, room temp) with 300 µl of 1% heat
inactivated BSA (1hr, 37°C). After washing (2x with TBST),
the microtiter plate bound proteins were incubated (1hr, room
temp.) with concentrations of biotinylated gC1qR, ranging from
0 to 5 µg/ml. This was followed by sequential reaction (1 hr each,
room temp) with alkaline-phosphatase conjugated streptavidin
and pNPP, and the color developed at the end of the incubation
read spectrophotometrically at 405nm.

Similarly, the binding of FXII or HK to microtiter plate coated
S1, N, M-E was performed using the same strategy and the
November 2021 | Volume 12 | Article 767347
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bound FXII or HK was detected using specific antibodies. In all
cases, each experiment was repeated at least three times in
duplicates (n=3).

Surface Plasmon Resonance
Biosensor surfaces were prepared by immobilizing either wild-
type gC1qR (i.e., gC1qR-WT) or a gC1qR deletion mutant that
removed the flexible, negatively charged loops (i.e., gC1qR-DD).
Then, a two-fold dilution series of recombinant forms of various
SARS-CoV-2 structural proteins was injected over each surface.
The reference-corrected sensorgrams were then fit to kinetic
models to obtain the apparent equilibrium dissociation constant
for each interaction pair. Of note, the gC1qR-DD used in these
studies (not published) was generated–as an alternate to gC1qR-
WT for crystallographic experiments–by removing the highly
charged D and E rich loops. Interestingly, despite the missing
charged loops, we found that the gC1qR-DD not only crystallizes
readily, but also forms a trimer both in solution and crystal,
demonstrating that the protein is indeed intact. More
importantly, HK binds to both gC1qR and gC1qR-DD equally
well (unpublished data).

Hemolytic Assays for
Complement Activation
To assess whether the viral antigens that bound to C1q also
activate complement in serum, we used a standard hemolytic
assay for complement activity using AggIgG as a positive control.
To make AggIgG, 10 mg/ml of IgG was incubated at 62°C for 20
min and then the large precipitates formed were removed by
centrifugation at 1000xg for 30 min. Each AggIgG was then
tested for complement activation before use (20). Briefly, 10 µl of
normal human serum (NHS, Complement Technology, Inc.,
Tyler, TX) in 100 µl GVB++ (gelatin containing veronal buffer)
was first incubated (1hr, 37°C) with or without various
concentrations of recombinant viral proteins S1, N, M, E, or
the fusion of M-E. As a positive control for complement
activation, NHS was incubated with 10 µl of aggregated IgG
(AggIgG) in 100 µl of GVB++. After incubation, 50 µl of
sensitized sheep erythrocytes (EAs) (2x108/ml sheep red blood
cells sensitized with anti-sheep IgG) were added to each tube, the
volume brought up to 500 µl with GVB++ and further incubated
(1hr, 37°C). The tubes were then centrifuged and the degree of
hemolysis in the supernatant in each tube determined
spectrophotometrically at 412 nm. The total, releasable
hemoglobin (100%), was achieved by lysis of 50 µl EAs with
450 µl of H2O, against which the hemoglobin released in each
experimental tube was compared.

To assess the deposition of complement C1q and C4d
fragment on viral proteins under the conditions of the
hemolytic assay, viral proteins were coated in wells of
microtiter plates (10 µg/mL) and blocked with 1% heat
inactivated BSA as described under Solid Phase Microtiter
Plate Assay, above. Wells were then incubated with 50 µL of a
1:10 dilution of NHS in GVB++ and incubated at 37°C for 2 hrs.
After washing, the wells were then probed with either
biotinylated anti C4d or goat anti C1q in GVB++, followed by
Frontiers in Immunology | www.frontiersin.org 3
streptavidin AP or rabbit anti goat AP. Following washing with
GVB++, wells were incubated with pNPP and color development
monitored at 405 nm.

Activation of the KKS by Viral Proteins
To test if the binding of the viral proteins resulted in KKS
activation, we used a commercial BK ELISA kit (Enzo Life
Sciences Inc., East Farmingdale, NY) and followed the
manufacturer’s recommendations. Briefly, 1 ml of normal
human plasma (from random donors, purchased from
Oklahoma Blood Institute, Oklahoma City, OK) diluted 1:16 in
assay buffer (with 50 µM ZnCl2) was mixed with various
concentrations (1, 2, 5 or 10 µg/mL) of S, M, and N proteins
and incubated at 37°C for 1 hour. The plasma samples were then
diluted and added to rabbit-IgG antibody-coated wells, along
with biotin-conjugated bradykinin and a rabbit polyclonal
antibody to bradykinin. Through a competitive binding
process, biotin-conjugated bradykinin was captured on the
bottom of the wells, which was detected using horseradish
peroxidase-conjugated streptavidin. Color development was
read at 405nm in a Spectramax i3x microplate reader
(Molecular Devices).

Statistical Analysis
Student t-tests were performed using statistical software (Excel;
Microsoft, Redmond, WA, USA). A value of p=0.05 was a
significant difference. (n - represents number of separate
experiments performed in duplicates).
RESULTS

Activation of the Classical Pathway of
Complement by SARS-CoV-2 Proteins
The first question we asked was: do the viral proteins trigger
activation of the classical pathway of complement? As shown in
Figure 1, preincubation of each of the viral structural proteins
with normal human serum results in a dose-dependent
diminished complement activity. The diminished hemolytic
activity in turn, is due to consumption of complement as a
result of preincubation of the viral proteins with NHS. However,
since preincubation of the viral proteins with NHS could also
result in inhibition of complement due to blockade of C1q or
other proteins critical in complement activation, we performed
two additional experiments to confirm a bona fide activation of
the cascade. First, we showed that incubation of the viral proteins
with C1q-depleted serum did not result in complement
activation (not shown), suggesting that the classical pathway is
activated by the SARS-CoV-2 structural proteins. Second, we
confirmed that incubation of NHS to microtiter bound viral
proteins results in C1q deposition (Figure 2A), followed by the
presence of degradation fragments such as C4d (Figure 2B),
which confirms the activation of the classical pathway of
complement. The fact that the viral proteins bind to C1q in a
specific and dose-dependent manner, followed by the experiment
in which C1q-depleted serum did not result in complement
November 2021 | Volume 12 | Article 767347
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activation suggests that it is the classical pathway and not the
MBL pathway that is activated under these conditions. This
distinction is important since recent studies have also shown that
the MBL pathway, which is similar to the classical pathway in its
mode of activation, can be activated by SARS-CoV-2
proteins (21).

SARS-CoV-2 Proteins Bind HK, and FXII
and Generate BK
One of the mechanisms by which edema formation can occur in
COVID-19 patients is through the activation of the KKS and the
subsequent formation of bradykinin (BK). However, for this to
occur, the viral proteins would have to bind to the key
components in KKS, which are HK and FXII. Therefore, we
tested whether any of the viral proteins could bind to these
proteins. As shown in Figure 3, both HK (A) and FXII (B) dose-
dependently (50 ng/ml to 10 mg/ml) bind to immobilized
proteins of SARS-CoV-2. Binding increases relative to the
concentration of the added protein with a p ≤ 0.0045 for HK
and p ≤ 0.0001 for FXII. More importantly, incubation of the
viral proteins with normal human plasma in the presence of 50
µM ZnCl2 results in the generation of BK (Figure 4), which in
turn is dependent on the amount of viral protein added to the
Frontiers in Immunology | www.frontiersin.org 4
plasma. At the highest concentration of each viral protein added,
there is a diminished BK generation. However, this may be
because at high concentration, there is a rapid generation of BK,
followed by rapid enzymatic degradation consistent with the
half-life of BK in plasma, which is <1 min. Therefore, the
degraded BK fragments may not be recognized by the antibody
FIGURE 1 | Hemolytic assay to assess the effect of SARS-CoV-2
recombinant proteins on complement activity. Recombinant spike (S1),
membrane (M), envelope (E) and nucleocapsid (N) proteins were pre-
incubated with NHS in GVB++ (1:10 dilution) for 1 hr at 37°C. Then EAs were
added and incubated continued for an additional hour. Cells were removed
by centrifugation and the absorbance of the hemoglobin released into the
supernatants was read at 412 nm. Positive control for complement activity is
NHS incubated with EAs, and control for complement consumption is NHS
pre-incubated with AggIgG and then with EAs. Data are representative of
three independent experiments (n=3). Results are expressed as percent
hemolysis relative to 100% (H20). Statistical analysis unpaired T test with
Welch’s correction was performed in Graphpad Prism. Error bars represent
1SD. *p ≤ 0.05; **p ≤ 0.01, ***p ≤ 0.001.
A

B

FIGURE 2 | Deposition of complement proteins (A) C1q and (B) C4d
fragment on SARS-CoV-2 proteins immobilized on microtiter plates. Microtiter
wells were coated with test proteins at 10 mg/mL. Following blocking with
inactivated BSA, the wells were washed with GVB++ followed by application
of NHS (1:10 dilution in GVB++) and incubation at 37°C for 2 hr. After
washing, goat anti human C1q antibody (panel A) or biotinylated anti C4d
polyclonal antibody (B) was applied for 1 hr, then wells were incubated with
streptavidin-AP (A) or rabbit anti goat AP (B) and proteins detected with the
AP substrate pNPP. Statistical analysis on all samples compared to BSA
negative control, unpaired T test with Welch’s correction was performed in
Graphpad Prism. Error bars represent 1SD. *p ≤ 0.05.
November 2021 | Volume 12 | Article 767347
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to BK, thereby giving the false impression that higher
concentrations of viral proteins give rise to the formation of
fewer molecules of BK.

Binding of SARS-CoV-2 Structural
Proteins to gC1qR
Since soluble or cell surface gC1qR can activate the classical
pathway of complement and the kinin-kallikrein system (KKS)–
both of which play a significant role in the pathogenesis of
COVID-19–we postulated that if any of the SARS-CoV-2
structural proteins bind gC1qR, then the gC1qR-decorated
viral particles could potentially provide a platform for the
simultaneous activation of both the complement and the KKS
pathways. To test this hypothesis, we first used solid phase ELISA
to test if the viral proteins bind to gC1qR. As shown in Figure 5,
Frontiers in Immunology | www.frontiersin.org 5
all of the SARS-CoV-2 structural proteins bind to gC1qR in a
dose-dependent manner. Since gC1qR is the receptor for the
globular head of the A chain of C1q, recombinant ghA was used
as a positive control for gC1qR. Furthermore, the binding of the
viral proteins is enhanced in the presence of 50 µM Zn+ (not
shown) suggesting that the viral protein-gC1qR interaction may
be zinc ion-dependent in a manner similar to the interaction
between FXII and HK to gC1qR (16–19).

To examine the interaction between gC1qR and the viral
proteins through an independent approach, we also used surface
A B

FIGURE 3 | (A) High molecular weight kininogen (HK) binding to immobilized S, M and N protein at different concentrations. (B) Factor XII (FXII) binding to
immobilized S, M and N protein at different concentrations. Data is presented as mean + standard error (n=3-8 for HK binding, and n=4 for FXII binding). ANOVA
indicates that the viral protein concentration has a significant effect on HK binding (P=0.0033 for S protein, P=0.0045 for M protein, and P=0.0163 for N protein) and
FXII binding (P=0.0001 for all three proteins).
FIGURE 4 | Bradykinin assay. Bradykinin concentration (ng/mL) in normal
human plasma incubated with S, M and N protein at 37°C for 1 hour. Data is
presented as mean + 1SD (n=2-3.).
 FIGURE 5 | Binding of biotinylated gC1qR to SARS-CoV-2 structural proteins

immobilized on microtiter plates. Microtiter plate wells were coated with the
indicated amount of test protein, and after blocking unreacted sites with BSA,
biotinylated gC1qR at a concentration of 1 ug/ml was added and the bound
gC1qR detected by incubation with AP-streptavidin. Positive control for binding
is ghA (the A chain of the globular head of C1q) and negative control for non-
specific binding is BSA. Statistical analysis comparing , each data point with the
BSA negative control is the unpaired T test with Welch’s correction was
performed in Graphpad Prism (n=3; and *p ≤ 0.05, **p ≤ 0.01).
November 2021 | Volume 12 | Article 767347
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plasmon resonance binding assay. In these experiments, purified
viral proteins were injected over surfaces of either wild-type
gC1qR or a deletion mutant that removed the two disordered
negatively charged loops found in the gC1qR sequence (i.e.,
gC1qR-DD). Representative series of sensorgrams from at least
three independent determinations are shown in Figure 6.
Apparent binding affinities for each interaction are as follows:
(A, B) Spike-S1 protein over gC1qR-WT (KD=91 nM) or
gC1qR-DD (KD=370 nM), (C, D) Nucleocapsid protein over
gC1qR-WT (KD=6 µM) or gC1qR-DD (KD=12 µM), (E, F),
Membrane-Envelope Fusion protein over gC1qR-WT (KD=410
nM) or gC1qR-DD (KD=360 nM), and (G, H) a synthetic peptide
corresponding to the gC1qR-binding region from HK (19, 20) as
a positive control (over gC1qR-WT, KD=2 mM or over gC1qR-
DD, 10 mM). Together, these observations revealed that two
different forms of gC1qR bind the various SARS-CoV-2
structural proteins we tested with affinities in the ~0.1-10 µM
range. Furthermore, since SPR analyses were conducted using
purified components, our results strongly suggest that these
interactions occur directly and can take place in the absence of
contributions from other proteins.
DISCUSSION

Experimental evidence available to date supports the concept
that the pathogenesis induced by SARS-CoV-2 infection is
largely due to the simultaneous activation of several cross-
reactive immune pathways (2, 20–26) that generate in the
process potent and multifunctional activation products that
collectively contribute to severe inflammation, intravascular
thrombosis, excessive edema, and eventually death (5, 8, 9, 11–
13). One of the most consistent laboratory findings associated
with the severity of COVID-19 is the elevated levels of D-dimer,
which is produced when plasmin dissolves blood clots through a
process called fibrinolysis (20, 21). However, in addition to its
important role in fibrinolysis, plasmin has many other functions
outside its conventional role including activation of FXII (27).
For example, plasmin can activate proteins of the complement
system and releases powerful bioactive fragments such as C3a
and C5a (Figure 7), which in turn cause vascular permeability
and recruitment of leukocytes that produce proinflammatory
cytokines, thus contributing to the cytokine storm that is often
associated with COVID-19 disease. In addition, the role of
plasmin in activating FXII in the KKS, resulting in release of
BK, has long been recognized (28, 29), and has recently been
gaining more attention [reviewed in (27)].

Although advances have been made since the onset of the
COVID-19 pandemic, the viral and host molecular networks that
interact to trigger activation of the innate pathways (20, 21) and
exacerbate the COVID-19 pathology are still poorly understood.
As explained earlier, the major SARS-CoV-2 structural proteins
are: the spike (S) protein, the nucleocapsid (N) protein (1, 2, 22–
26, 30). the membrane (M) protein (2, 22–26, 30), and the
envelope (E) protein (23, 26). Although all of these proteins are
required to produce a structurally complete and highly
Frontiers in Immunology | www.frontiersin.org 6
pathogenic viral particle (1, 2), it is the S protein that is
responsible for viral attachment to cells, fusion of viral and
cellular membranes, and entry into cells, thus causing a full-
blown SARS-CoV-2 infection (9, 10, 22). Not surprisingly
therefore, this protein has been the focus of extensive studies
as well as the major target for vaccine production.

Infection with SARS-CoV-2 is initiated when the S protein
interacts with ACE-2 on the epithelial cell surface (9, 22).
However, although the primary function of ACE-2 is to
control the activity of ACE-1 in the renin-angiotensin system
(RAS), another critical function of ACE-2 is the degradation of
BK into non-functional peptides. Since BK generation is at the
center of the edema formation in COVID-19 pathology,
occupancy of ACE-2 by the viral S protein would inadvertently
interfere with its ability to degrade BK thus leaving unregulated
and active BK to circulate freely. Furthermore, activation of the
kinin system also generates in the process multiple activation
peptides including HKa, a cleavage product of HK, which binds
gC1qR and promotes the release of cytokines such as TNFa, IL-
1b, IL-6, and the chemokines IL-8 and MCP-1 from human
mononuclear cells (31–37). Moreover, gC1qR secreted by
infected cells has been shown to act as an autocrine signal to
induce the expression of the high affinity receptor for HK,
namely the bradykinin receptor 1 (B1R) (38). Together, these
events would contribute to the exacerbation of the inflammatory
processes associated with COVID-19.

Previous studies have shown that some of the SARS-CoV-2
associated proteins, and in particular the S protein, can activate
the complement system (31–37) either via the MBL pathway (35)
or the alternative pathway (37). In the present study, we show
that all of the viral proteins also activate complement via the
classical pathway, presumably by binding to the globular heads
of C1q (gC1q) in a manner similar to IgG or gC1qR, which are
also able to activate complement (38–41).

By virtue of its ability to bind and activate (29, 42, 43) two of
the most potent inflammatory systems in plasma–the
complement system and the kinin-kallikrein system (KKS)–we
hypothesized that cell surface expressed or secreted gC1qR could
also contribute to the rapid inflammatory response and the
“cytokine storm” that is associated with COVID-19 pathology.
The rationale for this postulate, in turn, is based on the fact that a
diverse array of viruses such as HIV-1 (19), hepatitis C virus (44),
bovine circovirus (45) Hantavirus (46), Epstein-Barr virus (47),
and rubella virus (48) target gC1qR, inside and outside the cell
for cellular entry and to enhance their own survival. For example,
while infection with human papillomavirus (HPV) triggers
gC1qR signaling and mitochondrial dysfunction and apoptosis
(49), vesicular stomatitis virus induces gC1qR signaling to block
retinoic acid-inducible gene I (RIG-I) activation thereby
promoting its replication (50). Moreover, gC1qR expression
and secretion is enhanced as a consequence of viral infection.
Although it is not yet known whether SARS-CoV-2 engages
gC1qR inside the cell, the ELISA and SPR binding data seem to
suggest that it would.

To survive and multiply, SARS-CoV-2, like many other
viruses, has a built-in strategy that takes advantage of proteins
November 2021 | Volume 12 | Article 767347
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FIGURE 6 | Surface Plasmon Resonance. Surfaces were prepared by immobilizing either wild-type gC1qR (i.e. gC1qR-WT) or a gC1qR deletion mutant that
removed the flexible, negatively charged loops (i.e. gC1qR-DD). A two-fold dilution series of recombinant forms of various SARS-CoV-2 structural proteins was
injected over each surface, where the highest concentration of each protein used is inset. The reference-corrected sensorgrams (black traces) were fit to kinetic
models (red traces) to obtain the apparent equilibrium dissociation constant for each interaction pair. Representative sensorgrams from 3 independent determinations
are shown for (A, B) Spike-S1 protein over gC1qR-WT (KD=91 nM) or gC1qR-DD (KD=370 nM), (C, D) Nucleocapsid protein over gC1qR-WT (KD=6 µM) or gC1qR-
DD (KD=12 µM), (E, F), Membrane-Envelope Fusion protein over gC1qR-WT (KD=410 nM) or gC1qR-DD (KD=360 nM), and (G, H) a synthetic peptide corresponding
to the gC1qR-binding region from HK as a positive control (KD=2 mM and 10 mM, respectively).
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of the host cell, to enter the cell. However, after dividing inside
the initial host cell, new viruses are released and ready to invade
other cells. But first, they must escape recognition by the immune
system using self-molecules as a camouflage. By virtue of its
abundance and affinity for pathogenic microorganisms,
intracellular or secreted gC1qR may bind SARS-CoV-2 and
thus prevent it from recognition by the immune system. In
addition, the gC1qR-coated virus could serve as a platform for
the assembly and activation of both the complement and the
KKS pathway (39). Activation of the two systems (Figure 8)
would then result not only in the generation of bradykinin, but
also generation of activation fragments from the complement
system such as C3a and C5a. In addition, the secreted gC1qR
itself can induce the expression of B1R, the high affinity receptor
for BK, thus providing the requisite receptor for vascular leakage,
recruitment of leukocytes and secretion of cytokines. In addition
to C1q, the plasma proteins that bind gC1qR are mostly blood
coagulation proteins and include high molecular weight
kininogen [HK], Factor XII [Hageman factor], fibrinogen,
thrombin [FII], and multimeric vitronectin (38, 43). Although
HK and factor XII compete for binding to gC1qR (51), recent
Frontiers in Immunology | www.frontiersin.org 8
crystallization of the complexes (52) show that the simultaneous
binding of both to gC1qR, which is zinc dependent (18, 52) is
possible. The involvement of the bradykinin forming cascade is
shown by the findings that bronchoalveolar lavage studies of
COVID-19 patients reveal marked upregulation of kallikreins,
HK, and bradykinin receptors with downregulation of C1
inhibitor, ACE, ACE-2 (53) and improvement in oxygenation
with a B-2 receptor antagonist (18, 53). Therefore, by binding to
these proteins, gC1qR can play an additional role in COVID-19
pathology by modulating the crosstalk between the complement
and coagulation pathways through fibrin formation, immune
injury and/or inflammation The fact that all of the major
structural proteins bind gC1qR efficiently therefore suggests
that SARS-CoV-2 could potentially use gC1qR as an alternate
receptor for cellular entry and/or intercellular communication,
thus making gC1qR a pluripotent target exploited by SARS-
CoV-2. More importantly, since gC1qR is also localized
intracellularly, there is a potential for intracellular interaction
between gC1qR and SARS-CoV-2 proteins (54, 55).

By virtue of its significance in cellular entry, the S protein has
been the major focus of anti-SARS-CoV-2 vaccine production.
FIGURE 7 | Hypothetical role of gC1qR as an activator of complement and KKS. After the initial infection, multiple copies of the virus leave the primary cell and upon
release bind to secreted gC1qR, a ‘self’ protein, to evade the immune system. The virus decorated with gC1qR in turn serves as an efficient platform for the
activation of both the complement system and the kinin system to generate vasoactive peptides such as C3a, C5a and BK.
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However, the finding that all known viral structural proteins bind
and activate innate pathways suggests that SARS-CoV-2 is
probably one of the most efficient viruses capable of using its
structural proteins for maximal damage. This in turn suggests that
SARS-CoV-2 may hijack gC1qR as an alternate receptor for
cellular entry, activation of innate pathways or intercellular
communication and energy metabolism (54). More importantly,
if the viral proteins are released and could survive in plasma or
other tissues such as on platelet microparticles (56, 57),
complement activation and BK generation could continue to
occur even long after the virus has been cleared and severe
symptoms associated with the initial infection have disappeared
as is the case in the so called “long haulers”. Although they test
negative for the SARS-CoV-2, approximately 10% of these patients
develop a myriad of post-COVID-19 lingering symptoms that
include incessant coughing, shortness of breath, body aches, brain
fog, headaches, and joint pain. We speculate that fragments of the
virus or the viral proteins may still linger in the blood possibly
bound to self-molecules such as gC1qR, which would then
Frontiers in Immunology | www.frontiersin.org 9
continuously activate the complement system, and the KKS,
thus releasing vasoactive and inflammatory molecules that
contribute to the multi-system inflammation of “long-haulers”.

Our results not only reveal novel molecular correlates
involved in the induction and/or enhancement of the
“cytokine storm”, vascular permeability and edema that are the
hallmarks of COVID-19 pathology, but also show for the first
time that not one but all the major structural proteins, S, M, N
and E, are able to activate the complement and kinin systems.
Although therapeutics that target the complement (11, 12) and
the kinin systems (9) have been promising, thorough
understanding of the interplay between complement and
coagulation systems in COVID-19 pathophysiology will still be
requisite if we are to design therapeutic interventions to treat not
only active patients but also the “long-haulers”. More
importantly however, since SARS-CoV-2 undergoes frequent
mutations to generate a new strain or a new variant,
computational models and mathematical algorithms, that
identify mutation-prone sites in the sequence of each of the
FIGURE 8 | Crosstalk between complement and coagulation enzymes: The role of plasmin.
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structural proteins, may also help in the design of vaccines ahead
of an impending SARS-CoV-2-variant pandemic.
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