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Abstract

The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health
risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally
been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are
unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the
ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is
presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage
characteristics over the chemical’s life cycle. These criteria are assessed and integrated within a decision analytic framework,
facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the
prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure
potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert
judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies.
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Introduction

Manufactured chemicals are widely used in products such as

cosmetics, plastics, and electronics, and have applications in

almost all industrial processes in sectors including energy,

agriculture, and pharmaceuticals [1]. Increasing dependence on

manufactured chemicals has not, however, been matched by an

adequate increase in our understanding of the risks these may pose

to the environment and human health [2]. Many chemicals in

U.S. commerce today have unknown environmental fates and

poorly understood potential for human exposure, including some

of the most ubiquitous commercial chemicals, such as surfactants,

fragrances, cleaning agents and pesticides [3,4]. In this context,

exposure is the contact of a stressor (i.e., a chemical agent) with a

receptor (i.e., a human or a human population) for a specific

duration of time [5]. Because of the lack of resources and sufficient

scientific information on toxicity [6] and exposure [3] for the

assessment of all chemicals, efforts are typically, and rationally,

devoted to assessing those chemicals believed to pose the greatest

potential risks based on production volume and chemical

properties.

Within the domain of human health risk assessment, toxicity is

an indication and measurement of the severity of adverse health

effects a chemical causes in relation to an exposure level (dose). We

broadly define exposure to be the contact of a stressor with a

receptor for a specific duration of time [5]. The stressors of interest

are chemical agents that can potentially lead to an adverse impact

and the receptors of interest are individuals or population of

individuals. Exposure is complex and dynamic in nature due to its

spatial and temporal characteristics. For this reason, exposure-

based prioritization efforts focus on relative exposure potential as a

means to evaluate and rank chemicals. While prioritization is in of

itself a risk management strategy, other risk management decisions

may follow to include the allocation of scarce resources to

complete future risk assessments, collection of additional data or

testing, and/or (bio) monitoring. Therefore, the resolution and

precision of the data incorporated in these efforts may vary

according to the overall objective of the prioritization.

The U.S. EPA Office of Chemical Safety and Pollution

Prevention recently performed a chemical prioritization exercise

to identify 83 ‘‘TSCA Work Plan Chemicals’’ [7] as candidates for

risk assessment during the next few years. Broad stakeholder input

was used to identify prioritization and screening criteria and data

sources. Chemicals were evaluated based on their combined

hazard, exposure potential, and persistence and bioaccumulation

characteristics using a two-step process. In the first step, a set of

data sources was used to identify 1,235 chemicals meeting one or

more criteria suggesting concern, namely: known reproductive or

developmental effects; persistent, bioaccumulative, and toxic

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e70911



(PBT) properties; known carcinogenicity; and presence in

children’s products. Excluding those chemicals not regulated

under TSCA and those with physical and chemical characteristics

that do not generally present significant health hazards narrowed

the number of chemicals down to 345 candidates. In the second

step, a numerical algorithm was used to score each chemical based

on three characteristics: hazard, exposure, and potential for

persistence or bioaccumulation. Candidate chemicals that ranked

highest on the basis of their total score were identified as work plan

chemicals; those that could not be scored because of an absence of

exposure or hazard data were identified as candidates for

information gathering.

Using the methodology described above, EPA has been able to

identify a priority set of chemicals for near-term assessment based

on criteria widely accepted as warranting concern. The scoring

algorithm is transparent and the data sources are well document-

ed. Focusing on chemicals with documented evidence of concern

(i.e. ‘‘data-rich’’) is reasonable in light of limited prototypes for post

hoc screening and the paucity of available resources. However, this

approach may not adequately address the need to make decisions

about the thousands of chemicals in commerce and the hundreds

of new chemicals introduced each year for which there is little or no

information [1,3].

To support the development of novel rapid approaches for

evaluating potential exposure of both existing and emerging

chemicals, the EPA has initiated the ExpoCast research program

[8]. This program is keenly interested in characterizing exposures

across the chemical life cycle –manufacturing, transportation,

product formulation, consumer product usage and finally disposal.

EPA seeks to build on current chemical exposure models and

knowledge to generate robust new protocols that better support

chemical evaluation, risk assessment and risk management. Recent

activities under this program have evaluated utility of available

approaches for the purpose of rapidly prioritizing large numbers of

chemicals on the basis of exposure [9,10].

A number of exposure models were recently comparatively

evaluated through the EPA Expocast model challenge, where a set

of approximately 50 data-rich chemicals of different classes were

ranked by several different approaches [10]. The chemicals were

chosen to include high interest chemicals with a range of

properties. Each modeling approach was capable of analyzing a

different number of chemicals from the full set because of varying

input requirements. Key findings of the comparative analysis

among the prioritization schemes indicated significant differences

in chemical ranking as a result of several factors: (1) which

processes the model described across the source to effects

continuum [11]; (2) the exposure metric or surrogate metric used

for prioritization and which statistic (i.e., median, upper bound or

lower bound estimate); (3) whether the model inputs included

actual, modeled or unit emissions; (4) which exposure pathways

were considered (i.e., from aggregated sources or through a

dominant pathway); and (5) which type of exposure scenarios were

considered (i.e., direct or indirect, diffuse source or concentrated

source, etc.) [10]. Only mechanistic models characterizing

exposure associated with environmental sources could rapidly

evaluate and rank potential exposure for the majority of chemicals.

To a great extent, this was due to both the minimum data

requirements and the availability of predictive tools (i.e., QSARs)

to generate model inputs that could be used to describe fate and

transport under steady state and equilibrium conditions. Of the

other models evaluated in the EPA Expocast model challenge,

those designed for evaluation of chemicals in specific exposure

scenarios lacked data for chemical and scenario specific input

parameters and were thereby inhibited in their ability to produce

ordinal rankings for the 55 chemicals.

Arguably, one of the major limitations of the models evaluated,

and perhaps one of the larger knowledge gaps in exposure-based

chemical prioritization itself, involves complex social behaviors

that determine how humans come in contact with manufactured

chemicals, particularly those emanating from near field sources

(e.g., residential and consumer products). Thus there is a pressing

need for enhancing current approaches with tools and techniques

developed for understanding human behaviors, such as human

factors engineering and marketing research, to better define

scenarios describing how products are used. Accurate use

scenarios among population groups of interest are necessary to

properly characterize the consumer use component of a chemical’s

life cycle.

Decision support tools borne out of the social sciences may also

have a place in chemical prioritization. Multi-criteria Decision

Analysis (MCDA), a rule-based method of classification for priority

setting, is both a set of techniques and an approach for ranking

alternatives [12,13]. MCDA is a promising approach for exposure-

based prioritization because it is transparent and understandable,

yet complex and rigorous enough to include scenario-based

reasoning, stochastic processes and value of information analysis.

Moreover, it is amenable to sparse data [14,15,16,17]. These

characteristics complement some of the limitations of currently

available statistical, mechanistic, or logic models, which provide

useful frameworks for gathering relevant data but lack the social

and policy context for risk-informed decision making. MCDA can

merge a variety of types of exposure metrics from descriptions of

physical chemical properties to the socioeconomic measures which

characterize human activity, chemical use and contact to

ultimately inform screening level risk estimates. Permitting

structured integration of different types of information, MCDA

methods provide a means for combining quantitative chemical

property, production and use data with expert judgments and

stakeholder preferences. MCDA assessment criteria can be

adaptively weighted and modified in real time to evaluate both

data-rich and data-limited chemicals.

Use of MCDA methods to support prioritization decision

making under high uncertainty has been demonstrated many

times including hazard identification and assessment. Risk

management alternatives of industrial hazards or industrial

consequences were relatively ranked using an MCDA approach

by Paralikas and Lygeros [18]. The method recognizes that a

single factor could not be used to define flammability and that

different methods, tools, codes and legislation use varying sets of

fire hazard properties as an example. Using the MCDA

framework, the different decision criteria were successfully

integrated using fuzzy logic to deal with linguistic variables and

uncertainties allowing broad application for chemical hazard

ranking decisions. In another example, life cycle assessment (LCA)

was incorporated within a decision framework to prioritize future

research and evaluate sensitivities to missing information in an

assessment of processes for synthesizing single walled carbon

nanotubes [14]. Engineered nanomaterials present uncertainties

similar to chemicals in consumer products in terms of unknown

environmental and human health across all life stages from

formulation to disposal.

This paper demonstrates how analytical tools, such as LCA and

MCDA, can offer a versatile and transparent approach to

exposure-based prioritization utilizing results from several ap-

proaches evaluated in the EPA ExpoCast model challenge. The

purpose of prioritization within this context is to focus resources on

further evaluation of safety for chemicals with high potential for

Exposure-Based Chemical Prioritization
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exposure and risk. A combination of exposure assessment model

output with qualitative exposure criteria within such a decision

framework has been recommended in the exposure-based waiving

protocol within Europe’s REACH Regulation [19] which shares

some similar goals for human and environmental health protec-

tion.

Materials and Methods

We propose a decision analytic approach for exposure-based

chemical prioritization to address the need for novel, rapid

exposure potential screening protocols. In this approach, we build

on current research and existing models by evaluating relevant

chemical exposure criteria within a larger MCDA framework. We

employ a two-part prioritization model that incorporates both

properties of the chemical itself and properties of the chemical’s

life cycle (Figure 1).

The chemical property and life cycle property assessments are

structured to analyze exposure-related information associated with

specific chemical properties and distinct life cycle phases,

respectively. Relevant chemical and life cycle properties are

grouped into several criteria based upon the means by which each

property contributes to the chemical’s overall exposure potential

(e.g., properties associated with a chemical’s ability to bioaccu-

mulate vs. those associated with its ability to be metabolized by the

human body). Chemical and life cycle properties in each criterion

are then further divided into various sub-criteria. The numerical

values associated with these properties for a given chemical serve

as inputs to the model. Input data can be obtained from a number

of different sources, including existing databases, current literature

and expert judgment. The criteria within this decision model were

selected by reviewing those used in the models submitted to the

ExpoCast model challenge, [10] and then structured into a

hierarchical framework based on discussions with exposure science

experts.

Within each sub-criterion, the constituent chemical or life cycle

property is evaluated to determine its contribution to overall

exposure potential. Input values for individual properties are

compared against established numerical thresholds, which define

distinct levels of risk that span the range of possible values for the

given sub-criterion. Thresholds are used to score property values

based on the indicated level of risk (e.g., a compound with a longer

half-life may have higher potential for exposure than a compound

with a shorter half-life, all other things being equal).

Following an MCDA approach, sub-criterion scores are then

combined according to explicit decision rules to derive scores for

their higher-level criterion. Chemical property and life cycle phase

criterion scores are then combined to produce a Chemical

Properties Exposure Score (CPES) and a Life Cycle Exposure

Score (LCES) for each chemical. These scores reflect relative

estimates of chemical exposure potential as indicated by available

chemical property and life cycle property data, respectively.

Exposure scores may then be integrated to derive aggregate

measures of exposure potential, which can be used to compare and

prioritize chemicals on a relative basis, or can remain separate and

be plotted on a risk matrix for a more qualitative assessment.

Chemical property and life cycle phase criteria can be weighted

within each assessment to reflect their relevance to the user’s

management objectives. Weights may indicate a specific focus of

the assessment or reflect expert judgment of a criterion’s predictive

reliability or relative importance. Criterion weights can be

adjusted to refine the scope of a particular assessment to a

particular class of chemicals (e.g., pesticides), a particular exposure

scenario (e.g., occupational exposure), or a particular exposure

target (e.g., environmental contamination). When eliciting subjec-

tive weights, it is important to utilize best practices to avoid

potential biases and inconsistencies [20,21]. Numerous elicitation

techniques exist, including rank-based methods and swing-weight

methods [13,21,22].

Chemical Properties Assessment
As seen in Figure 1, the Chemical Properties Assessment

considers four main criteria to estimate potential risk for human

exposure: bioaccumulation potential, persistence, ADME (Absorp-

tion, Distribution, Metabolism, and Elimination), and physical

hazard potential. Each criterion constitutes a unique set of sub-

criteria, which define the distinct chemical property data points

that serve as inputs to the assessment. Observed chemical

properties used to estimate exposure potential are defined by the

specific sub-criteria under each of the four main criteria. Using

thresholds established for each sub-criterion, individual data points

are evaluated and assigned scores representing the potential for

exposure indicated by the observed chemical property. Once these

initial scores have been calculated, the highest within each set of

sub-criteria is assigned as that criterion’s exposure score.

When certain chemical-specific data are unavailable, as is often

the case in this context, it may not be possible to assign scores to

Figure 1. MCDA Framework for Exposure-Based Chemical Prioritization.
doi:10.1371/journal.pone.0070911.g001
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each sub-criterion. By defining each criterion’s exposure score as

the highest of its associated sub-criteria scores, we account for this

possibility. By employing this approach, criterion scores can be

assigned even in the presence of sparse data.

Each chemical’s bioaccumulation, persistence, ADME, and

physical hazard scores are combined with their associated weights.

Weighted criteria exposure scores are then summed to produce

initial chemical property exposure score for each chemical. Once

this has been done for the set of chemicals being assessed, the

initial chemical property exposure scores are normalized from 0 to

1 to produce relative rankings.

Bioaccumulation. Bioaccumulation is a process in which a

chemical substance is absorbed by an organism via all routes of

exposure in the natural environment, for example through dietary

and ambient environmental sources, and increases in concentra-

tion over time [23]. Using three bioaccumulation-related sub-

criteria, we evaluate surrogate chemical properties in order to

predict the compound’s ability to bioaccumulate.

Bioconcentration factor (BCF). A compound’s BCF is a

dimensionless number representing the relative concentration of

the compound in organic tissues. In general, chemicals with

relatively higher BCFs have greater potential for exposure, and

thus are more likely to adversely impact human health and the

environment. In this model, four distinct numerical thresholds

were used to evaluate chemical BCF data. These thresholds are

shown in Table 1, and were used to assign each chemical a BCF

sub-criteria score from 1–4 based on the indicated level of

bioaccumulation potential. Thresholds are based on previously

published values employed by existing exposure assessment

models: the EPA Design for the Environment Program [24],

and the Clean Production Action’s Green Screen for Safer

Chemicals Initiative [25]. To address minor numerical discrep-

ancies, the more conservative thresholds were chosen when values

differed between models.

Log kow. A compound’s Kow, or octanol-water partition

coefficient, describes its ability to transition between water and

carbon-based media. Chemical compounds with relatively higher

log Kow are capable of greater movement within the environment;

they are thus more adaptive and have higher potential for human

exposure and absorption. In this model, four distinct numerical

thresholds were used to evaluate chemical Kow data. These

thresholds are shown in Table 1, and were used to assign each

chemical a log Kow sub-criteria score from 1–4 based on the

indicated level of bioaccumulation potential. Thresholds are based

on previously published values employed by existing exposure

assessment models: the EPA Design for the Environment Program

[24], and the Clean Production Action’s Green Screen for Safer

Chemicals Initiative [25], with the more conservative threshold

chosen when values differed between models.

Molecular weight. Previous studies have identified a signif-

icant correlation between a compound’s molecular weight and its

ability to bioaccumulate [26,27]. Results from these studies

support the general conclusion that heavy molecules do not easily

bioaccumulate, as their size hinders passage through lipid

membranes. Lower weight chemicals thus possess a relatively

greater potential for human exposure. These and similar findings

have been used to inform chemical testing policy and legislation

such as the OECD Chemical Substance Control Law (CSCL) in

Japan [28] and the EPA Toxic Substances Control Act (TSCA) in

the United States [29].

A single cut-off threshold is employed by our model to evaluate

molecular weight data. Molecules 1000 amu or greater are given a

bioaccumulation criteria score of 1, regardless of their other sub-

criteria scores within the bioaccumulation category (BCF & log

Kow). The 1000 amu cut-off follows TSCA premanufacture

notification policy [29], and is based on current understanding

that molecular weights in this range are generally better indicators

of chemical bioaccumulation potential than other surrogate

properties [26].

Persistence. Persistence corresponds to the length of time a

chemical can exist in the environment before degrading or being

transformed by natural processes [23]. Persistent chemicals are

more likely to come into contact with humans compared to

chemicals that degrade quickly in the environment. We consider

the half-life in water, soil, sediment, and air for each chemical as

surrogate indicators of persistence for the purpose of evaluating

exposure potential.

The numerical thresholds used for evaluating chemical half-life

data are shown below in Table 1. Thresholds were used to assign

each chemical four distinct half-life sub-criteria scores from 1–4

based on the level of persistence indicated by each of the four half-

lives (in water, soil, sediment, and air). Threshold values for water,

soil, and sediment are based on previously published values

employed by existing exposure assessment models: the EPA

Design for the Environment Program [24], and the Clean

Production Action’s Green Screen for Safer Chemicals Initiative

[25], using the more conservative thresholds. The threshold value

for air follows science-based guidance for evaluating chemical

long-range transport potential and overall persistence [30].

Chemicals with half-lives in air that are less than two days are

assigned an associated sub-criteria score of 1 (‘‘Low’’), while those

with half-lives in air greater than or equal to two days are assigned

an score of 3 (‘‘High’’).

Table 1. Thresholds for Bioaccumulation Potential and Environmental Persistence.

Score 1 (Low) 2 (Moderate) 3 (High) 4 (Very High)

Bioaccumulation

BCF ,100 .100 to 1000 .1000 to 5000 .5000

Log Kow ,2 .2 to 3 .3 to 5 .5

Persistence

Half Life in Water ,168 days .168 to 960 days .960 to 1440 days .1440 days

Half Life in Soil ,384 days .384 to 1440 days .1440 to 4320 days .4320 days

Half Life in Sediment ,384 days .384 to 1440 days .1440 to 4320 days .4320 days

Half Life in Air ,2 n/a . = 2 n/a

doi:10.1371/journal.pone.0070911.t001

Exposure-Based Chemical Prioritization

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e70911



ADME. Properties that describe a chemical’s ability for

absorption, distribution, metabolism, and excretion (ADME) are

indicators of the potential for biologically relevant human

exposure. Chemicals that can be easily absorbed by the body

and that are resistive to metabolism or excretion pose a greater

threat for extended exposure; therefore it is useful to focus on the

entrance and exit of the chemicals within the context of the body.

Though recent and current ADME-related research efforts have

focused on establishing appropriate surrogate properties and

developing predictive models, general consensus has not been

reached regarding an accepted approach to ADME assessment for

environmental chemicals [10]. Building on current research and

existing models, a new ADME assessment protocol intended for

screening-level exposure-based chemical prioritization was incor-

porated into the framework [10]. This method utilizes QikProp

software Version 3.0 [31], a QSAR-based model to obtain

surrogate chemical property values, which were then integrated to

evaluate ADME properties along various sub-criteria briefly

discussed below. All QikProp values are based on a 24-hour

exposure period. Incidentally, QikProp is a three-dimensionally

based structure method, so the SARs depend on the solvent

accessible surface area. The properties calculated are dependent

on the conformer adopted at the time of calculation and could be

sensitive to molecular orientation. In addition, QikProp was

designed exclusively to develop organic pharmaceutical com-

pounds, so cannot be used for metals and inorganic compounds.

Thus, if the analytics discussed herein are to be applied to metals

and inorganic compounds, another QSAR system is needed.

Absorption. The chemical absorption assessment is based on

two QikProp predictors which describe oral availability. The first

descriptor represents a qualitative measure of oral absorption

potential, and takes values of 1, 2, or 3 for low, medium, or high,

respectively. The second descriptor represents a numerical

probability of oral absorption on a 0 to 100% scale, with ,25%

and .80% designating low and high probability, respectively.

These values were combined to derive an absorption score (1–3)

for each chemical.

Distribution/Excretion: Distribution and excretion-related

properties were combined into a single assessment. QikProp

predicted octanol/water partition coefficients, serving as surro-

gates for half-life within the human body, were categorized into

bins using subjective thresholds to derive a distribution/excretion

score (1–4) for each chemical.

Metabolism. The assessment of metabolism was derived

from the QikProp descriptor representing the number of expected

possible metabolites for each chemical over a 24-hour period in

the human body. These values were categorized based on the

predicted half-life of each chemical in order to represent

metabolism via natural degradation in the body. These values

were combined to generate average metabolism scores (1–4) for

each chemical.

Physical hazard potential. Highly flammable and reactive

chemicals pose human and environmental threats that may not be

considered in standard exposure or toxicity-based assessments.

Though the properties that determine a given chemical’s

flammability and reactivity may be distinct from those that

determine its environmental fate and transport, the threat of

physical hazard is nonetheless directly related to the likelihood of

exposure. The risk of physical hazards (e.g., combustion) is thus an

exposure-related risk, and we assess each chemical’s hazard-

related properties in order to anticipate threats that may not be

considered in other exposure or toxicity-based screenings. In

accordance with existing National Fire Protection Association

(NFPA) standards and classifications [32], flammability and

reactivity were assigned scores of (1–4) using established NFPA

thresholds.

Chemical Life Cycle Properties Assessment
Similarly to the assessment of chemical properties, we estimate

potential for human exposure by assessing three main life cycle

phases of manufactured chemicals: production, consumer use, and

disposal. Each phase constitutes a unique subset of exposure-

related criteria, which define the distinct life cycle characteristics

that serve as inputs to the assessment.

The different criteria associated with each of the three life cycle

phases designate the individual life cycle properties that will serve

as indicators of a chemical’s exposure potential during the relevant

phase. All life cycle criteria are evaluated quantitatively, with

higher values indicating higher potential for exposure. Instead of

establishing thresholds for each sub-criteria as in the assessment of

chemical properties, raw values are used but then normalized

across the set of chemicals for each individual sub-criteria. This

provides bounds for the range of values and assists in making

comparative assessments.

Criteria scores are then calculated by summing the sub-criteria

scores. Again, these scores are normalized across the set of

chemicals to account for criteria containing more sub-criteria than

others, and then multiplied by their weights to produce an initial

Life Cycle Properties Exposure Score (LCES). Once initial LCESs

have been calculated for all chemicals, we derive final LCESs by

normalizing initial scores to the highest and lowest observed scores

across all chemicals.

Production. Number of Potential Exposure Sources: Each

chemical is evaluated to determine the possibility for human

exposure during processes associated with production of the

chemical. We consider one potential source (occupational microenvi-

ronments) defined as any workplace environment in which a release

might occur during chemical manufacture and/or processing.

Each chemical is assigned a score of either 0 or 1 based on whether

the compound presents risk of exposure during production.

Projected average annual number of production sites. A

chemical’s exposure risk is increased if it is produced in many

locations. Ubiquity classifications for each chemical were used to

estimate the amount of chemical production sites [10]. Higher

scores indicate increased potential for human exposure during

chemical production: very widespread (5), widespread (4), moder-

ate (3), localized (2), low (1).

Regional geometric mean production quantity

(MQR). In addition to how widespread production is, estimates

are made of the quantity produced. This is estimated using the

Regional Geometric Mean Production Quantity (MQR), mea-

sured in units of kilotons per year. This is an estimated quantity,

but production quantities could also be provided by industry.

Consumer Use
The assessment evaluates several sub-criteria relevant to the

consumer use phase in the life cycle of manufactured chemicals.

Based on the intended uses of each chemical, primary consumer

class is defined as either strictly industrial, or industrial and

individual. Chemicals used during industrial processes (e.g.,

monomers, solvents) and chemicals otherwise noted to have

primarily industrial consumers were defined to have a strictly

industrial consumer class. Chemicals used in agriculture (e.g.,

pesticides, insecticides, herbicides) or as food/cosmetic additives

(e.g., preservatives, anti-microbials) were defined to have both

industrial and individual consumers. Chemicals directly incorpo-

rated into consumer products during their production (e.g.,

Exposure-Based Chemical Prioritization
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plastics, coatings, fabrics, flame retardants) are also defined to have

both industrial and individual consumers.

Number of potential exposure sources. Each chemical

was evaluated to determine the possibility for human exposure

during processes associated with both industrial and individual

consumer uses of the chemical. Ten distinct potential sources

associated with consumer exposure were considered (i.e., outdoor

air, water, soil, biota, indoor air/dust, in-vehicle air, object

contact, tap water, other water, food/beverages) by assigning each

chemical a score from 0–10 based on possibility for exposure via

each unique source during consumer use of the compound.

Projected average annual number of individual

consumers. Chemicals defined as having industrial and indi-

vidual consumer classes were assessed to determine their potential

for exposure to individual consumers in non-industrial settings.

Chemical ubiquity classifications were used to represent the

relative size of each chemical’s average, annual, individual

consumer base. Chemicals defined as having strictly industrial

consumer classes were assigned individual consumer scores of 0.

Remaining chemicals were assigned scores from 1–5 based on

their ubiquity, with higher scores indicating increased potential for

individual consumer exposure during non-industrial use: very

widespread (5), widespread (4), moderate (3), localized (2), low (1).

Projected average annual number of industrial

consumers. To assess chemicals’ potential for exposure to

industrial consumers, we employ the ubiquity classification to

estimate the average, annual size each chemical’s industrial

consumer base. As none of the chemicals assessed were defined

as having a strictly individual (non-industrial) consumer base, all

chemicals were assigned scores from 1–5 based on their ubiquity

classification, with higher scores indicating increased potential for

industrial consumer exposure during use of the chemical: very

widespread (5), widespread (4), moderate (3), localized (2), low (1).

Projected average annual quantity consumed per

individual/industrial consumer. The average annual quan-

tity of each chemical consumed per consumer was predicted using

the relative size of the chemical’s total consumer base (including

both individual and industrial consumers), and its MQR. Relative

measures of consumption quantity per consumer (Q) were

calculated by dividing each chemical’s projected mean production

volume by their total number of consumers, assuming chemicals

with higher consumption quantities to have increased potential for

consumer exposure. Projected annual quantities consumed per

individual consumer were calculated using the same equation as

that for industrial consumers:

Q~MQR= niIndividualzniIndustrialð Þ ð1Þ

where (niIndividual+niIndustrial) represents the chemical’s total con-

sumer base, or the number of individual consumers plus the

number of industrial consumers.

Susceptible populations. To determine if there was a

heightened exposure risk to susceptible populations (in this case,

children), particular processes associated with individual consumer

use of the chemical were evaluated. Nine distinct potential sources

associated with exposure to children were considered (Outdoor

Air, Water, Soil, Indoor Air/Dust, In-Vehicle Air, Object

Contact, Tap Water, Other Water, and Food/Beverages), and

each chemical was assigned a score from 0–9 based on possibility

for exposure via each unique source.

Disposal
Number of potential exposure sources. Each chemical

was evaluated to determine potential for human exposure resulting

from disposal events. We consider four distinct disposal-related

sources (Outdoor Air, Water, Soil, Biota), assigning each chemical

a score from 0–4 based on potential for exposure via each unique

source during and after disposal of the compound.

Projected average annual number of disposal

events. Each chemical’s total number of consumers was

estimated to determine an annual number of associated chemical

disposal events. Assuming that each chemical’s industrial and

individual consumers dispose of equal amounts of the compound,

we define the projected number of disposal events as each

chemical’s total number consumers, and assign scores of 1–10,

with higher scores representing greater potential for disposal-

related human exposure.

Projected average annual quantity disposed. To account

for assumed variations in the actual quantities disposed during

industrial and individual consumer disposal events, we assume that

0.1% of the net production volume of each chemical is disposed of

in order to evaluate disposal-related exposure potential. Note that

the use of this unit value assumes that no chemical- or product-

specific data were available. With larger disposal quantities

indicating higher potential for post-disposal chemical exposure,

we calculate relative disposal quantities of each chemical (QDISP)

as:

QDISP~(:001) �MQR ð2Þ

Integrating Chemical Properties and Life Cycle Exposure
Scores

Once assessments of chemical properties and life cycles have

been performed on all chemicals, those chemicals lacking sufficient

data to calculate either a chemical properties exposure score or life

cycle exposure score are removed from the remainder of the

prioritization. Though these chemical’s available scores may

indicate significant threat of exposure, they are excluded from

the integration process as their scores can skew final exposure

potential relationships. The remaining chemicals are renormalized

as:

xESFinal~
xESInitial{xESMin

xESMax{xESMin

ð3Þ

where xES denotes the relevant exposure score (either chemical or

life cycle). Next, the remaining chemicals’ exposure scores

(chemical property and life cycle property) are summed to produce

aggregate exposure scores. These scores represent cumulative

measures of exposure potential based on each chemical’s distinct

properties and characteristics of its projected life cycle. Aggregated

exposure scores, which all lie in the range of 0–2, are used to

numerically rank chemicals based on their potential for human

exposure.

In addition to this quantitative integration, chemical property

and life cycle scores can be visualized using a risk-reporting matrix

(Figure 2) for a more qualitative assessment of aggregate chemical

exposure potential.

In this method of integration, chemical property and life cycle

exposure scores are converted from a scale of 0–1 to a scale of 0–5

by multiplying the initial score by a factor of five to place them

within the 565 risk matrix, with each chemical’s position

representing a qualitative, cumulative measure of exposure

potential based on both chemical and life cycle properties.

Qualitative exposure potential thresholds (red, yellow, or green)
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can be defined within the matrix to designate high, moderate, and

low risk regions.

Case Study

Data Set
For the case study, a set of 51 chemicals was selected from those

presented and evaluated in the model challenge (Table 2),

representing a wide variety of chemical classifications (e.g.,

organics, metals, etc.). Sub-criteria scores for these chemicals were

collected from numerous reports and online databases, and the

sources for each sub-criterion are listed in Table 3. Case study

data can be found in the online File S1.

Prioritization
First, the data for each chemical was compiled. It was found

that some chemicals were difficult to assess due to a lack of readily

available data. If a chemical did not have any sub-criteria scores

for at least one of its criteria, that chemical was removed from the

analysis process as having too little data for analysis. Nine of the 51

chemicals (largely metals) were removed for this reason.

Following the MCDA approach outlined above, each of the

remaining test chemicals was assessed. Scores for each criterion

were weighted by allocating equal weights (i.e., bioaccumulation,

persistence, ADME, and physical hazards each weighted 25%;

production, consumer use, disposal each weighted 33.33%). The

final prioritization under this weighting distribution is shown in

Table 4. The risk matrix comparison under this weighting

distribution is shown in Figure 3.

Discussion

As stated above, one of the major limitations of currently

available exposure models involves the inability to fully charac-

terize the influence of complex social behaviors on resulting

exposures or contact between humans and manufactured chemical

across all life stages of the chemical. This is especially true for

chemicals used in residential and consumer products, those arising

from near field sources. A multi-criteria decision model was

developed to combine typical physiochemical screening level data

with measures to characterize human activities. As a proof of

concept to show the utility of this approach, a case study was

conducted on a small set of chemicals that were also analyzed

using higher tiered statistical and mechanistic exposure models in

a model challenge [10]. The models used in the model challenge

considered different types of exposure scenarios including indirect

exposures from diffuse environmental sources and direct, concen-

trated exposures from micro-environmental sources (i.e. from a

personal care product or within a residence), though the latter had

significant limitations in terms of necessary data to produce

exposure estimates. Ranking results were obtained by three models

and the comparative analysis is reported elsewhere [10]. Some

agreement between ranking results was observed, but in general

these models produced widely incongruous results across a number

of different domains of information. Interestingly, some of the

results using the MCDA model developed herein coincide with

results from these more complex models. The majority of the

chemicals (13 of 14) ranked in the top one-third of the list in

Table 4 (Rank 1–14), are also ranked in the top one-third of one

of the models evaluated in the challenge. In general this agreement

is with a ‘‘far-field’’ indirect diffuse source model which does not

incorporate human activity at the micro-environmental level.

Nonylphenol was the exception as it was ranked low by all other

mechanistic models. Similarly, the bottom third of the ranked list

in Table 4 (Rank 28–42) shows high agreement with results from

a model from the challenge. One model used characterized both

far-field and near-field exposures and the other two were far-field

models.

Because this analysis was conducted as a proof of concept, an

exhaustive search for quality data and subsequent data validation

was not conducted independently of the model challenge.

However, the absence of the mechanistic relationships involved

in the exposure models as well as the equal weighting scheme used

in our example would lead to the assumption that the input drivers

of the challenge models would be different than the input drivers

of MCDA model. To fully explore this assumption and the utility

of this methodology for larger scale research prioritization or

policy guidance, the results of the case study underscore the need

for quality data inputs. Only nine of the chemicals had to be

excluded. These chemicals have properties that exclude them from

the domain of applicability of the analytics, e.g. models, QSAR

type, and other tools. As mentioned, metals and inorganic

compounds are not characterized by the ADME models used in

this study.

For the majority of compounds that fall within the domain of

applicability, the MCDA approach is useful. As shown in Table 4,

the majority of the chemicals used in plastics appear in the top half

of the ranked list denoting highest exposure potential by highest

aggregated exposure score. Plastics are broadly related to

exposures that occur in all locations across the life-cycle of the

chemicals. The chemicals in the bottom half of the ranked list

(lower exposure potential) fit into a number of other of categories,

but 11 of 21 are or were used as pesticides/herbicides,

agriculturally, in homes or in public and commercial areas. The

two pesticides/herbicides, Parathion and Methoxychlor, are

ranked relatively low on the list in Table 4. Both chemicals were

exclusively used in agriculture only, but have been previously

banned or restricted by the EPA and do not have other uses like

1,2,3-trichlorobenzene, ethylene thiourea, and hexachlorobenzene

which were also used exclusively in agriculture but are now used as

a nonfood commercial additives. The remaining chemical in the

agricultural only category is aldicarb. Aldicarb was restricted more

Figure 2. Example Chemical Exposure Potential Risk Matrix.
doi:10.1371/journal.pone.0070911.g002
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recently in 2010 and will not be completely phased out until 2018,

so exposure potential may be higher than the others in this

category.

It should be noted that the nature of this analysis is to score

chemicals in a comparative and relative manner, as opposed to

assigning an absolute measure of exposure risk, which would not

be practical or appropriate for a screening tool such as this. The

relative assessment of chemical exposure potential is therefore

dependent upon the set or sub-set of chemicals under consider-

ation, and must be considered when designing the analysis and

interpreting the results.

If a risk matrix is used for interpretation or communication of

exposure potential results, it is important to note that a chemical

with a high chemical property score and low life cycle property

score (or vice versa) may be displayed has having a low exposure

risk. When the risk matrix is used for score integration, however,

these chemicals will appear on the boundaries of the matrix and

can easily be identified as outliers that may warrant further

assessment. Figure 3 shows the results of the case study on such a

risk matrix. The risk matrix approach can be used to graphically

visualize qualitative risk categories such as high, medium and low

risk. The case study chemicals mostly fall within the same middle

risk range of the matrix. Six chemicals fall into the higher exposure

risk potential category and seven chemicals fall into the low

exposure risk potential category based on the delineations shown

in Figure 2. As a high tier screening, this type of representation

may be useful for rapid visualization and categorization of large

number of chemicals; however risk matrices should be used with

caution when guiding risk management decisions [35].

Both the ranking and risk matrix approaches highlight the

potential promise of multi-criteria decision analytic models for

exposure-based prioritization, but further development beyond

this effort is warranted. Given that the baseline weighting scenario

– equal weights distributed among the chemical property and life

cycle criteria – is likely an unrealistic one, a sensitivity analysis

should be conducted to explore the effects of uncertainty in both

the scoring of chemical parameters and the weighting schemes on

the final chemical prioritization. This will help identify chemicals

which are targets for further exposure assessment and data

collection, ideally including better release characterization, prox-

imal exposure assessment, and biomonitoring.

Finally, it is important to recognize that these results are strictly

a measure of exposure potential and do not consider toxicological

properties. Risk is a function of both hazard and exposure. The

means by which organisms are exposed to stressors are complex;

with many feedback loops (e.g., an outcome may itself become a

stressor or modify other stressors). Risks related to chemical

ingredients in products depend not only on the inherent properties

of that chemical, but also the manner in which the chemical is

formulated and used. Exposure potential therefore might be

integrated with computational toxicology to paint a more

Table 2. Case Study Chemicals.

Chemical CAS # Chemical CAS #

Formaldehyde 50000 Malathion 121755

DDT 50293 Perchloroethylene 127184

Parathion 56382 1-methoxy-4-(2-propen-1-yl)-benzene 140670

gamma-Hexachlorocyclohexane 58899 decaBDE 1163195

Carbaryl 63252 Trifluralin 1582098

Methoxychlor 72435 PFOS 1763231

Vinyl Chloride 75014 Atrazine 1912249

1,1,2,2-tetrachloroethane 79345 Lead 7439921

Tetrabromobisphenol A 79947 Manganese 7439965

Bisphenol-A 80057 Cadmium 7440439

p-tert-Pentylphenol 80466 Butylhydroxyanisole 8003245

Diethyl phthalate 84662 Perchlorate (Mg salt) 10034818

Di-n-butylphthalate 84742 Tris (l,3-dichloro-2-propyl) phosphate 13674878

1,2,3 Trichlorobenzene 87616 Methyl mercury 22967926

Pentachlorophenol 87865 Phenol, (l,l-dimethylethyl)-4-rnethoxy 25013165

2,4,5-Trichlorophenoxy acetic acid 93765 Nonylphenol 25154523

2,4-D 94757 Hexabromocyclododecane (HBCD) 25637994

Ethylene thiourea 96457 8-2 fluorotelomer acid 27854315

Methylparaben 99763 Aroclor_1260 35065271

Styrene 100425 Aroclor_1254 38380017

n-Hexane 110543 Vinclozolin 50471448

Tris (2-chloroethyl) phosphate 115968 Permethrin 52645531

Aldicarb 116063 Penta BDE 60348609

DEHP, Di(2-ethylhexyl)phthalate 117817 C10–C13 Chloroalkanes 85535848

Hexachlorobenzene 118741 octaBDE 207122165

Ethylparaben 120478

doi:10.1371/journal.pone.0070911.t002
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complete picture of risk and to effectively prioritize the numerous

chemicals in commerce.

Conclusions
In this paper, we have presented a decision analytic approach to

exposure-based prioritization of manufactured chemicals. The

proposed methodology allows for structured and transparent

analysis of chemical exposure potential through integration of

heterogeneous metrics used to evaluate exposure risk-related

information associated with both chemical properties and life cycle

phases. The model is scalable to assess as many chemicals as is

necessary for the project scope, and the MCDA framework is able

to accommodate varied inputs and exposure potential indicators,

providing an adaptive and easy-to-use screening tool for rapid

prioritization in the face of sparse data. In addition, the use of

weighting in the model allows for specific user objectives, expert

judgment, and data availability considerations to be explicitly

implemented within the assessment.

The proposed approach builds on earlier models and current

research relating to rapid evaluation of exposure potential.

Specifically, it integrates the results of mechanistic and statistical

approaches with semi-quantitative categorical data to describe

exposure potential. In this paper, we attempt to address the need

for high-level screening tools that (1) are capable of more detailed

assessments than those provided by simpler predictive models (i.e.,

limited to persistence and bioaccumulation as indicators of

exposure), and (2) have less intensive data requirements than

more complex models, so as to remain efficient at the screening

level.

It is important to note that work on this model is ongoing, and

that the initial framework presented in this paper is primarily

intended to illustrate the application of decision analytic methods

to supplement existing exposure potential estimation techniques.

Currently, our developmental efforts are focused on: (1) refining

ADME assessment criteria and calculations; (2) identifying optimal

surrogates for bioaccumulation potential; (3) implementing value

of information (VOI) techniques to quantify data gaps and

prioritize further research efforts; (4) improving normalization

algorithms; and (5) developing a supplemental logic model for

more specific exposure scenario evaluation. Additionally, we are

working to develop formal means of considering expert judgment

and empirical chemical exposure data within our assessments. In

Table 3. Data Sources.

Criteria Sub-Criteria Data Sources

Chemical Properties

ADME Absorption (A) QikProp software Version 3.0 [31]

ADME Distribution/Excretion (D/E) QikProp software Version 3.0 [31]

ADME Metabolism (M) QikProp software Version 3.0 [31]

Bioaccumulation Bioconcentration Factor (BCF) PBT Profiler [33]; Estimation Programs Interface SuiteTM (EPI suite) [23]

Bioaccumulation Log Kow EPA Exposure-Based Prioritization Challenge [34]

Bioaccumulation Molecular Weight EPA Exposure-Based Prioritization Challenge [34]

Persistence Half Life in Air EPA Exposure-Based Prioritization Challenge [34]; Mitchell, et al. [10]

Persistence Half Life in Water EPA Exposure-Based Prioritization Challenge [34]; Mitchell, et al. [10]

Persistence Half Life in Soil EPA Exposure-Based Prioritization Challenge [34]; Mitchell, et al. [10]

Persistence Half Life in Sediment EPA Exposure-Based Prioritization Challenge [34]; Mitchell, et al. [10]

Physical Hazard Flash Point (Flammability) Material data safety sheets

Physical Hazard Explosivity (Reactivity) Material data safety sheets

Life Cycle Properties

Production Number of Potential Exposure Sources EPA Exposure-Based Prioritization Challenge [34]

Production Projected Avg. Annual Number of
Production Sites

EPA Exposure-Based Prioritization Challenge [34]

Production Regional Geometric Mean Production Quantity [MQR] EPA Exposure-Based Prioritization Challenge [34]

Consumer Use Number of Potential Exposure Sources EPA Exposure-Based Prioritization Challenge [34]

Consumer Use Projected Avg. Annual Number of Individual
Consumers

EPA Exposure-Based Prioritization Challenge [34]

Consumer Use Projected Avg. Annual Number of Industrial
Consumers

EPA Exposure-Based Prioritization Challenge [34]

Consumer Use Projected Avg. Annual Quantity Consumed
Per Individual Consumer

EPA Exposure-Based Prioritization Challenge [34]

Consumer Use Projected Avg. Annual Quantity Consumed Per
Industrial Consumer

EPA Exposure-Based Prioritization Challenge [34]

Consumer Use Susceptible Populations: Number of Potential
Exposure Sources to Children

EPA Exposure-Based Prioritization Challenge [34]

Disposal Number of Potential Exposure Sources EPA Exposure-Based Prioritization Challenge [34]

Disposal Projected Avg. Annual # of Disposal Events EPA Exposure-Based Prioritization Challenge [34]

Disposal Projected Avg. Annual Quantity Disposed EPA Exposure-Based Prioritization Challenge [34]

doi:10.1371/journal.pone.0070911.t003
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Figure 3. Risk Matrix Comparison of Exposure Potential with Even Weighting.
doi:10.1371/journal.pone.0070911.g003
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Table 4. Exposure Rankings with Even Weighting.

Rank Chemical Name CAS #
Chemical Property
Score Life Cycle Score

Aggregate Exposure
Score

1 Trifluralin3 1582098 0.67 0.80 1.47

2 Styrene2 100425 0.56 0.87 1.43

3 decaBDE4 1163195 0.67 0.76 1.43

4 Nonylphenol4 25154523 0.56 0.86 1.42

5 DEHP, Di(2-ethylhexyl)phthalate2 117817 0.44 0.92 1.37

6 n-Hexane4 110543 0.56 0.78 1.33

7 Atrazine3 1912249 0.44 0.88 1.33

8 Tetrabromobisphenol A2 79947 0.56 0.76 1.32

9 Pentachlorophenol3 87865 0.56 0.76 1.32

10 Di-n-butylphthalate2 84742 0.33 0.96 1.29

11 Diethyl phthalate2 84662 0.33 0.96 1.29

12 Hexabromocyclododecane (HBCD)2 25637994 0.56 0.64 1.20

13 octaBDE2 207122165 1.00 0.17 1.17

14 Tris (2-chloroethyl) phosphate2 115968 0.33 0.82 1.15

15 2,4-D3 94757 0.22 0.92 1.15

16 Aldicarb3 116063 0.33 0.80 1.13

17 Vinyl Chloride1 75014 0.67 0.45 1.12

18 p-tert-Pentylphenol3 80466 0.44 0.66 1.11

19 Penta BDE4 60348609 0.89 0.17 1.06

20 Tris (l,3-dichloro-2-propyl) phosphate2 13674878 0.44 0.60 1.05

21 Phenol, (l,l-dimethylethyl)-4-rnethoxy5 25013165 0.44 0.60 1.05

22 gamma-Hexachlorocyclohexane3 58899 0.44 0.57 1.01

23 Carbaryl3 63252 0.00 1.00 1.00

24 Aroclor_12541 38380017 0.67 0.33 1.00

25 1,2,3 Trichlorobenzene3,4 87616 0.56 0.41 0.96

26 1,1,2,2-tetrachloroethane1 79345 0.44 0.47 0.92

27 Vinclozolin3 50471448 0.44 0.46 0.91

28 Methylparaben5 99763 0.00 0.90 0.90

29 PFOS4 1763231 0.44 0.44 0.89

30 Formaldehyde1,4 50000 0.44 0.42 0.86

31 Aroclor_12601 35065271 0.56 0.29 0.85

32 Hexachlorobenzene3,4 118741 0.56 0.29 0.85

33 Malathion3 121755 0.22 0.57 0.79

34 Ethylparaben5 120478 0.22 0.56 0.79

35 DDT3 50293 0.78 0.00 0.78

36 Perchloroethylene1 127184 0.44 0.31 0.75

37 Permethrin3 52645531 0.33 0.42 0.75

38 1-methoxy-4-(2-propen-1-yl)-benzene5 140670 0.56 0.16 0.72

39 Ethylene thiourea3,4 96457 0.22 0.41 0.63

40 Parathion3 56382 0.44 0.07 0.51

41 Methoxychlor3 72435 0.33 0.07 0.40

42 Bisphenol-A2 80057 0.33 0.07 0.40

2,4,5-Trichlorophenoxy acetic acid3 93765 n/a n/a Insufficient Data

Lead4 7439921 n/a n/a Insufficient Data

Manganese5 7439965 n/a n/a Insufficient Data

Cadmium4 7440439 n/a n/a Insufficient Data

Butylhydroxyanisole5 8003245 n/a n/a Insufficient Data

Perchlorate (Mg salt)1 10034818 n/a n/a Insufficient Data

Methyl mercury1 22967926 n/a n/a Insufficient Data
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the future, we anticipate that the decision analytic approach will

be able to provide decision makers with important and reliable

information to support efficient, exposure-based prioritization of

manufactured chemicals.

Supporting Information

File S1 Case Study Data.

(XLSX)
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