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A B S T R A C T   

Background: We designed an algorithm to assess COVID-19 patients severity and dynamic intubation needs and 
predict their length of stay using the breathing frequency (BF) and oxygen saturation (SpO2) signals. 
Methods: We recorded the BF and SpO2 signals for confirmed COVID-19 patients admitted to the ICU of a teaching 
hospital during both the first and subsequent outbreaks of the pandemic in France. An unsupervised machine- 
learning algorithm (the Gaussian mixture model) was applied to the patients’ data for clustering. The algo-
rithm’s robustness was ensured by comparing its results against actual intubation rates. We predicted intubation 
rates using the algorithm every hour, thus conducting a severity evaluation. We designed a S24 severity score that 
represented the patient’s severity over the previous 24 h; the validity of MS24, the maximum S24 score, was 
checked against rates of intubation risk and prolonged ICU stay. 
Results: Our sample included 279 patients. . The unsupervised clustering had an accuracy rate of 87.8% for 
intubation recognition (AUC = 0.94, True Positive Rate 86.5%, true Negative Rate 90.9%). The S24 score of 
intubated patients was significantly higher than that of non-intubated patients at 48 h before intubation. The 
MS24 score allowed for the distinguishing between three severity levels with an increased risk of intubation: 
green (3.4%), orange (37%), and red (77%). A MS24 score over 40 was highly predictive of an ICU stay greater 
than 5 days at an accuracy rate of 81.0% (AUC = 0.87). 
Conclusions: Our algorithm uses simple signals and seems to efficiently visualize the patients’ respiratory situ-
ations, meaning that it has the potential to assist staffs’ in decision-making. Additionally, real-time computation 
is easy to implement.   

1. Background 

The rapid spread of coronavirus disease (COVID-19) challenged 
intensive care units (ICU) worldwide, and increases in cases may over-
whelm ICU capacity [1,2]. This situation calls for the early screening 
and monitoring of these patients to distinguish those that are likely to 

worsen and should therefore be directed to intermediate care facilities or 
regular hospital wards. Therefore, in this study, we present a method 
that allows for the real-time analysis of respiratory signals using an AI 
algorithm for dynamic severity assessment. COVID-19 patients might 
experience profound, repeated hypoxia without requiring intubation. 
Indeed, prior to the pandemic, severely hypoxic patients were mostly 
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treated via mechanical ventilation after intubation. Many COVID-19 
patients are treated with high-flow oxygen therapy using a 
non-invasive method. Additionally, high flow oxygen therapy has 
proven to be efficient for COVID-19 pneumonia [3–5]. However, some 
patients may be over-treated with these methods, leading to delayed 
intubation, hence the interest in early potential failure detection. 

Besides intubation prediction, the SAPS2 score seems unsuitable for 
severity assessment of COVID-19 patients. Indeed, this score is not 
suitable for these patients. Upon ICU admission, these patients generally 
present only one mild failure that then changes or worsens during the 
first days of their stay. The respiratory score is 0 for almost all patients at 
24 h post-admission because more than 93% are not intubated. There-
fore, all COVID-19 patients have the same SAPS2 respiratory score 
regardless of their future evolution. This means that standard scoring 
methods fail to accurately predict COVID-19 evolution [6]. Recent ef-
forts have been made to design an effective scoring method [7,8], but 
these more efficient methods require lab results and may therefore be 
more challenging to implement. In this study, we therefore present an 
entirely automated scoring system that uses only two physiological 
respiratory signals (breathing frequency (BF) and oxygen saturation 
(SPO2)) to assess patients’ infection severity, predicting the potential for 
both intubation and prolonged stay in the ICU (>5 days). 

In sum, the early detection of patients that will require an extended 
stay in the ICU may help regulate patient flow and resource management 
for hospitals. 

2. Methods 

This retrospective, observational study included confirmed COVID- 
19 patients that were admitted to our ICU during both the first and 
subsequent outbreaks of the pandemic in France (March to May 2020 
and September 2020–September 2021). We excluded patients that had 
been intubated prior to admission, patients with missing data, and pa-
tients with a non-intubation decision. The local ethics committee (CCP1 
SUD Mediterranée) approved the use of physiological data for study 
within the framework of our physios project. Participants or their fam-
ilies were informed of the research’s purpose and their right to decline to 
participate. 

2.1. General conception 

This study used standard monitoring data (BF and SPO2) to judge the 
severity of infection in patients with COVID-19. More specifically, we 
investigated whether a clustering algorithm could accurately recognize 
patients at risk for intubation without supervision. We, therefore, used a 
clustering algorithm fed with data from BF and SPO2 from intubated and 
non-intubated patients. Each intubated patient gave a mean state vector 
averaged over the 4 h before intubation. Non-intubated patients pro-
vided a state vector averaged 4 h prior to the theoretical average time of 
intubation (91 h after ICU admission. We then hourly applied this al-
gorithm to gauge the severity of the patients at various other times. The 
principle is shown in Fig. 1 

Fig. 1. General Principles: A-The SpO2 and BF signals are used to calculate a state vector representing the patient’s respiratory status every hour. This state vector is 
averaged over the last 4 h before intubation. We set a fictitious date of intubation for patients who were not intubated, which is 91 h after admission (91 h the average 
date of intubation for patients). The state vector is also averaged over the last 4 h prior to this fictitious intubation date. B- All state vectors of the 279 patients are 
provided to an unsupervised clustering algorithm (GMM). We compared the performance of this algorithm to the actual classification. C- The algorithm calculates the 
probability of intubation in 4 h every hour. However, this prediction is often distorted by brief periods of instability. This probability is therefore averaged over 24 h. 

S. Boussen et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 142 (2022) 105192

3

2.2. Data collection 

Physiological data was extracted from the bedside monitors every 5 
s, and a python script transformed the HL7 format into an exploitable 
monitor parameters CSV file containing all patients’ parameters. 

2.3. Data processing 

Our two parameters (BF and SPO2) were recorded for all patients, and 
may also be easily deployed outside of the ICU for regular wards 
monitoring of COVID-19 patients. Artefacts as disconnection or move-
ments were removed using a median filter. We computed 10 basic pa-
rameters derived from BF and SPO2; they are listed in Table 1. 

A 10-parameters vector x = [ ai], that is, the hourly mean of the ten 
parameters listed in Table 1, represents the patients’ respiratory 
condition. 

2.4. Intubation recognition 

We used a Gaussian mixture model-clustering algorithm for intuba-
tion pattern recognition, using either part of or the whole x vector. 

We assumed that a patient’s situation will worsen in the 4 h leading 
up to actual intubation. Indeed, we assumed that intubation was per-
formed for unstable patients for which non-invasive therapy was no 
longer sufficient. For intubated patients, we calculated the mean state 
vector x = [ai] of the 4 h immediately before intubation (Fig. 1). Intu-
bation was timed using a capnogram curve. Capnography is the mea-
surement of exhaled CO2 and is required for ventilation monitoring. Our 
ICU protocol specifies a mandatory capnogram for all patients prior to 
any intubation. Therefore, intubation timing is detected by a non-zero 
capnogram. For non-intubated patients, we computed the mean state 
vector of the 4 h prior to median intubation time (91 h) (Fig. 1). Each 

patient provided a state vector representing the supposed worst condi-
tion for intubated patients. Two-class unsupervised clustering was then 
applied to the data (Fig. 1). 

Prior to clustering, we reduced the dimensionality. Feature selection 
was performed pragmatically using logistic regression analysis. Only 
those results with p < 0.1 were kept for further analysis. Features were 
then reduced to the minimum according to parsimony principles while 
clustering was performed using various combinations of the remaining 
features; only the model that performed best was kept. The state vector 
x = [ai], which was made up of the kept features, described the patient’s 
situation each hour. 

The vector x served as an input for the Gaussian mixture model. We 
used the algorithm embedded in Matlab (The Mathworks, Inc., Natick, 
MA, USA) with a full covariance matrix and specified two clusters. The 
clustering was then compared to the actual classification. The proba-
bility density function of the multivariate Gaussian for cluster k = 0 or 1, 
as computed by Expectation-Maximization, is given by: 

gk(X)=
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2π)n

|Σk|
√ e−

1
2(X− μk)

T Σ− 1
k (X− μk) (1)  

where k is the cluster number (0 or 1), X is the input vector (column), n is 
the input vector length, μk is the centers of the Gaussian for cluster k, Σk 
is the covariance matrix for cluster k, Σk is the determinant of Σk, and 
Σk

− 1 is the inverse of Σk. 
Therefore the probability of belonging to cluster k for vector xi is: 

pi
k =

gk(xi)φk
∑l=1

l=0gl(xi)φl

(2)  

where Φk is the prior probability of cluster k. 

2.5. Score construction 

2.5.1. S24 
The algorithm, by reflecting the state of a given patient at a given 

moment, expresses the instantaneous probability that a given patient 
will be intubated within 4 h. The positive prediction of intubation is 
therefore associated with high levels of respiratory severity. However, 
this state may also be due to the patient moving (from a chair to a bed or 
vice versa), speaking, or getting of the high flow nasal canula, among 
other things. Therefore, we computed the average intubation probability 
over 24 h to reflect the patient’s state on a more wider time window 
(Fig. 1). Indeed, a patient with a positive prediction of intubation during 
24 h is more severe than one that has 1 h or two episodes of high 
intubation probability over 24 h. 

A given patient’s situation was characterized by its state vector x =
[ai] as computed during the last hour. The algorithm was then applied to 
x, resulting in a p(x), the posterior probability as predicted by the 
Gaussian mixture model (Equation (2)). The S24 score is computed ac-
cording to Equation (3), and this probability is updated hourly. 

S24(t) = 100.

(
1
24
∑i=24

i=1
p(t − i)

)

(3) 

Patients were classified into three categories depending on their 
maximum MS24. 

MS24(T)= max
24<t<T

S24 (3) 

We excluded the first 24 h because most patients were unstable at 
admission and had a high score that decreased with support therapy 
initiation. We also excluded the 4 h immediately prior to intubation 
because that time was used for algorithm learning. Therefore, a patient 
was categorized as green if their score remained in the green category. 
They were categorized as orange or red if their S24 maximum was in the 
orange or red category, respectively. A given patient’s score may in-
crease, but never decreases. All computations were performed using 

Table 1 
Parameters computed from BF and SPO2.  

Parameter ai Description 

BFM Mean value of BF 
BFmax Maximum value of BF 
BF40 Percentage of time over 40 breaths/minute 
BF20 Percentage of time under 20 breaths/minute 
varBF Variance of BF 
SPO2M Mean value of SPO2 

SpO2min Minimum value of SPO2 

ITS Integral of 100-SPO2 

varSpO2 Variance of SPO2 

SPO2-90 Percentage of time under 90% of SPO2  

Fig. 2. Study flow chart, including patients from ongoing pandemic, March 
2020 to September 2021. 
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Matlab® (The Mathworks, Inc., Natick, MA, USA). 

2.6. Length of stay 

We studied the link between a patient’s MS24 and their length of stay 
in the ICU to use our data for triage. We chose to study whether this 
score was predictive of a prolonged stay in intensive care. In particular, 
if it could predict a long length of stay, i.e. more than five days. W chose 
this value because it corresponds to our cohort’s median length of stay in 
the ICU of non-intubated patients. The five days reflects a standard ICU 
stay for COVID-19. 

3. Results 

3.1. Population 

We included 279 patients (63 [56–70] years of age, 93 females, and 
76 deaths). 23 patients came from the first outbreak and 256 came from 
the others (see flow chart diagrams, Fig. 2). Their baseline characteris-
tics are listed in Table 2: 

3.2. Feature selection 

The logistic regression p-values for all parameters are listed in 
Table 3. 

We kept the following parameters for the first evaluation: BFM, 
SpO2M, SpO2min, ITS, varSpO2, and SpO2-90. As the significances of 
SpO2M, SpO2min, and SpO2-90 were particularly high, these parameters 

were kept for all classifications as we tried all combinations including 
three others predictors: BFM, ITS, varSpO2. That gave eight combina-
tions corresponding to eight different models numbered from 1 to 8. 
Models and their predictors are listed in Table 4. 

Table 2 
Patients’ characteristics.  

Number 279 

Age 63 [56–70] 
Sex ratio F/M 93/186 (33%/67%) 
Intubation 111 (40%) 
ECMO 41 (14.7%) 
Length of Stay 8 [4–20] 
Death 76 (27.2%)  

Table 3 
P-values for the logistic regressions for all pa-
rameters in Table 1.  

Parameter ai P 

BFM 0.05 
BFmax 0.6 
BF40 0.3 
BF20 0.3 
varBF 0.2 
SpO2M 6.10–3 

SpO2min 3.10–7 

ITS 0.05 
varSpO2 0.02 
SpO2-90 8.10–4  

Table 4 
Tested models with their predictors (GMM: Gaussian Mixture Model).  

MODEL ALGORITHM PREDICTORS 

1 GMM SpO2M SpO2min SpO2-90 
2 GMM SpO2M SpO2min SpO2-90 BFM ITS varSpO2 

3 GMM SpO2M SpO2min SpO2-90 BFM ITS 
4 GMM SpO2M SpO2min SpO2-90 BFM 
5 GMM SpO2M SpO2min SpO2-90 ITS 
6 GMM SpO2M SpO2min SpO2-90 ITS varSpO2 

7 GMM SpO2M SpO2min SpO2-90 varSpO2 

8 GMM SpO2M SpO2min SpO2-90 BFM varSpO2  

Table 5 
Models’ performances.TPR: True Positive Rate, True Negative Rate, RI: Rand 
Index.  

MODEL TPR(%) TNR(%) ACCURACY (%) 

1 83.8 88.1 86.4 
2 60.4 92.9 79.9 
3 84.7 49.4 63.4 
4 86.5 90.9 87.8 
5 84.7 49.4 63.4 
6 17.1 96.4 64.9 
7 63.1 92.1 81 
8 70.3 92.9 83.9  

Fig. 3. Unsupervised clustering performances of Model 4 as listed in Table 2. A 
– The confusion matrix shows an accuracy of 87.8%. Class 0 is non-intubated 
and class 1 intubated. Numbers are actual number of patients in each pre-
dicted class according to the ground true class. Green percentages (resp. red) 
are true rate (positive or negative) or positive predictive values (resp.: false and 
negative predictive values). B - ROC curve had an AUC = 0.94. 
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3.3. Classification accuracy 

The clustering performances of each model are shown in Table 5: 
Model 4 had the best performance (Fig. 3), and was therefore 

retained for the rest of the study. Patients’ situations are represented 
each hour by the four-parameter [BFM, SpO2M, SpO2min, and SpO2-90] 
state vector. 

The model’s parameters can be found in Tables 6–8: 
The two covariance matrices were: 

3.4. S24 score 

Patients that were intubated had a higher S24 score at least 80 h prior 

to intubation, and remained high until intubation, with a continuous 
increase that accelerated in the last 24 h (Fig. 4). 

3.5. MS24 score 

The MS24 score is the maximum S24 score after disregarding the first 
24 h of the patient’s stay. MS24 was found to be highly correlated with 
the occurrence of intubation (Fig. 5-A). Simply put, the rate of intuba-
tion increases with the MS24 score, and we established a probability law 
that also increases with MS24 score (Fig. 5-B). The MS24 allows for dis-
tinguishing between three severity situations (green, orange, and red). 
The cut-offs for these categories were arbitrarily established by dividing 
in three the scale of 100 (Table 9). 

The MS24 score also helped distinguish between different patient 
behaviors: 

Green: (MS24 < 33) corresponds to patients that responded well to 
the therapeutics, meaning that their hourly score could increase but 
generally quickly returned to zero, indicating a low risk of intubation 
(3.4%). Fig. 6-A shows typical S24 evolution in such patients; they 
experience a mild increase in S24 score that quickly regressed. Two of the 

Table 6 
μk represents the centers of the Gaussian mixture model for cluster k = 0 (non- 
intubated) and k = 1 (intubated patients).  

Parameters BFM SpO2M SpO2min SpO2-90 

μ0 24.0 94.6 90.8 0.06 
μ1 30.0 90.4 83.1 0.43  

Table 7 
Covariance matrix for non-intubated patients.  

Σ0 BFM SpO2M SpO2min SpO2-90 

BFM 20.3 − 2.9 − 4.3 0.10 
SpO2M − 2.9 3.4 4.3 − 0.08 
SpO2min − 4.3 4.3 7.9 − 0.14 
SpO2-90 0.10 − 0.08 − 0.14 0.004  

Table 8 
Covariance matrix for intubated patients.  

Σ1 BFM SpO2M SpO2min SpO2-90 

BFM 46.4 − 1.9 − 6.6 0.11 
SpO2M − 1.9 7.5 8.5 − 0.60 
SpO2min − 6.6 8.5 27.2 − 0.38 
SpO2-90 0.11 − 0.60 − 0.38 0.06  

Fig. 4. The cohort dynamic changes of the S24 score during the 80 h prior to 
intubation. Patients from the intubated group are in red. The plain thick line is 
the mean and the fine lines correspond to the 25%–75% confidence interval. 
The green area represents the non-intubated group; the dashed thick line is the 
mean and the fine lines correspond to the 25–75% confidence interval. The S24 
score discriminates both groups at least 80 h before intubation. We noted a net 
increase in S24 score at 24 h prior to intubation. 

Fig. 5. A - Evolution of the cumulative incidence of intubation with the severity 
score expressed as the rate of intubation. B - Evolution of the probability of 
intubation according to MS24 score. The probability increased continuously 
until it reached almost 1 for MS24 = 100. 

S. Boussen et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 142 (2022) 105192

6

intubated patients in the green zone were admitted during the first 
COVID-19 outbreak. 

Orange: (MS24 ≤ 66) corresponds to patients that were unstable and 
experienced large increases in hourly score value that returned some-
what quickly to 0 with an increased risk of intubation (37%) (Fig. 6-A 
and B). It is difficult to say whether the patients intubated in this cate-
gory were intubated prematurely or, conversely, were prevented from 
worsening through intubation. It is worth noting, however, that the 
patient in 6-A stabilized and improved dramatically while the patient in 
6-B remained in the orange zone. 

Red: (MS24 > 66) corresponds to highly unstable patients with 
prolonged higher hourly scores and an increased risk of intubation 
(77%). Fig. 6-C shows the typical evolution of a red category patient. 
The increase in S24 score was continuous and the patient’s condition 
continued to worsen in the 40 h prior to intubation. 

3.6. MS24 score and length of ICU stay 

MS24 was correlated to the length of ICU stay for all patients (Fig. 7 - 
A); for non-intubated patients, this correlation was linear (Fig. 7 – B). We 
found that a MS24 score over 40 was predictive of an ICU stay of greater 
than five days with an accuracy rate of 81.0% (PPV = 86.8%, sensibility 
= 83.4%, AUC = 0.87) (Fig. 7-C and D). 

3.7. Computational complexity 

The EM algorithm has an O(nkd) complexity per iteration [9]. It can 
be updated on a regular basis, but this does not lead to an explosion of 
the computation time considering the number of patients entering the 
intensive care unit for COVID-19. 

Regarding the algorithm for calculating the severity scores, it is a 
linear process with a complexity O(n) which is economical in time and 
could lead to an embedded technology easily. 

4. Discussion 

We used BF and SpO2 to assess COVID-19 patients’ level of respira-
tory severity by means of the IA unsupervised algorithm. The algorithm 
output was used to design two scores, namely S24 and MS24. S24 was 
computed continuously and reflected the patient’s state in real time 
while MS24 reflected the patient’s absolute level of respiratory severity 
and helped categorize the patient. The results allowed for patient 
monitoring and other related decision-making by dividing the patients 
into three categories, namely green, orange, and red. First, green pa-
tients have a lower risk of intubation. They could therefore be directed 
to intermediate care while others remain under careful monitoring 
because of higher intubation risk. Secondly, COVID-19 patients are 
highly hypoxic and experience profound desaturation episodes that may 
lead to premature intubation in a constrained pandemic situation [10]; 
this is becoming even more pronounced as the benefits of intubation are 
debated [10,11]. During an episode of desaturation, a low MS24 may 
help postpone intubation. Finally, intubation should immediately be 
considered for a red patient with a continuously increasing score. 
Indeed, prompt detection of non-invasive treatment failure is of great 
importance. It avoids unnecessary delays in intubation [12]. Recent 

Table 9 
Number of intubations according to MS24 score. 

Fig. 6. A - Score evolution of a stable patient (green). The S24 score had the 
potential to increase, but quickly returned to zero, staying under 33 overall. The 
orange line shows an unstable patient with large score increases; this patient’s 
condition improved without tracheal intubation. B – Score evolution of an 
unstable patient with a prolonged stay in the warning orange zone. This patient 
had to be intubated. C – Score evolution of an unstable patient with a terminal 
increase to a final S24 score of 96 (MS24 = 88). 

S. Boussen et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 142 (2022) 105192

7

studies have shown that patients’ self-inflected injuries during sponta-
neous breathing could potentially lead to aggravated lung damage, 
which could, in turn, be responsible for increased mortality rates [13]. 
However, this theory is up for debate [13,14]. 

The three categories distinguish the way that various patients react 
to non-invasive therapy. Green patients respond well; their instanta-
neous score (i.e., algorithm classification) sometimes rises to 1 during 
moments of effort or active treatment, but it quickly returns to zero. In 
the orange category, the algorithm prediction may stay high for a longer 
time, reflecting a high level of instability, leading to intubation. Finally, 
the red category characterizes highly unstable patients that usually 
cannot be successfully stabilized via non-invasive therapy. 

These scores have multiple uses. They could assist in resource 
management during periods of constraint; green patients may be cared 
for at intermediate facilities or even on regular hospital floors with 
adequate non-invasive oxygen therapy and simple SpO2 and BF moni-
toring [17]. The same algorithm could then be used to continuously 
monitor regular floor patients [15,16]. The early detection of a potential 
prolonged stay in the ICU also helps with resource management, as a 
high number of bed-blocking patients could trigger the opening of new 
premises [18] or the evacuation of patients to remote regions [19]. This 
score could also be used to determine the patients with the most severe 
cases at ICU admission in order to immediately initiate treatment for 
those patients. Finally, the scores could be used to compare patients’ 
severity as SpO2 and BF are repeatedly recorded. 

This pilot study has limitations. First, we focalized the algorithm on 
COVID-19 patients, and did not consider all patients at risk of intuba-
tion. A universal intubation prediction algorithm could have been 
developed and then calibrated for COVID-19 patients. However, it 
seemed to us that the policy surrounding the intubation of COVID-19 
patients is different, especially since our center involves very hetero-
geneous patients. 

Secondly, this monocentric study reflects our institution’s intubation 
policy for COVID-19 patients. However, the unsupervised characteristic 
of the learning revealed that all patients are intrinsically different. The 
Gaussian mixture model is easy to modify and adapt for other centers; 
for modification, a center could add its own data and then modify the 
coefficient of the probability computation. We can also continuously 
update the algorithm by training it on all previous patients; training sets 

are provided in electronic supplementary file. 
Finally, we intentionally chose not to include clinical data in the 

classification to have the most straightforward algorithm possible, 
especially since the patients are relatively homogeneous and not 
different from the published national cohort [20]. 

5. Conclusion 

The score we designed uses simple signals and seems to be efficient in 
terms of visualizing a given patient’s respiratory situation and could 
help in decision-making. Real-time computation is easy to implement, 
allowing for the prediction of both tracheal intubation and prolonged 
ICU stay for COVID-19 patients. The algorithm could also be used on 
regular floors when patients are monitored with continuous portable 
devices. The use of the algorithm for non-COVID-19 patients with 
potentially worsening respiratory situations, however, requires its own 
dedicated study. 
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