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Abstract

Extracellular multi-unit recording is a widely used technique to study spontaneous and evoked neuronal activity in awake
behaving animals. These recordings are done using either single-wire or mulitwire electrodes such as tetrodes. In this study
we have tested the ability of single-wire electrodes to discriminate activity from multiple neurons under conditions of
varying noise and neuronal cell density. Using extracellular single-unit recording, coupled with iontophoresis to drive cell
activity across a wide dynamic range, we studied spike waveform variability, and explored systematic differences in single-
unit spike waveform within and between brain regions as well as the influence of signal-to-noise ratio (SNR) on the similarity
of spike waveforms. We also modelled spike misclassification for a range of cell densities based on neuronal recordings
obtained at different SNRs. Modelling predictions were confirmed by classifying spike waveforms from multiple cells with
various SNRs using a leading commercial spike-sorting system. Our results show that for single-wire recordings, multiple
units can only be reliably distinguished under conditions of high recording SNR ($4) and low neuronal density (<20,000/
mm3). Physiological and behavioural changes, as well as technical limitations typical of awake animal preparations, reduce
the accuracy of single-channel spike classification, resulting in serious classification errors. For SNR ,4, the probability of
misclassifying spikes approaches 100% in many cases. Our results suggest that in studies where the SNR is low or neuronal
density is high, separation of distinct units needs to be evaluated with great caution.
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Introduction

Extracellular multi-unit recording of neural activity is widely

used to study spontaneous or evoked neuronal activity in

anaesthetised as well as awake behaving animals. The ability to

simultaneously differentiate distinct neurons in multiple regions

has provided detailed insights into the neural representation of

sensory information in the mammalian brain as well as the

functional roles of local and projection circuits. Clearly, in such

studies the accurate isolation of multiple distinct single units for

each electrode is crucial for correct interpretation of the recorded

data. Although action potentials propagate into the dendritic tree

and axon, modelling studies indicate that the origin of the action

potential waveform recorded by these electrodes is likely to be the

soma [1,2] as it generates the largest signal compared to other

sources along the neuronal processes. An electrode in extracellular

space is therefore expected to sample activity originating from

a number of surrounding active neurons. Electrical signals in the

brain decay with increasing distance between the source and the

electrode, approximately following an inverse square law [3]. The

maximum distance separating a recordable unit from an electrode

can therefore be estimated, and the number of cells within this

range calculated [4]. Analytical tools have been developed to

process such recorded activity and assign isolated spikes to specific

units [4,5,6]. However, accurate classification remains difficult

when large numbers of cells are present around the recording

electrode [5,6], a situation in which the misclassification of

recorded units becomes more likely.

This problem of misclassification in layered brain regions

(where neuronal density is relatively high) was markedly improved

by the development of multi-wire recording electrodes [7]. In the

case of tetrodes, for example, spike sorting is based on a four-wire

recording of the same unit, where the relative distance between

each wire and the action potential source produces a different

signal on each channel. This unique set of waveforms, related to

the cell’s position, allows for the accurate isolation of multiple

single units, as well as the possibility of tracking of multiple units

over many days. However, this method also has two major

limitations: 1) each recording site requires four recording channels,

with the consequent increase in the complexity of the experiment

and the volume of data collected per electrode; and 2) the

relatively large total diameter and coarse tips of the multiple wires

comprising the tetrode can cause increased damage to the neural

tissue through which it passes. For these reasons, single electrodes

are still predominantly used in those brain regions where neurons

are not very densely packed (for example, most regions outside the

hippocampus and some cortical layers).

For lower density brain regions, unit sorting is often done using

a combination of template matching and autocorrelation of spike

times recorded using twisted electrode bundles [8–10]. This
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technique is based on the assumptions that a) spikes from different

neurons will have different apparent waveforms because of

variations in the spatial configuration between the neuron and

the electrode tip and b) the average spike amplitude between cells

will differ because it is unlikely that two neurons will be at the same

distance from the electrode tip, meaning that distinct units will be

clearly separable. Both of these assumptions require that spike

shape and amplitude in individual cells are stable. This, however,

is clearly not the case. For example, Fee and colleagues [11]

showed that spike amplitude changes over the course of a single

continuous recording, with spike size decreasing at higher firing

rates. Action potential shape also changes with activity, thereby

affecting the measured duration of the spikes [12]. Moreover, the

impact of these two factors on the quality of the spike sorting is

exacerbated by fluctuations in the signal-to-noise ratio (SNR) or

the presence of a nearby cell with similar spike shape. The latter

could have a particularly strong impact considering that signals

originating from a neuron spread isotropically in the neuropil [13],

and the fact that the recorded waveform originates mainly from

the soma [1,2]. As a consequence, there would be a critical volume

around the electrode within which two different cells could be

falsely identified as a single unit. To date, however, no study has

investigated the theoretical and practical limits of spike waveform

separability given different recording noise levels, different

numbers of recorded neurons, or the presence of similar spike

waveforms from different neurons.

In this paper we analysed single-unit recordings in unrestrained

animals (anaesthetised and non-anaesthetised) using small di-

ameter multi-barrel glass pipettes (,5 mm) placed in a one-axis

drive [14]. This method allows the position of the electrode to be

accurately controlled while monitoring the neural activity, thereby

allowing improvement of the recording’s SNR. The high

impedance of these electrodes, together with the on-line adjust-

ment of position, makes this method ideal for isolating the signal of

single units in unrestrained non-anaesthetised animals [15–17].

Multi-barrel electrodes were used for iontophoretic application of

gamma amino-butyric acid (GABA) and glutamate [18] to induce

neural activity changes over a wide dynamic range. Such

manipulations, which mimic the changes in activity that are

observed in vivo, were used to test spike waveform variability over

a wide range of firing frequencies. We assessed systematic

differences in single-unit spike waveforms within and between

brain regions (substantia nigra, mesencephalon and tectum) with

differing cell densities, soma sizes and neurochemical content [19–

23]. We also investigated the influence of SNR on spike waveform

characteristics and modelled spike misclassification for different

cell densities based on neuronal recordings at different SNRs. We

aimed to specifically test the ability of a single electrode to

discriminate activity from multiple neurons. Our analyses show

that using single recording electrodes, multiple units can only be

reliably distinguished under favourable conditions of high re-

cording SNR and low neuronal density.

Methods

Animals and Surgery
Data were obtained from 26 male Long-Evans rats (400650 g)

supplied by Charles River Laboratories (Greensboro, NC, USA).

All animals were housed individually under standard laboratory

conditions (12-hr light cycle beginning at 07:00) with free access to

food and water. Protocols were performed in compliance with the

National Institutes of Health Guide for the Care and Use of

Laboratory Animals and were approved by the National Institute

of Drug Abuse Animal Care and Use Committee. The surgical

procedures used have been described previously [18]. Briefly,

under general anaesthesia (Equithesin 0.33 ml/100 g i.p.; dose of

sodium pentobarbital 32.5 mg/kg and chlorale hydrate 145 mg/

kg), rats were implanted with a plastic, cylindrical hub, designed to

mate with a microelectrode holder during recording [14]. This

hub was centred over a hole drilled above the substantia nigra pars

compacta and pars reticulata, the deep mesencephalic nucleus, or

the anterior pretectal nucleus. After a 3–4 day recovery period and

habituation to the experimental chamber, recording sessions were

held once daily over 1–3 days. A separate group of rats (n = 5),

prepared as described above, underwent a recording session under

chloral hydrate anaesthesia (400 mg/kg, i.p., followed by 120 mg/

kg/hr). In these experiments body temperature was maintained

automatically at 37.260.2uC with an electric heating pad and

feedback rectal thermal probe.

Electrophysiology and Iontophoresis
Four-barrel, microfilament-filled, glass pipettes (Omega Dot

50744, Stoelting, Wood Dale, IL, USA), pulled and broken to

a diameter of 561 mm, were used for single-unit recording and

iontophoresis. The recording barrel contained 2% pontamine sky

blue (BDH Chemicals Ltd, Poole, UK) in 3 M NaCl and the

balance barrel contained 0.25 M NaCl. The remaining barrels

were filled with solutions of l-glutamate (0.25 M in distilled water,

pH 5.5; Sigma, St Louis, USA) or GABA (0.25 M in

0.125 M NaCl water, pH 4.5, Sigma). The resistance of the

recording channel was 3–5 MV (measured at 100 Hz) and that of

the drug-containing barrels ranged from 10–35 MV. Retaining (–

8 to –10 nA) and ejecting (+20 to 40 nA) currents were applied

with a constant current generator (Ion 100T, Dagan, Minneapolis,

MN, USA). Each multibarrel pipette was filled with fresh solution

less than one hour before use and fixed in a microdrive assembly

that later was inserted into the skull-mounted hub. The electrode

was then advanced 3.0 mm below the brain surface to the starting

point of unit recording.

Neuronal discharge signals were sent to a head-mounted

preamplifier (OPA 404KP, Burr Brown, Tucson, AZ, USA) and

then further amplified and filtered (band pass: 300–3,000 Hz) with

a Neurolog System (Digitimer, Welwyn Garden City, UK). The

filtered signal was recorded using a Micro 1401 MK2 interface

(Cambridge Electronic Design, Cambridge, UK). Spike activity

was monitored with a digital oscilloscope and audio amplifier, and

analysed using a Spike2 interface (Cambridge Electronic Design).

Recordings to be analysed were selected based on several

parameters: (i) there was a significant period of recording stability

(stable SNR, see below for details), (ii) the cell exhibited a variety of

firing rates during that period, and (iii) for some cells, firing rate

was manipulated by iontophoretic applications of glutamate or

GABA released by constant or increasing ejection currents for 20 s

at 60 to 90 s intervals. Spike detection thresholds were set

manually for each recording to ensure that an optimal number of

spikes were extracted, this being particularly important for

recordings with low SNR. For biphasic spikes, 2.75 ms of

recording was extracted for each spike (0.75 ms before and

2.0 ms after each peak), while for triphasic spikes, 6.0 ms was

extracted (2.0 ms before and 4.0 ms after). During the experiment

the rat’s activity was recorded using a wide-angle camera (Creative

Technology, Milpitas, CA, USA). All iontophoretic applications

used for statistical analysis were performed when the animal was at

rest with no sign of overt movements. An example of a typical

single-unit recording with glutamate iontophoresis is shown in

Figure 1A. Baseline activity and changes in spike amplitude can be

observed before and after the iontophoresis. Glutamate was

applied during the epoch marked by the two arrows, inducing

Target SNRs for Practical Spike Sorting
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a large increase in cell firing that correlated with a visible decrease

in spike amplitude. When the same iontophoretic currents were

used with solution containing no active compound, neither of these

changes was observed, showing that iontophoretic currents were

not directly responsible for the changes in cell activity or spike

amplitude, consistent with other experimental findings [24].

Typical spike waveforms are illustrated in Figure 1B.

Histology
After the last recording session, the rats were anaesthetised and

pontamine sky blue was deposited by current injection (-20 mA for

20 min) at the last recording site. Animals were then perfused

transcardially with saline solution followed by 4% paraformalde-

hyde. The brain was removed and placed overnight at 4uC in

a 20% sucrose solution before being frozen in dry ice. Coronal

30 mm tissue sections were prepared at –20uC using a microtome

cryostat. The Paxinos and Watson atlas [25] served as the basis for

histological analyses.

Spikes Waveform Analysis
The SNR of each recording was calculated as RMSsignal/

RMSnoise where the signal comprised all extracted spikes and the

noise comprised the remainder of the recording. RMS is the root

mean square of the data (i.e. ![(Snxi
2)/n], where xi, i=1.n, is the

complete set of data values) which, for data with zero mean (such

as the band-pass filtered recordings), is equal to the standard

deviation. For biphasic spikes, a total of 2.75 ms of recording was

extracted for each spike, whereas for triphasic spikes, 6.0 ms was

extracted, and the signal RMS was calculated on the full spike

waveforms extracted for each recording (i.e. the RMS calculation

was performed on longer sample periods for triphasic spikes).

Noise RMS was calculated across the entire recording, less the

extracted spikes, so may have included low-amplitude multi-unit

activity as a component of the noise (i.e. spike waveforms, from

nearby cells, that were too small to reach spike detection threshold,

and which were occasionally visible in some recordings). Note that

SNR is sometimes alternately measured as spike peak amplitude

divided by RMSnoise; such treatment of SNR yields values typically

2 to 2.5 times higher than defined here, depending on spike shape

(see Figure S3 and Material S1 and S2 for more information).

Spikes were detected with threshold crossing, after which detected

spikes were 106 oversampled with spline interpolation and

realigned on the spline spike peak. All subsequent operations on

the spikes were conducted on the oversampled, realigned versions.

The amplitude of each spike was calculated as the absolute total

amplitude spanned by the spike waveform, which was usually the

distance between the spike peak and subsequent trough.

The continuous firing rate, r, was calculated at time t of each

spike with terms for exponential rise and decay based on the

interspike intervals of preceding spikes:

r(t)~d:r(t{Dt)z(1{d)f ð1Þ

where Dt is the time since the preceding spike, f is the

instantaneous firing rate (f=1/Dt) and d is the exponential decay

term (d = e–Dt/t) with the exponential time constant t=100 ms

[11] (approximating the cell membrane time constant). The decay

term gives more weight to the instantaneous firing rate f after

a long time delay since the previous spike (during which the

membrane has had time to recover), while giving more weight to

the slower-changing continuous firing rate during spike bursts

(meaning that continuous firing rate r rises only slowly during

bursts).

All the spikes extracted from a recording period were averaged

(after aligning on the spike peak) to give a mean spike shape for

that recording. The mean spike was then processed to identify

important properties of the spike waveform. These points were the

first and second zero crossings where net current flow was zero

(points z1 and z2), the start point of the spike (point s), the spike half

width (h), and the spike rise (r = z1–s) and fall times (f = z2–z1).

The first zero crossing after the peak of the recorded extracellular

spike was considered to be the spike peak of the intracellular spike

[26]. The second zero crossing of the extracellular spike was

considered to be close to the bottom of the intracellular spike

trough, although this point may not be exact [26]. The

extracellular spike half width (h) was calculated by first finding

the maximum absolute value of the waveform prior to the first

zero crossing. The first two points in the spike with amplitude of

half this value were then identified, and the time difference

between these points was taken as the half width. To determine the

start point of the spike, an initial estimate was made by subtracting

the half width from the extracellular spike (EC) peak position. A

pre-spike recording baseline level was then calculated for each

spike by finding the mean amplitude of the extracted spike prior to

the estimated start point. The spike start point was then deemed to

be the first point prior to the peak that crossed 5% above the

baseline level (i.e. 5% of the height of the peak). This technique

accommodated for spikes that did not start from a baseline level of

exactly zero.

All spikes in the recording were sorted based on their calculated

continuous firing rate and divided into 5 firing rate bins (if

required, up to 4 spikes were omitted to ensure that bins were

equally sized, with the average dataset being 2861 total spikes).

Three methods were used to test for a correlation between spike

amplitude and firing rate: (i) Bonferroni-corrected t-tests between

the bins (and a separate final test between the first and last bins), (ii)

one-way analyses of variance (ANOVA) across all bins, and (iii)

determination of the line of best fit for all points on the spike

amplitude vs. firing rate graph, with subsequent calculation of

whether the 99% confidence interval (CI) for the slope of the line

included zero (meaning that no significant amplitude vs. firing rate

correlation existed). The spike waveform properties (s, z1, z2, h, r

and f as described above) were then calculated as above for each

individual spike, and one-way ANOVA tests were used to test for

changes in rise times, fall times and half widths across bins.

Heat Map Construction
All spike vectors were normalised to zero-mean and unit length.

Each spike in a recording was then compared to the mean spike

for that recording using the dot product (bearing in mind that

spike peaks were aligned as part of the spike waveform analysis).

The mean and standard deviation of the distribution of dot

product values for all spikes in a recording provided a measure of

the variability of the spike waveform from spike to spike,

independent of any amplitude changes (since the spike vectors

were normalised). Every spike for each recording was then also

compared to the mean spike for every other recording using the

same normalised dot product; this comparison provided a measure

of the similarity between spikes from each neuron and the mean

spikes from all other neurons. Large variability in spike waveforms

due to noise meant that many spikes from some neurons were

more similar to the spikes from other neurons, and hence would be

confused with the other neurons for spike-sorting purposes. The

results of these comparisons were plotted on an n*n grid with rows

and columns labelled with the set of all recorded neurons. At each

grid cell which marked the intersection of two given neurons, the

cell was coloured based on how many of one cell’s spikes would be

Target SNRs for Practical Spike Sorting
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erroneously attributed to the other cell; such a representation is

called a heat map and provides a concise graphical summary of all

the comparisons.

Hybrid Recording Construction
To test our spike sortability predictions on recordings with

known neuron identities, hybrid recordings were created by

Figure 1. Example single-unit recording and spike waveforms. A: Single-unit activity recorded in the anterior pretectal nucleus of an
unanaesthetised, unrestrained rat in during iontophoretic application of glutamate (between arrows). B: Individual spikes recorded from three
different cells in the anterior pretectal nucleus (left, same recording as A), the substantia nigra pars reticulata (middle) and a triphasic spike from the
substantia nigra pars compacta (right). C: Spikes from single-wire, single-unit recordings are similar to spikes from multi-unit recordings. Left: The
mean spikes from 20 randomly selected hippocampal CA1 neurons (blue) and the mean of all those means (black). Right: The mean spike shape for
each of the 23 biphasic cells (blue) recorded and analysed using the single-unit protocol, and the mean of all the mean shapes (black). CA1 data are
courtesy of the Buzsaki group from the Collaborative Research in Computational Neuroscience data-sharing website (crcns.org).
doi:10.1371/journal.pone.0038482.g001
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concatenating spike waveforms from several neurons. Three such

hybrid recordings were created with high, moderate and low SNR.

Each recording contained 500 spikes from one neuron followed by

500 spikes from another. The hybrid recording was exported into

wave format (.wav file) and then imported into Plexon Offline

Sorter (OFS, Plexon, Dallas, USA). Two different spike sorting

techniques were used: K-means scan sorting and valley-seeking

sorting. Both techniques attempt to simultaneously determine the

number of different clusters (neurons) in the data and to assign the

spikes to those clusters. In the case of K-means sorting in OFS,

different numbers of clusters can be returned by different cluster

quality metrics, in which case a voting mechanism was employed

to select the number of clusters for which most cluster metrics

agreed. After sorting, the number of correctly classified spikes,

together with the number of false positives and false negatives,

were recorded.

Results

Our analysis is based on a dataset of 32 recordings in 5 different

brain regions in unrestrained rats during quiet rest and anaesthe-

sia. During rest, recordings were obtained from the substantia

nigra pars compacta (n = 8) and pars reticulata (n = 8), the deep

mesencephalic nucleus (n = 3), the anterior pretectal nucleus

(n = 6), and the zona incerta (n = 1). During anaesthesia, record-

ings were obtained from the anterior pretectal nucleus (n = 2) and

the substantia nigra pars reticulata (n = 4). Neuronal activity was

modified by iontophoretic application of glutamate or GABA to

obtain spike trains with a wide dynamic range of firing frequency

(n = 16). Figure 1A shows a typical recording of unit activity from

a single cell and its response to iontophoretic application of

glutamate. Under basal conditions the instantaneous firing rate

was not stable but varied over short time intervals. Application of

glutamate dramatically raised the firing rate of the neuron while

reducing the mean height of the action potentials (between

arrows). Three typical spike waveforms recorded from different

brain regions are shown in Figure 1B.

Similarity of Single-unit and Multi-unit Recordings
One of the premises of this study, that analysis of single-unit

recordings is directly applicable to multi-unit recordings, relies on

the assumption that extracted spike waveforms are similar in both

cases. For comparison, we extracted spikes obtained from

simultaneous multi-unit and intracellular recordings in anaesthe-

tised rats from the Collaborative Research in Computational

Neuroscience data-sharing website (crcns.org). The downloaded

recordings were collected from the hippocampal CA1 region. The

simultaneous intracellular recordings allowed unambiguous iden-

tification of single-unit activity in the multi-unit data (see

Figure 1C). The spikes from 20 randomly selected CA1 neurons

(Figure 1C, left panel) were similar to, but not exactly the same as,

spikes from the single-unit recordings analysed for the current

study (Figure 1C, right panel). The biggest differences were that

the single-unit spikes were slightly shorter and had deeper

hyperpolarisation after the peak.

For spike sorting, the waveform per se is not critical, but the

difference between waveforms of different spiking cells determines

spike-sorting success. Overall, the differences between all the

single-unit waveforms were similar to the differences between all

the multi-unit spikes, which themselves are typical of all multi-unit

recordings (not shown). Conclusions we make regarding the

difficulty of spike sorting using the single-unit waveforms are

therefore also readily applicable to multi-unit recordings.

Result 1: Spike-timing Variability
We define timing variability as changes in the zero-crossing

times of spikes, irrespective of any amplitude change (i.e. amplitude

change alone, without changes in zero-crossing times, is not

a timing change). Although some neurons had stable and

consistent spike timing, many showed minor spike-timing

variability with increasing firing rate (Figure 2A). Cells with no

significant timing changes (Figure 2A, top panels) showed stable

spike rise time, fall time and half width as firing rate increased

(Figure 2A2: blue = rise time; green = fall time; red = half

width). Cells with significant timing changes (Figure 2A3–A4)

generally showed increasing spike rise time, fall time and half

width as firing rate increased. 47% of cells (15/32) had significant

rise-time changes, with the mean change for these cells (6

standard deviation) being +8.8611.5% (p,0.02). Across all cells,

the average rise-time change was +4.669.0% (p,0.007) with only

1 cell (3%) showing a significant decrease in rise time. The mean

fall-time change was +0.869.3% (p.0.64), which was not

significantly different from zero (i.e. even though 59% (19/32) of

cells had significant individual fall-time changes, some increased

and some decreased such that the average change for all cells

together was not significantly different from zero – see Figure 2B

showing histograms for percentage changes in spike rise times, fall

times and half widths for all neurons). The mean absolute fall-time

change was 5.3%. Overall, a rise-time change, fall-time change or

both were observed for 75% (24/32) of the cells; 16% (5/32) had

only a rise-time change, 28% (9/32) had only a fall-time change

whereas 31% (10/32) had both.

Of all the recorded cells, 84% (27/32) had significant half-width

changes with a mean change for these cells of +6.268.2%

(p,0.0007). Only 3 cells (9%) showed a significant decrease in half

width. Across all cells, the mean half-width change was

+5.267.9% (p,0.0008).

To test for any effects of anaesthesia or pharmacology on spike

timing, neurons were classified into the appropriate groups

regardless of the brain region in which they were recorded.

Anaesthesia and pharmacological manipulation had no significant

effect on spike rise, fall and half-width times (Table 1). For

comparison, the first two rows of Table 1 also summarise the

results for changes in rise, fall and half-width times of all 32

neurons (for completeness, amplitude is also included – see next

section for full amplitude change results). This absence of

significant effects of anaesthesia and pharmacology indicates that

it was valid to combine all neurons under all conditions for

subsequent analyses in this study.

Result 2: Spike Amplitude Variability
We evaluated spike amplitude variability based on Bonferroni-

corrected t-tests, ANOVA tests and the slopes of lines of best fit on

amplitude vs. firing rate graphs (see Methods). The majority of

neurons (84%; 27/32) displayed significant amplitude reduction as

the firing rate increased (see Figure 2C showing change in

amplitude for each cell as the cell’s firing rate varied from

minimum to maximum). Whereas the t-tests and slope tests gave

the same significant differences for all cells, the ANOVA results

differed from the former two tests for 1 cell, but still resulted in

81% (26/32) of cells showing significant amplitude reductions.

Two cells (6%), both of which were in the substantia nigra pars

reticulata, displayed a significant amplitude increase as the firing

rate increased, although the increases were not large. Three cells

(9%) presented with no significant amplitude change. There was

a tendency for slower-firing cells, with maximum firing rates less

than 50 Hz, to display larger amplitude reductions on average (see

Figure 2C1). Across all 32 cells, the average amplitude change
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from the lowest to the highest of five firing-rate bins was -

12.9611.2% (p,1027).

Result 3: Effect of Noise on Spike Shape
Spikes became more affected by noise as the SNR of the spike

recording decreased. This was evidenced by a rapid increase in

spike-to-spike variability at low SNR (Figure 3A). Spike variability

was calculated so that a variability of 0 indicated that every spike

waveform from a given neuron was exactly the same (i.e. no

variability) and that variability approached 1 as noise began

dominating the waveforms (i.e. spike shapes became random;

variability was calculated as (1– spike similarity), where spike

similarity was the average, for all spikes from a cell, of the dot

product of each spike with the mean spike shape for that cell; see

Methods for details). As illustrated in Figure 3A, spike variability

increased dramatically below an SNR of about 4, suggestive of

a serious degradation in the quality of the recorded spikes.

Conversely, there was little extra relative benefit in spike quality

with a SNR greater than about 8. In many cases, a SNR between

4 and 8 may therefore be considered desirable in terms of the

trade-off between cost or ease of recording and the recording

quality.

Spike variability due to noise is related to SNR by the relation

variability =1–!(1–1/SNR2) (see Material S1). This relation is

a good fit to the experimental data; the greater variability seen in

the data for some cells is due to intrinsic spike-timing changes in

those cells (see Result 1 above). Individual spikes are highly

affected by noise, particularly at lower SNRs, to the extent that

any single spike can appear more like a spike from a different

neuron than a spike from the neuron that actually generated it.

The likelihood of this confusion occurring can be calculated for

this dataset by comparing all of the extracted spikes to the mean

spike from each neuron (using the normalised dot product; see

Methods). For any pair of neurons a and b, the proportion of spikes

from neuron a which are more like the mean spike from neuron

b than the mean spike of neuron a gives a theoretical minimum for

the proportion of spikes from neuron a that will be misclassified

when recording the two neurons together. Performing this

calculation for all pairs of neurons in the current dataset

(Figure 3B) yields a rate of misclassification ranging from 0% to

41.6%, with the mean misclassification across all biphasic spikes in

the dataset (cells 10 to 32) being 8.3%. Note that cells with

triphasic spikes (cells 1 to 9) are unlikely to be confused with cells

with biphasic spikes (the large, mostly dark regions at the top and

left of the figure represent low misclassification rates for cells 1 to 9

when paired with all other cells).

The cells in this study were selected for their recording stability

and range of SNR levels, and selection was performed prior to any

spike similarity analysis. It is therefore reasonable to expect that

these cells are a representative sample of all cells in the investigated

brain regions. When recording with a single electrode, a significant

percentage of spikes can therefore be expected to be misclassified,

even when recording from only two neurons at reasonably high

SNRs and assuming perfect spike detection and sorting processes.

The misclassifications arise for the simple reason that these spikes

truly appear to originate from the opposing cell, due to noise-

induced distortions of the spike shape. Crucially, these results are

the theoretical minimum misclassification for the average case of

stability can vary with increased firing rate in certain neurons, as shown by two neurons (A1 and A3, stable and variable respectively) recorded from
the substantia nigra pars reticulata in awake animals. Spikes were binned into five equally sized groups based on the firing rate of the neuron at the
time each spike was emitted (see Methods for firing rate calculation method). The shapes of spikes in each bin were averaged, after which the spike
start point (circles, left), first zero crossing (stars, left, corresponding approximately to the peak of the intracellular spike) and second zero crossing
(crosses, left, corresponding to the approximate trough of the intracellular spike) were determined (see text for calculation methods). These points
were then used to calculate spike rise time, fall time and half width (respectively blue, green and red lines on the graphs A2 and A4) for each spike
bin. A1 and A2: No significant spike-timing change. A3 and A4: Significant spike-timing change. Significance was tested using an ANOVA of the five
bins of each set of rise, fall and half-width times for each neuron. B: Rise-time, fall-time and half-width changes for all neurons. Mean changes were
respectively +4.669.0% (p,0.007), +0.869.3% (p.0.64) and +5.267.9% (p,0.0008). Significance was tested with a standard one sample t-test. C:
Spike amplitude decreased with increased firing rate. Spike amplitude at the lowest firing rate for each neuron was normalised to 1, after which the
relative amplitude at the highest firing rate was plotted. 84% of cells displayed a significant amplitude decrease (C1). The distribution of maximum
spike-amplitude variations (when a cell showed a transition from its lowest to its highest firing rate) across all cells reveals the majority of cells
showed a clear spike-amplitude reduction (C2). The average amplitude change was –12.9611.2% (p,1027).
doi:10.1371/journal.pone.0038482.g002

Table 1. Rise-time, fall-time, half-width and amplitude changes and significance levels for all cells, for awake vs. anaesthetised rats,
and for control vs. pharmacologically manipulated conditions.

Rise- time
% change

Fall- time
% change

Half- width
% change

Amplitude
% change

All cells mean 6 std dev (n = 32) 4.669.0 0.869.3 5.267.9 –12.9611.2

Significance level (p) ,0.007 .0.64 ,0.0008 ,1027

Awake mean 6 std dev (n = 11) 5.4613.9 4.3612.9 7.1611.5 –14.2614.1

Anaesthetised mean 6 std dev (n = 5) 0.964.9 3.0610.1 3.766.1 –8.467.5

Awake vs. Anaesthetised significance level (p) 0.501 0.841 0.545 0.410

No pharmacology (n = 27) 3.669.4 1.769.5 4.868.3 –12.1611.2

Pharmacology (n = 16) 3.765.8 –2.464.9 3.864.3 –8.9610.5

No pharmacology vs. Pharmacology (p) 0.972 0.121 0.674 0.360

Only rise time and half-width changes were significant for all cells (dark shading, one sample t-test). Significance for awake vs. anaesthetised and for no pharmacology
vs. pharmacological conditions was tested using a two sample t-test. No significant differences were found for rise times, fall times and half-widths between awake and
anaesthetised, or between pharmacology and no pharmacology conditions.
doi:10.1371/journal.pone.0038482.t001
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all the recordings in the dataset used for this study. Although in

some cases it would be possible to perform better classification (e.g.

when recorded spikes are, by chance, very different), over many

recordings the mean classification error will be at least as large as

that reported. Thus, classification performance will be worse at

least 50% of the time, even when recording from only two neurons

simultaneously.

As the number of simultaneously recorded cells increases, the

number of different ways that spikes can be misclassified also

increases. Assuming a uniform distribution of spike shapes

throughout the space of all possible shapes, then the correct

classification percentage for any 3 simultaneously recorded cells

from this dataset will, on average, be (100–

8.3%)2 = 0.9172= 84.1%, and in general the correctly classified

proportion of spikes will be 0.917n–1 where n is the number of

recorded cells. For example, for n=5, at most 71% of spikes will

be classified correctly. The average SNR across all cells in this

dataset is approximately 5; for lower SNRs, spike classification

performance will be worse.

Given that the spike similarity measure used for the results

above is invariant to spike amplitude (since the spike vectors are

normalised – see Methods), one could suggest using spike

amplitude as a discriminator to separate spikes into their respective

functional units. We next tested the extent to which spike

discrimination may be aided by the spike amplitude difference

between neurons located at different distances from the recording

electrode. Using reported neuronal densities, we modelled the

combined amplitude and shape variations of spike waveforms

expected from these neurons, assuming a random spatial

distribution around the recording electrode. We chose a range

of neuronal densities for non-layered brain areas based on the

study by Oorschot [22].

Result 4: Spike Misclassification as a Function of SNR
The previous result provided an estimate of the probability of

misclassifying spikes based on spike shape alone. However, spike

shape and amplitude information can be combined to determine

the relationship between SNR and the probability of misclassifying

each recorded spike. Given that the SNR at which a neuron is

recorded is related to its distance from the centre of the electrode tip

(so larger electrodes generally cause reductions in SNR), and given

that we know the average densities at which neurons are

distributed in the brain, it is possible to calculate, on average,

how many neurons will be recordable (and the approximate SNRs

of the recordings) for any given brain region [4]. Based on this

calculation, the previous result can be applied to calculate the

overall probability of misclassifying each recorded spike at any

given SNR. We define SNR as RMSsignal/RMSnoise, where the

signal comprises all extracted spikes and the noise comprises the

remainder of the recording (see Methods for details). It is worth

noting that the signal itself is contaminated by noise, and in our

model we account for this by assuming that it is the same

magnitude as baseline noise, and statistically independent of the

signal. Note also that SNR will be significantly higher than

reported here if it is calculated as Peaksignal/RMSnoise (see Material

S2 and Figure S3).

In order to generalise this analysis we made a number of

assumptions. The first of these is that spike amplitude varies as the

inverse square of the distance of the neuron from the recording

electrode (i.e. 1/r2 where r is the electrode distance), following
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Figure 3. Spike variability increases dramatically at low SNRs and causes large misclassification errors. A: Spike-to-spike variability
plotted against the SNR of the recording shows a rapid increase in variability at low SNR (A). Each data point indicates the average variability of each
spike to the mean spike from that cell (see text for details). Error bars indicate one standard deviation. There was a slight general trend towards larger
standard deviation in the variability at lower SNRs, although this was in addition to the effect of spike-timing changes which, for some cells,
substantially increased the spike deviation even at higher SNRs. The fit curve shown is the fit line 1–!(1–1/SNR2) (see text and Material S1). B:
Percentage of spikes for each neuron that would be classified as coming from a different neuron if the two neurons were recorded simultaneously
(and were recorded with similar SNR – that is, have similar amplitudes, so that amplitude could not be used to discriminate between the spikes). Cells
1 to 9 are cells with triphasic spikes (9 cells) whereas all others (23 cells) have biphasic spikes. Triphasic spikes are unlikely to be confused with
biphasic spikes (the large, mostly dark regions at the top and left of the figure represent low misclassification rates for cells 1 to 9 when paired with all
other cells). Cells 10 to 15 are anterior pretectal nucleus cells in awake (4 cells) and asleep (2 cells) animals, 16 to 27 are substantia nigra pars reticulata
cells in awake (8 cells) and anaesthetised (4 cells) animals, 28 is a substantia nigra pars compacta cell in an awake animal, 29 is a zona incerta cell in an
awake animal, and 30 to 32 are deep mesencephalic nucleus cells in awake animals.
doi:10.1371/journal.pone.0038482.g003
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experimental observation and the approximation of a neuron as

a dipole current source, which holds up to very short distances [3].

For completeness, we also tested 1/r and linear relationships of

amplitude to distance. All relationship models were fitted to data

obtained from simultaneous intra- and extra-cellular recordings

[26], where the distance to the extra-cellular electrode from the

recorded neuron was known, allowing estimation of the relation-

ship between spike amplitude and recording distance (see Figure

S4, Table S1 and Material S3 for details). Results for the 1/r

assumption differ only slightly from 1/r2; results for the linear

assumption give lower SNRs and higher misclassification rates

than observed in practice, providing further evidence for the

invalidity of this model. Figure 4A, left panel, shows recording

SNR as a function of distance of the recorded neuron from the

electrode assuming the inverse square model. The maximum SNR

at which a neuron can be recorded, when the neural membrane is

as close as possible to the electrode tip, is approximately 16

(assuming an electrode diameter of about 20 mm, and that SNR is

calculated as RMSsignal/RMSnoise), and drops rapidly as the

distance to the electrode increases [26]. Due to tissue damage, only

neurons from the volume beyond the electrode tip are recorded.

Our second assumption is that neural density ranges from 1.73

to 17.76104 neurons/mm3 for the regions we are considering,

giving a total number of neurons within the recordable volume in

the range of approximately 122 to 1250 [22,27]. Depending on the

brain region being recorded, not all of these neurons can be

assumed to spike on any given occasion – we present results for

100%, 10% and 1% firing. Finally, we assume that spike-shape

variability is due to noise only (since in practice, intrinsic spike

shape variability is small compared to noise, even at higher SNRs),

amplitude variation is independent of spike-shape, and spike

‘clusters’ in amplitude–shape space are circularly symmetric

Gaussian (for Gaussian noise distribution see Figure S2). Given

these assumptions, it is possible to calculate how many neurons on

average can be recorded at each SNR (see Figure 4A, right panel,

showing that the majority of recorded neurons will have a very low

SNR). For randomly placed electrodes, more than 99% of

recorded spikes will have a SNR below 3.

Based on our assumptions, within the spike amplitude–shape

space, spikes from each recorded neuron will form clusters, and

these clusters will overlap to varying extents depending on the

SNR and the neuron density. We estimate the probability of

misclassification Pmis of spikes from a neuron, accounting for both

false positives (spikes from other neurons) and false negatives

(missing spikes), as:

Pmis~1{
NTz

NTzzNF{zNFz

ð2Þ

where N is the number of spikes, T+ indicates true positives, F–

indicates false negatives, and F+ indicates false positives. Figure 4B

shows how overlapping spike clusters (neurons A and C) for

a recorded neuron (neuron B) cause both false positive errors (red

shading) and false negative errors (grey shading) which depend on

the extent of overlap of the clusters as well as where the cluster

boundary is drawn. Through numerical simulations, it is possible

to find the Z-score boundary which minimises this error. We ran

simulations that sampled mean spike shapes and spike shape

variability directly from the biphasic cells recorded for this study.

Once the Z-score limit was determined in this way, the minimum

possible misclassification error, which is equivalent to the

minimum probability of misclassifying each recorded spike, as

a function of recording SNR in different brain regions, could also

be estimated. The probability of misclassifying any given spike

approaches 1 at low SNRs. Figure 4C shows the resulting spike

misclassification rates (top) for lowest (left) and highest (right) cell

densities, assuming that 100% (top trace), 10% (middle trace) and

1% (bottom trace) of neurons fire. Figure 4C (bottom) also shows

the corresponding optimal Z-score limits for minimising mis-

classification at any given SNR. From these graphs, the minimum

SNR required to obtain a given misclassification rate can be

determined (see Table S6 for common examples). Similar results

for the linear model of SNR to recording distance are given in

Figures S5, S6 and Table S2, and for the inverse model in Figures

S7, S8 and Tables S3 and S4. For completeness, results in Figure 4

are reproduced in Figures S9, S10 and Table S5.

We define an arbitrary ‘acceptable’ misclassification probability

Pmis,=0.1; that is, misclassification of at most 10% of spikes

constitutes an acceptable performance level. From these results, it

is clear that acceptable spike discrimination at practical SNRs can

be achieved, under favourable conditions, in brain regions with

low neural density provided that 10% or less of all neurons fire in

any given recording. However for high density brain regions,

where neural density is increased more than ten times, the

proportion of firing cells understandably must be around 1% in

order to achieve acceptable spike classification at typical SNRs. If

10% of neurons in a high density brain region are firing, then the

SNR must be greater than 6 to achieve 90% classification success;

at an SNR of 4, at least 40% of spikes would be misclassified. This

poor performance is attributable to 1) the similarity of biphasic

spike shapes in general, 2) the large number of recordable neurons

in high density brain regions, and 3) the large spike shape

variability due to noise at typical SNRs.

Result 5: Spike Classification Examples
To test the above predictions using a common spike-sorting

system, hybrid spike traces were created by concatenating spikes

from several cells into a continuous simulated recording (each

hybrid recording contained two cells; 500 spikes from one cell

were appended together, followed by 500 spikes from another cell;

see Methods for details). Hybrid trace 1 contained two cells with

similar spike shapes (spike similarity = 0.992), but recorded at high

and distinct SNRs (respectively 6.3 and 11.4) giving them distinctly

different amplitudes. Using K-means scan sorting with the default

cluster size Z-score of 1.2 standard deviations (Plexon Offline

Sorter) two distinct clusters were identified (by 4 of 5 cluster

measures), corresponding to the spikes from the two cells (see

Figure 5A1, left and middle). The misclassification rates were

8.8% and 26% respectively. However, most of the misclassifica-

tions were false negatives (spikes omitted from the clusters); by

increasing the cluster Z-score cut-off to 2.0, misclassification was

reduced to 1.2% and 2.6% (19 spikes of the 1000 were

misclassified in total, of which 16 were still false negatives, or

omissions, and 3 were false positives, or attribution of the spike to

the wrong cell; data not shown). The use of valley-seeking sorting

with default parameters (Plexon Offline Sorter) also identified two

distinct clusters corresponding to the spikes from the two cells (see

Figure 5A1, right). Figure 5A2 shows the actual spike waveforms.

Misclassification was 0.8% for each cell (8 spikes of the 1000 were

misclassified in total, of which 6 were false negatives and 2 were

false positives). These results agree well with those predicted

(Figure 4C) and illustrate that, with high recording SNR, good

spike classification can be achieved.

Hybrid trace 2 contained two cells recorded at moderate SNRs

(5.8 and 3.7) with moderately different spike shapes (spike

similarity = 0.958). Using K-means scan sorting with the default

cluster size Z-score of 1.2 standard deviations (Plexon Offline

Sorter) two distinct clusters were identified (by 2 of 5 cluster
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measures), corresponding to the spikes from the two cells (see

Figure 5B1, left and middle). The misclassification rates were 63%

and 60% respectively, although most of the misclassifications were

false negatives; by increasing the cluster Z-score cut-off to 2.0,

misclassification was reduced to 6.6% and 18% respectively (123

spikes of the 1000 were misclassified in total, of which 96 were

false negatives and 27 were false positives; data not shown). Valley-

seeking sorting with default parameters identified three distinct

clusters, where spikes from one of the cells were correctly identified

but spikes from the other cell were split into two separate clusters

(see Figure 5B1, right). If spikes in the smaller of these two clusters

were treated as false negatives, then misclassification in this case is

1.6% for the correctly identified unit and 26% for the split unit (all

137 misclassified spikes across both cells were false negatives in this

case). These results agree well with predictions (Figure 4C) and

illustrate the difficulty in distinguishing spikes from as few as two

cells when recorded at typically ‘good’ SNRs.

Hybrid trace 3 contained two low SNR cells (3.3 and 2.4) with

moderately dissimilar spike shapes (spike similarity = 0.929). Using

K-means scan sorting with the default cluster size Z-score of 1.2

standard deviations, two distinct clusters were identified (by 3 of 5

cluster measures) but these clusters did not correspond to the

spikes from the two cells; instead one cluster incorporated a large

number of spikes from both cells and the other clearly comprised

only noise (see Figure 5C1, left and middle). The noise arose from

spikes crossing threshold much earlier than the actual spike peak,

or spikes so distorted by noise that they were unrecognisable. The

misclassification rate for the single spike cluster was 53% (139 false

negatives and 263 false positives). Valley-seeking sorting with

default parameters identified four distinct clusters, two of which

were clearly noise whereas the others corresponded to the spikes

from the two cells (see Figure 5C1, right). Misclassification was

27% and 43% (across the two cells, 305 misclassified spikes were

false negatives and 75 were false positives). This is a favourable

result for a low SNR recording, and approaches the predicted best

value (Figure 4C).

Systematic classification errors can have a large deleterious

effect on spike sorting and subsequent interpretation of results. In

hybrid trace 2 (Figure 5B) an extraneous third spike source could,

depending on the spike-sorting technique, be extracted from the

recording. Because this extraneous spike source generally

comprised the smaller spikes emitted by the real cell in question,

and because those smaller spikes tended to be emitted during long

spike bursts from that cell, there was a systematic distortion of

spike times that caused the extraneous spike source to look like

a different cell when judged based on the spike time auto- and

cross-correlograms. Figure 5D1 shows the correct correlograms;

Figure 5D2 shows the correlograms with the extraneous cell,

which appears to have significantly different firing characteristics

even though all the spikes originate from one of the original cells.

It is concerning that such a significant error is so easy to make, and

that there should be no substantial evidence that an error has

occurred.

To summarise, the best classification obtained for each hybrid

trace was: 1) high SNR case –0.8% misclassification for both cells;

2) moderate SNR case – an average of 12% misclassification

across the two cells; 3) low SNR case – an average of 35%

misclassification across the two cells. Note that different methods

obtained the best classification in each case, classification errors

can vary widely depending on the method used, and in practice it

is impossible to determine which method is returning the best

result in each case. In addition, the misclassification rates for

hybrid traces 2 and 3 are not necessarily indicative of overall

misclassification rates for recordings made at these moderate and

low SNRs. These hybrid traces each contained spikes from only

two cells, whereas recordings made at low SNRs are likely to

contain spikes from many more neurons (see Figure 4A) which will

further increase spike misclassifications in practice. Finally,

systematic classification errors can introduce large erroneous

biases in and misinterpretations of recording data. Therefore,

these three hybrid trace examples should be considered the

expected best possible result for recordings at each of these SNRs,

and generally classification errors will be higher, and indeed much

higher in some cases.

Discussion

Here we studied action potential waveform variability and the

possibility of obtaining accurate spike sorting from single-channel

recordings. Our analysis confirms the previous observation that

spike amplitude decreases and spike duration increases with

increasing firing rate [11,28,29]. We used local pharmacology to

control firing rate and obtain sufficient spikes to assess waveform

variability across a large dynamic range (Figure S1) within the

observed physiological limits (from baseline to maximum firing

frequency). The frequency-modulated amplitude and spike timing

observed during pharmacological manipulations were in agree-

ment with those obtained from action potentials extracted at

a baseline firing rate. During recordings, great care was taken to

ensure that single units were isolated, with the consistent results

obtained for spike amplitude and duration changes across a very

broad range of SNRs indicating that, in general, the isolation was

successful. In a handful of recordings, some very small spikes,

presumably from different neurons, were visible, but these were

easily separated based on amplitude alone and were excluded from

analysis by appropriate setting of the spike detection threshold.

Figure 4. Most neurons will be recorded with an SNR of 2.5 or less; at these SNRs, the probability of misclassifying each spike
approaches 1 (i.e. 100%) in some cases. A: The SNR follows the inverse square of distance. Left: Prediction of SNR vs. distance based on an
assumed inverse square law of peak amplitude, average biphasic spike shape, and least squares-fitted to (assumed) peak amplitude vs. distance
relationship (see text). Open circles show the SNRs of the recordings made for this study, fitted to the curve to estimate the distance to the recording
electrode for each. Right: Marginal frequency distribution of spikes at lowest cell density, assuming 100% firing. For any randomly placed electrode,
SNRs below 2.5 are most likely, and SNRs of 3 or more are unlikely to be recorded. Higher SNRs can potentially be obtained by strategic electrode
placement (e.g. advancing the electrode towards a nearby cell to increase the SNR). B: Schematic illustration of estimation of spike misclassification
probability, and minimisation of error using Z-score boundary (or cluster cut-off). The frequency distribution of spikes in amplitude–shape space for
a hypothesised neuron (neuron B) is shown as the centre-most Gaussian curve. For a particular set of bounds around the mean of this distribution (in
this case a Z-score of 2 or m62s), a number of spikes from neuron B are incorrectly excluded from the cluster (false negatives in grey) whereas other
spikes from surrounding neurons are included incorrectly (false positives in red). A Z-score limit for minimising the misclassification rate can be found
for each distribution of neurons in amplitude–shape space, which varies according to the recording SNR and neural density in the particular brain
region. C: Spike misclassification rates for single-wire recordings show that the probability of misclassifying any given spike approaches 1 at low SNRs.
Top: Spike misclassification for lowest (left, 1.736104 neurons/mm3) and highest (right, 17.76104 neurons/mm3) cell densities (see text for details),
assuming that 100% (top trace), 10% (middle trace) and 1% (bottom trace) of neurons fire. Bottom: Corresponding Z-score boundary which
minimised the misclassification at each SNR. Note that the order of the traces is reversed (1%, 10% and 100% respectively from top to bottom).
doi:10.1371/journal.pone.0038482.g004
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Figure 5. Spike sorting examples show common difficulties of separating spikes from different neurons at all but very high SNRs. A:
Hybrid trace 1 was easily separated into two clusters corresponding to spikes from the two cells (the axes for all hybrid traces in this figure are the
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Anaesthesia had no effect on spike timing or frequency-

modulated amplitude. In our experimental conditions two major

factors related to anaesthesia had the potential to influence the

action potential waveforms. First, temperature is known to alter

spike waveforms [30–32]; however keeping the body temperature

constant seemed to be sufficient to obtain a brain temperature that

did not affect action potentials. Second, spike shape can be

influenced by the actions of neurotransmitters [33,34], a function

that is highly modified by anaesthesia [18]. However the fact that

the extracellular action potential waveform and its frequency

modulation were not significantly influenced by anaesthesia

validates the method of using waveform to identify, in anaes-

thetised in vivo preparations, neurons previously recorded in the

same animal in behavioural experiments [10]. In unrestrained,

non-anaesthetised animals, physiological temperature fluctuations

[35] probably play a role in the action potential waveform

variations we observed.

We have demonstrated that spike amplitude and timing can

vary substantially from spike to spike but that the overall waveform

variability is also greatly affected by the SNR at which spikes are

recorded; waveform variability increases dramatically at a low

SNR. Although it is possible to record and extract action potentials

from a neural signal with an SNR as low as 2 or 3, the large

variability in waveform shape due to noise means that many of the

action potentials will be indistinguishable from the waveforms

generated by other neurons. For instance, for one of the neurons

recorded at low SNR in this study, more than 40% of its spikes

could be confused with spikes generated by another neuron even if

recording from only those two neurons. Clearly, as more neurons

are added to the recording, the misclassification rate only

increases. Separating multiple units at very low SNR is therefore

not viable.

A dramatic improvement in spike separability is seen with an

SNR$4. When recording two neurons, error rates drop to a mean

of 8.3% for a mean SNR around 5. However, even with a large

SNR, the rate of correct classification decreases as more neurons

are recorded. As a general approximation, the correct classifica-

tion percentage for n simultaneously recorded neurons is equal to

100*(0.917)n-1 for a SNR of approximately 5. Naturally, classifi-

cation performance degrades as the SNR reduces and improves as

the SNR increases. In addition, the probability of recording two

neurons at a high SNR is very low (equal to the probability of the

single electrode being very close to two neurons simultaneously);

conversely, the probability of recording more than two neurons

(perhaps many more) at a low SNR is quite high. Therefore

a neuron recorded at a very high SNR will usually be distinct as it

is likely to be the only neuron in the recording with such a high

SNR (i.e. n=1). However, a neuron recorded at a moderate SNR

will often have many similar companions (n= large). In practice

then, a neuron recorded at a high SNR will usually be distinctly

different and clearly separable, whereas neurons recorded at

moderate SNRs will often be subject to large classification errors.

In addition to single-channel spike classification using spike

waveforms, a technique based on the neuron’s refractory period is

commonly used to detect contamination of one spike train by

action potentials from another neuron. The autocorrelation of the

spike train from one neuron should show a distinct shape, with no

spikes detected following the zero time point for the duration of

the refractory period. Nevertheless the value of this method is

limited. First, it facilitates detection of classification errors but is

not informative in terms of the potential origin of the spikes

contaminating the spike train. Thus, while in some cases the

autocorrelation may indicate that an error in spike sorting has

been made, it provides no information on how to correctly

reclassify the spikes. Second, it is less efficient for cells with a low

firing rate. Concluding from a spike train autocorrelation that

action potentials have a unique point of origin requires the

number of detected spikes to be sufficiently large, such that some

of these appear within the refractory period. If the number of

action potentials is low, it might preclude drawing a conclusion

regarding the accuracy of the spike sorting based on the

autocorrelation. For example, with 2 neurons firing at 5Hz, only

1.5% of the spikes will appear within the 3 ms refractory period

(assuming independent Poisson spike distributions). If there are

interactions between the neurons in question (non-Poisson spike

distributions) then it is possible that no violation of refractory

periods will be seen, even given high firing rates and/or long

recording times.

The decrease in spike amplitude with increased firing rate,

combined with amplitude variability due to noise, implies that, in

many cases, spike amplitude provides negligible information in the

discrimination of spikes (i.e. two spikes with the same shape but

different amplitude might have the same origin because of the

frequency modulation of the spike amplitude and noise-induced

amplitude variability). Conversely, when recording two or more

cells simultaneously using a single electrode, even if the cells’ spikes

have very different mean amplitudes, noise and frequency-

modulated amplitude may lead to some spikes from the two cells

having similar amplitudes (see Material S4 for derivation).

Typically, action potentials recorded extracellularly originate

from the cell soma, this being the strongest current source [1,2].

The electrical signal from the soma then tends to travel mostly

isotropically (uniformly) through the brain [13,36], resulting in the

stereotypical spike shapes which dominate neural recordings.

However there are at least two ways in which altered spike shapes

may appear. Discontinuity in the homogeneity of the neuropil (e.g.

fibre tracts or cell clusters) may disrupt this isotropy and alter the

spike waveform. It is also possible that in certain cases the action

first and second principal components of spike shape). 5A1 Left: Initial unsorted clusters. Middle: Spike classification using K-means scan clustering
with default parameters, which detected the two clusters but failed to correctly allocate all spike waveforms. Right: Spike classification using valley-
seeking clustering, which correctly allocated almost all spike waveforms. 5A2: Sorted waveforms. B: Hybrid trace 2 was more difficult to separate into
the two clusters corresponding to spikes from the two cells. 5B1 Left: Initial unsorted clusters showing large spread of one cluster and significant
noise. Middle: Spike classification using K-means scan clustering with default parameters, which detected the two major clusters but failed to
correctly allocate all spike waveforms. Right: Spike classification using valley-seeking clustering, which incorrectly detected three spike clusters. 5B2:
Ideally sorted waveforms (not achieved by the sorting). C: Hybrid trace 3 was difficult to separate into the two clusters corresponding to spikes from
the two cells. 5C1 Left: Initial unsorted clusters; spikes around and to the left of the midline are noise whereas spikes to the right of the midline are
the spikes from the two cells. Middle: Spike classification using K-means scan clustering with default parameters, which detected a noise cluster and
a cluster combining the two cells. Right: Spike classification using valley-seeking clustering, which detected the two spike clusters as well as two noise
clusters. 5C2: Ideally sorted waveforms. D: Systematic classification errors can cause false interpretations of data that are very difficult to detect. 5D1:
Auto-correlograms and the cross-correlogram for hybrid trace 2 with two correctly identified units (auto-correlograms are on the main diagonal). 5D2:
Auto- and cross-correlograms for hybrid trace 2 with three falsely identified units, showing that the extraneous third unit appears to have different
firing characteristics (the auto-correlogram at bottom right) and different interactions with the other identified spike sources (cross-correlograms off
the main diagonal). Based on this result, the erroneous identification of three distinct neurons in this recording would appear to be well justified.
doi:10.1371/journal.pone.0038482.g005
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potential is recorded from neuronal processes away from the soma,

but in these cases such recordings have to be made very close to

the source because of the low amplitude of the current [2,37].

Although this non-somatic source may produce action potential

waveforms radically different from the stereotypical spike shape

[2,37,38], these cases are rare due to the proximity to the neuropil

required. The similarity of spike shapes in general, and the poor

assistance offered by spike amplitude together make the spike-

sorting problem particularly difficult to solve.

When waveforms from two neurons are combined into one

hybrid spike train and tested with spike sorting, the spike-to-spike

variability induces large error rates related to spike shape similarity

and recording SNR as well as spike-sorting parameters. We have

shown that for recordings at high SNR, the allowable unit cluster

size should be increased (equivalently, the outlier threshold after

which spikes are rejected from the closest cluster should be

extended, so that fewer spikes are rejected). Small clusters

(equivalently low outlier thresholds) favour low numbers of false

positive spike detection errors, but suffer from high numbers of

false negative detection errors for higher SNR recordings.

To summarise, physiological changes (frequency-modulated

spike amplitude and timing changes) and technical limitations

(SNR) reduce the accuracy of single-channel spike classification for

non-layered brain regions. Nevertheless, for low density brain

regions where 10% or less of neurons are firing, good spike

classification (defined as 90% or better) can be obtained with

SNR=4 or more. For SNR.7, nearly perfect classification can be

achieved. For high density regions, however, SNR.6 is required

for good classification; SNR=4 will achieve at best 60% correct

classification even if only 10% of neurons are assumed to be firing.

In almost all circumstances, SNR,4 will result in an unacceptably

high spike classification error. Recall that SNR in this study was

calculated as RMSsignal/RMSnoise; SNR limits will generally be at

least 50% higher if SNR is calculated as Peaksignal/RMSnoise (see

Material S2).

This result has significant implications for studies that rely on

identification of individual units in multi-unit recordings. Two

distinct types of classification error exist – firstly, random

classification errors caused by noise and, secondly, systematic

classification errors caused by intrinsic changes in spike shape and

amplitude or a multitude of other time-varying effects (electrode

movement or deterioration, inflammation due to tissue damage,

non-stationary noise, temperature differences and countless other

potential environmental and physiological changes). Random

spike classification errors due to noise will make statistical

significance more difficult to demonstrate, and the difficulty will

increase as SNR decreases. For example, correlations between the

firing of individual neurons (implying involvement of the neurons

in a common underlying circuit) or between neural activity and

stimuli or behaviour, will be obscured, requiring more data to

reach a comparable significance level. Similarly, as spike-to-spike

variance increases, spike clusters become more diffuse and may

overlap significantly, making it harder to determine both the

number of clusters present and to which cluster any given spike

belongs (e.g. see Figure 5C).

Systematic classification errors, rather than purely random

errors, can have other highly deleterious effects. For example,

intrinsic spike amplitude and shape changes, which often occur

systematically based on firing rate, can be mistaken as evidence for

the existence of multiple neurons in a recording. Because the

errors are systematic, such as the generation of low-amplitude

spikes at high firing rates and during spike bursts, these

erroneously identified extra neurons can appear to have very

different firing properties and can even be taken as strong evidence

for a presumed neural circuit; however in these cases the circuit

would be completely fictitious (e.g. see Figure 5B and 5D).

Systematic classification errors, rather than just obscuring the

significance of results, can cause the appearance of results that are

entirely fallacious.

At low recording SNRs where noise is a substantial proportion

of the signal, random errors dominate; systematic errors may be

present but they are obscured by the large spike variance and

diffuse spread of the spike clusters. The use of multi-wire recording

techniques, such as tetrodes, can significantly reduce the incidence

of random spike classification errors, as the probability of noise

corrupting all recording channels simultaneously is substantially

lower than noise corrupting only one channel. Tetrodes, however,

have the disadvantages of being more complex to use, creating

more data to manage and potentially increasing tissue damage, as

a result of which single electrodes continue to be used in many

experiments. Interestingly, tetrodes may be of little benefit when

facing systematic classification errors, since a spike shape which is

systematically changing on one channel is also likely to be

systematically changing on other channels. Therefore systematic

classification errors caused, for example, by correlations of spike

amplitude or spike shape with firing rate, as presented in this

paper, may also commonly cause spike misclassifications for

tetrode recordings. Systematic errors become significant at

moderate to high SNRs (Figure 5B and 5D).

Electrodes used in behavioural experiments usually have

a relatively large diameter, resulting in reduced SNR (since, as

for all inverse and inverse-square laws, the SNR at which a neuron

is recorded decreases with increasing distance from the centre of the

electrode tip). In practice, SNRs above 5 are difficult to obtain

with these electrodes, which severely limits the number of different

spike shapes (individual neurons) that can be successfully classified.

Different brain regions have widely varying neural densities as well

as widely varying firing probabilities. For brain regions with high

neural density and/or high firing probability, such as the cortex,

hippocampus, thalamus, and substantia nigra pars reticulata, our

analysis indicates that separation of spikes using single-electrode

recordings is likely to result in large classification errors, even at

what is typically regarded as a ‘good’ SNR (e.g. ,4). Even in low

density brain regions, spike classification errors will be high if more

than 10% of neurons are firing or if the SNR is much less than 4.

In addition, in those cases where a high SNR is obtained, the

necessary proximity of the electrode to the cell means that even

a small shift in electrode position will produce a large change in

the relative distance to the cell, resulting in a large amplitude

change, which may then cause the cell to be reclassified as a new

spike source. Based on our simulated and experimental results,

classification errors will increase rapidly for the SNRs typically

used in experiments with awake behaving subjects unless the

recording SNR is at least 4 (or close to 10 if SNR is calculated as

spike peak amplitude divided by RMSnoise) and both neural

density and firing probability are low. When recording with single

electrodes it is therefore vital to consider both the SNRs of the

recordings being obtained and the neural density of the brain

regions being recorded, bearing in mind that the latter vary

between species [39]. Identification of distinct single units and

interpretation of their driven and correlated activity need to be

carefully considered in light of these constraints.

Supporting Information

Figure S1 Action potential waveform amplitude to
firing frequency variation for one neuron, recorded in
unrestrained non-anaesthetised conditions. Blue circles
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and red dots represent action potentials recorded during baseline

activity or glutamate iontophoresis respectively. Notice that

glutamate iontophoresis reduces the likelihood of activity at low

firing frequencies but does not alter the waveform amplitude or

cause significant activity at firing frequencies higher than baseline.

(TIFF)

Figure S2 Noise distribution for the first 2 seconds of
recording in the substantia nigra pars reticulata in an
awake unrestrained rat with Gaussian fitted. A Kolmo-

gorov-Smirnov test supports a Gaussian noise distribution

(p = 0.5418).

(TIFF)

Figure S3 Graphic representation of SNR and SNRa

relation; see text for details.

(TIFF)

Figure S4 Model fits to extracellular spike amplitude
data, and predicted SNRa and SNR (S15). For consistency,
all SNR curves start at 10 mm (assumed radial distance of cell at

600 mV). The extracellular spike amplitude (left column) refers to

the average maximum deflection from baseline. The RMS noise

(left column) is shown as dashed lines. The SNRa, SNR and

estimated distances are shown for data used in this work for the

non-linear models (circles). The peak deflection of all mean spike

shapes were between 50.4% and 68.6% of the peak-to-peak

amplitude. Data are courtesy of the Buzsaki group from the

Collaborative Research in Computational Neuroscience data-

sharing website (crcns.org).

(TIFF)

Figure S5 For the linear model, expected probability of
misclassification, Pmis, is unacceptably high for almost
any attainable recording SNR. Left: Pmis for low density (top)

and high density (bottom) brain regions as a function of recording

SNR. Top trace: 100% of neurons firing; middle trace: 10% firing;

bottom trace: 1% firing. Right: Optimal cluster Z-score sizes for

each case (note that the top-to-bottom order is reversed; that is, the

traces represent 1%, 10% then 100% of neurons firing). At low

firing rate and low density, the lower average misclassification rate

is partly due to the linear drop in spike amplitude, which means

that there are relatively few cells with low SNR. On average there

is only approximately one cell firing (4 cells per 50 mm radius

hemisphere = 108 cells per 150 mm hemisphere, which at 1%

firing is about 1 cell). For 90% success rate, an SNR of 2.8 is

sufficient in this case. Notice, however, that the highest attainable

SNR for the linear model is about 3, which does not fit with

experimental observations.

(TIFF)

Figure S6 Expected relative frequency of the SNR of
neural recordings for randomly placed electrodes, for
the linear model.

(TIFF)

Figure S7 For the inverse model, expected probability
of misclassification, Pmis, approaches 1 at low recording
SNRs. Left: Pmis for low density (top) and high density (bottom)

brain regions as a function of recording SNR. Top trace: 100% of

neurons firing; middle trace: 10% firing; bottom trace: 1% firing.

Right: Optimal cluster Z-score sizes for each case (note that the

top-to-bottom order is reversed; that is, the traces represent 1%,

10% then 100% of neurons firing).

(TIFF)

Figure S8 Expected relative frequency of the SNR of
neural recordings for randomly placed electrodes, for
the inverse model.

(TIFF)

Figure S9 For the inverse square model, expected
probability of misclassification, Pmis, approaches 1 at
low recording SNRs. Left: Pmis for low density (top) and high

density (bottom) brain regions as a function of recording SNR.

Top trace: 100% of neurons firing; middle trace: 10% firing;

bottom trace: 1% firing. Right: Optimal cluster Z-score sizes for

each case (note that the top-to-bottom order is reversed; that is, the

traces represent 1%, 10% then 100% of neurons firing).

(TIFF)

Figure S10 Expected relative frequency of the SNR of
neural recordings for randomly placed electrodes, for
the inverse square model.

(TIFF)

Material S1 Relating spike-shape variability to SNR.

(DOC)

Material S2 Modelling SNR in terms of spike amplitude
variation and spike shape.

(DOC)

Material S3 Relationship between SNR and distance
from electrode tip.

(DOC)

Material S4 Unified probability of spike misclassifica-
tion.

(DOC)

Table S1 Fit parameters and the corrected Akaike
Information Criterion for each model.

(TIFF)

Table S2 Percentage of cells above a given SNR
assuming random cell and electrode positions, for the
linear model.

(TIFF)

Table S3 Percentage of cells above a given SNR
assuming random cell and electrode positions, for the
inverse model.

(TIFF)

Table S4 Minimum SNR required to achieve a given
success rate defined as 100 1{Pmisð Þ, for the inverse
model.

(TIFF)

Table S5 Percentage of cells above a given SNR
assuming random cell and electrode positions, for the
inverse square model.

(TIFF)

Table S6 Minimum SNR required to achieve a given
success rate defined as 100 1{Pmisð Þ, for the inverse
square model.

(TIFF)
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