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Abstract: Chickpea hydrolysates have shown bioactivity towards type 2 diabetes by inhibiting
dipeptidyl peptidase (DPPIV) activity. The objective was to compare the effect of adding different
levels of an optimized bromelain hydrolysate from chickpea isolated protein on DPPIV inhibition
capacity and physicochemical properties of maize tortilla. White and blue maize tortillas, with no
added chickpea hydrolysates were compared with fortified tortillas at the levels of 5%, 10%, and 15%
w/w. Changes in color (L* a* b*, hue angle, and ∆E), texture (hardness, cohesiveness, and puncture
force), and moisture were tested. Soluble protein determination and SDS-PAGE electrophoresis
were used to characterize the protein profiles, and LC-MS-MS was used to sequence the peptides.
DPPIV inhibition was evaluated before and after simulated gastrointestinal digestion. Peptides in
the hydrolysates had high hydrophobicity (7.97–27.05 kcal * mol −1) and pI (5.18–11.13). Molecular
docking of peptides showed interaction with DPPIV with an energy of affinity of –5.8 kcal/mol for
FDLPAL in comparison with vildagliptin (−6.2 kcal/mol). The lowest fortification level increased
soluble protein in 105% (8 g/100 g tortilla). DPPIV inhibition of white maize tortilla increased
from 11% (fresh control) to 91% (15% fortification), and for blue tortilla from 26% to 95%. After
simulated digestion, there was not a difference between blue or maize tortillas for DPPIV inhibition.
Fortification of maize tortilla with chickpea hydrolysate inhibits DPPIV and can potentially be used
in the prevention and management of type 2 diabetes. However, due to observed physicochemical
changes of the fortified tortilla, sensory properties and consumer acceptance need to be evaluated.

Keywords: chickpea; enzymatic hydrolysis; hydrolysate; DPPIV; bromelain; bioactive peptides; type
2 diabetes; protein fortification

1. Introduction

Chickpea (Cicer arietinum L.) is one of the most consumed pulses worldwide. It
has shown important bioactivities such as antioxidant capacity; antifungal, antibacterial,
and analgesic properties; and angiotensin I-converting enzyme inhibition; as well as
hypocholesterolemic, anticancer, and anti-inflammatory properties [1–4]. Other studies
have reported antidiabetic properties of chickpea, related to its content of protein and
phenolic compounds [2,5–8].

Diabetes mellitus (DM) in the United States (U.S.) affects 10.5–13.0% of the population
and represents the seventh leading cause of death [9]. DM is associated with heart disease
and stroke, blindness, kidney failure, and lower-limb amputation [10]; thus, DM is a burden
on public health. Effective management mechanisms are needed to decrease the burden
of DM; an exercise program and a diet that includes pulses are effective in managing the
disease [11].

The use of food ingredients that provide health benefits as well as plant protein
alternatives have been gaining popularity among consumers. For example, 65% of people
consider functional benefits when looking for food options [12]. Mintel [13] reported an
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increasing trend in the U.S. to include plant-based foods in daily diets without sacrificing
taste. A common way to include plant-based options in the diet is by using legumes and
pulses. Mintel [13] reported that in the U.S., 81% of consumers chose beans, chickpeas, or
fava beans.

On the other hand, globally, maize is the most important grain in terms of production.
During the period 2018–2019, the global production of maize was 1.09 billion metric tons,
with the U.S. being the biggest producer (345 million metric tons), followed by China,
Brazil, the European Union, and Argentina [14]. Maize is an essential food for many
countries in Latin America, not only because of its social and cultural relevance but also
for its economic impact [15]. Maize is indispensable for the production of tortillas, which
in 2017 represented in Mexico an income of USD 2.1 million [16]. In the U.S., the tortilla
and corn-based snacks industry has been increasing steadily. In this country, the projected
sales for tortillas are projected to be approximately USD 3.659 million by 2024 [17]. Maize
is deficient in lysine and tryptophan, and its fortification improves the content of protein,
fiber, and bioactive compounds with antioxidant capacity [18–21].

Traditionally, tortillas are made from nixtamalized maize masa or from reconstituted
nixtamalized maize flour. Nixtamalization is an alkaline process of maize that consists
in soaking or cooking the grains in water and adding 1–2% of Ca(OH)2 per kilogram
of maize [22,23]. This process changes the structure and nutritional value of maize by
removing the pericarp, causing partial gelatinization of starches, changing protein solubility,
releasing niacin, and increasing calcium content by up to 400 times [24–26]. As a result,
the rheological, functional, and textural properties of the masa and final product change,
influencing its acceptability, especially the improved workability into a dough.

Some maize varieties are commonly used to prepare tortillas due to their physical
characteristics, such as color and texture [21]. Particularly blue and purple maize have been
studied for their anti-inflammatory, antiadipogenic, and antidiabetic properties related to
their content of anthocyanins [27]. One goal for the control of DM is to inhibit enzymes that
metabolize carbohydrates such as α-amylase and α-glucosidase and to inhibit dipeptidyl
peptidase (DPPIV), increase incretin, prolong postprandial insulin action, and inhibit
glucagon release [28,29].

DPPIV is a glycoprotein that cleaves N-terminal dipeptides from the penultimate
position of cytokines, growth factors, neuropeptides, and the incretin hormones [28].
Although having different actions in the substrates mentioned, the central relevance related
to type 2 diabetes (T2D) is that DPPIV interacts with incretins. Incretin hormones potentiate
insulin secretion and are secreted from the gut within minutes after food intake; they
stimulate insulin secretion and suppress glucagon release depending on the blood glucose
level. Therefore, by inhibiting DPPIV, its interaction with incretins is reduced, leading to
greater bioavailability of incretins and thus prolonging the half-life of insulin action [28].

Tortillas are an ideal medium to investigate protein fortification given their wide popu-
larity in the United States, where their market value approximates USD 12,324.4 million, yet
their protein quality is low [30]. Acevedo Martinez and Gonzalez de Mejia [31] produced
an optimized chickpea hydrolysate (CPH) capable of high DPPIV inhibition. Therefore,
we hypothesized that fortification of maize tortillas with increasing levels of CPH would
increase soluble protein concentration and DPPIV inhibition capability. The objective was
to compare the effect of adding different levels of an optimized bromelain hydrolysate from
chickpea isolated protein on DPPIV inhibition capacity and the physicochemical properties
of white and blue maize tortillas.

2. Materials and Methods
2.1. Materials

The kabuli Sierra chickpea seeds were purchased from Palouse Brand in southeastern
Washington State (WA, USA). Chickpeas were seeded on 9 May 2019 and harvested by
12 October 2019. The dry grains were stored in cloth bags at 4 ◦C until use. White single-
origin heirloom nixtamalized maize (white olotillo) flour sourced from the tropical (coastal)



Foods 2021, 10, 1835 3 of 20

climes of Oaxaca, Mexico, was purchased from Masienda (Los Angeles, CA, USA). The
heirloom blue cónico nixtamalized maize flour grown in the highlands of Atlacomulco in
Estado de México was purchased from Masienda (Los Angeles, CA, USA). Based on the
information taken from the label of the package, both white and blue flours had a total
protein concentration of 10%, and were used for the tortilla preparation. Enzymes, human
DPPIV (EC 3.4.14.5), pancreatin from porcine pancreas (EC 232.468.9), pepsin (EC 3.4.23.1),
and bromelain from pineapple stem (EC 3.4.22.32) were purchased from Sigma-Aldrich (St.
Louis, MO, USA). DPPIV-GLO® protease assay kit was purchased from Promega (Madison,
WI, USA). Other reagents were obtained from Sigma-Aldrich.

Bromelain is a cysteine endopeptidase with broad specificity towards peptide bonds,
and it was chosen to represent a more affordable protease option [32]. Pepsin is also
a peptidase, an aspartic endopeptidase with broad specificity that cleaves to tyrosine,
phenylalanine, and tryptophan. Pancreatin, being a combination of digestive enzymes
(amylase, trypsin, lipase, ribonuclease, and protease), also has a broad spectrum that
hydrolyzes proteins, starch, and fats [33].

2.2. Chickpea Protein Isolation and Optimized Enzymatic Hydrolysis

Dry chickpeas were precooked in boiling water at 98 ◦C for 15 min and were placed
on ice to stop the cooking process. Precooked chickpeas were blended into a slurry in
a 1:20 chickpea-to-water ratio until a smooth homogenous texture was obtained. The
heat- processed chickpea slurry was filtered using a cheesecloth, centrifuged to separate
the solids, and processed the same day to extract the protein. The extraction of chickpea
protein was conducted by the method of Sánchez-Vioque et al. [34], with some adaptations.
Chickpea protein was isolated based on the isoelectric point (4.5). The pH was first adjusted
to 9.0 using 1 M NaOH, followed by continuous stirring at 300 rpm for 1 h at 24–25 ◦C. The
chickpea suspension was then centrifuged at 5000× g for 20 min at 4 ◦C and the solid was
discarded. The proteins in the supernatant were then precipitated by adding 1 M HCl until
a pH 4.5 was reached, followed by another centrifugation at 5000× g for 20 min at 4 ◦C.
The supernatant was disposed of, and the pellet of the protein isolates was freeze-dried in
a Freeze Dryer 4.5 (Labconco, Kansas, MO, USA) and stored at −20 ◦C until hydrolysis.

Optimized enzymatic hydrolysis conditions were used, following the procedure
described by Acevedo Martinez and Gonzalez de Mejia [31]. The enzymatic hydrolysis was
carried out using 400 mg of chickpea protein isolate and 40 mg of bromelain (≥3 units/mg
protein) (1:10 enzyme-to-substrate ratio) in continuous stirring for 60 min. The temperature
was set constant at 25 ◦C, and pH was at 4.5. Enzymes were then inactivated in a water
bath at 79 ◦C for 10 min, centrifuged to separate solids, and filtered through a 0.22 µm
cutoff syringe. Hydrolysates were freeze-dried and stored at −20 ◦C.

2.3. LC-ESI-MSMS Peptide Sequencing

Hydrolysates of the chickpea protein isolates (2 mg/mL protein) were centrifuged in a
Fisher Scientific Mini Centrifuge (6000× g) for 10 min, and the supernatant was then filtered
through 0.45 µm. The peptides were analyzed by LC-ESI-MSMS using the SYNAPTG2-S
MS mass spectrometer (Waters, Milford, MA, USA), equipped with a Waters Acquity
UPLC HSS T3 1.8 um 2.1 × 100 mm (−0.2 to 0 ◦C). Separation of the components was
performed by using a mobile phase of solvent A (95% H2O, 5% acetonitrile (ACN), and 0.1%
formic acid) and solvent B (95% ACN, 5% H2O, and 0.1% formic acid) using a flow rate
of 200 µL/min. The elution was in a linear gradient (0 min, 90% A; 2 min, 90% A; 40 min,
65% A; 60 min, 10% A; 65 min, 10% A; 66 min, 90% A; 80 min, 90% A). Analysis was set at
a flow rate of 0.400 mL/min for a total time of 15 min. Temperature during the analysis
was 6.83 ◦C, with an average pressure of 10885.0 psi. The data were analyzed using the
MassLynx V4.1 software (Waters Corporation, Milford MA, USA). Chromatogram peaks
with at least 50% intensity were selected and analyzed. A mass spectrum was generated for
each peak of the chromatogram, and only the most abundant peptide fragments (%intensity
> 50%) were selected for sequencing. The sequence of amino acids was identified based on
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accurate mass measurements and tandem MS fragmentation using the MassBank database,
and the amino acids were presented in one letter nomenclature. The parental protein
was identified with BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 23
March 2021)). Peptides’ structures and properties were predicted using PepDraw (Thomas
C. Freeman, 2015) tool, and the potential bioactivity of the peptides was predicted using
the BIOPEP database.

2.4. Molecular Docking

Autodock Vina (Scripps Research, La Jolla, CA, USA) was used for the analysis [8].
The structure of the predicted sequences was drawn using MarvinSketch (ChemAxon,
Boston, MA, USA). Crystallographic structure of DPP-IV (PDB ID: 6B1E) was retrieved from
the Protein Data Base and was used to evaluate the anti-diabetic potential of individual
sequences found in the hydrolysates [35]. The docking position was determined using
the drugs previously docked onto the abovementioned crystallographic system. Using
Discovery Studio V4.1, the ligands and water molecules were removed from the original
template. Using Autodock Tools, the ligand was inputted into the template based on
the active site of previously docked anti-diabetic drugs [36]. The energy of affinity with
the active site of the enzyme was calculated using Autodock Vina [37]. Images of this
interaction, which outlines the amino acids in the peptide sequence and in the enzyme
participating in the interaction, were generated using Discovery Studio V4.1.

2.5. Tortilla Preparation and Fortification with Chickpea Hydrolysate

An alkaline-treated (nixtamalized) maize tortilla formulation was produced and added
with four different optimized chickpea protein hydrolysates ratios: 0, 5, 10, and 15% w/w
(hydrolysate weight/ tortilla weight). For one tortilla, six grams of maize flour (blue or
white) were manually mixed with 12 mL of water until the masa was formed, after which
it was stored in plastic bags at 4 ◦C for 24 h before the cooking process. The fortification
treatments, 0.500 g (5%), 1 g (10%), or 1.5 g (15%) of CPH were fully solubilized in the 12 mL
water before the addition to the maize flour. The weight of chickpea hydrolysate added
was replaced from the original 6 g of flour to keep the total weight of masa a constant
6 g dry material and 12 mL water per tortilla; an equivalent part of flour was removed to
keep the final tortilla weight constant. After 24 h, the masa was mixed again and weighted
as 13 g masa balls (“testales”). Using a mechanical tortilla press, each ball was pressed
four times, rotating the masa 90◦ clockwise in between each press to have a homogeneous
thickness. Each tortilla was cooked on a flat top at 232 ◦C, flipping it each 20 s for 2 min.
Once they were cooked, each 10 g tortilla was put on a rack to cool down for 20 min before
performing physical analysis. Lastly, tortillas were stored individually in polyethylene
Ziplock bags at 4 ◦C for further analysis.

Fresh and stored fortified tortillas (48 h and 7 days) were analyzed to determine
texture, moisture, color, soluble protein, and DPPIV inhibition.

2.6. Soluble Protein Determination (BCA)

Chickpea soluble protein was determined by the bicinchoninic acid (BCA) proce-
dure [38]. In summary, bovine serum albumin (BSA) was diluted with tris buffered saline
(TBS). TBS was used as standard. Tortilla controls and fortified were tested using 1 g of
sample crushed with mortar and suspended with water in a 1:10 ratio. After centrifuging
the suspension to separate the insoluble solids and filtering through a 0.22 µm cutoff
syringe, a further 1:10 dilution with TBS was prepared, and after addition of BCA reagent,
they were analyzed in a clear 96-well plate and absorbance was read at 690 nm. A standard
curve and the following equation were used in the calculation as follows:

y = 0.0002x− 0.0075 R2 = 0.997 (1)

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.7. SDS PAGE Electrophoresis

SDS-PAGE was carried out using the technique reported by Laemlli [39]. Filtered
tortilla aliquots were mixed in 1 mL sample buffer (0.5 M Tri-HCl pH 6.8, glycerol, 10%
sodium dodecyl sulfate (SDS), 1% bromophenol blue, and β-mercaptoethanol) heated at
98 ◦C for 5 min. Then, 25 µg of protein was applied to the gel wells of 16.5% Tris-Tricine
Mini Protean Precast gels (Bio-Rad, Hercules, CA, USA). Gels were stained with Simply
Blue solution for 1 h and then washed overnight with distilled water. Images were acquired
in the ImageQuant LAS4000 (GE Healthcare, Uppsala, Sweden). Proteins were compared
with the Spectra Multicolor Low Range Protein Ladder (Thermo Fisher, Waltham, MA,
USA) (1.7 kDa–40 kDa).

2.8. Color Analysis

Color was measured by a colorimeter (Hunter LabScan XE, USA) in terms of L*
(lightness), a* (degree of redness to greenness), and b* (degree of yellowness to blueness).
Tortillas controls and after fortification were measured at three points on the tortilla and
averages were reported. The values ∆E compared with the control were calculated using
the equation:

∆E =

√(
L∗2 − L∗1

)2
+
(
a∗2 − a∗1

)2
+
(
b∗2 − b∗1

)2 (2)

Hue angle was calculated by:

h = tan−1
(

a∗

b∗

)
(3)

2.9. Moisture Analysis

The moisture analysis was performed in fresh tortillas as well as after 48 h and after
7 days of storage in polyethylene Ziplock bags. A Halogen Moisture Analyzer HR83 was
used to test 1 g of tortillas, and moisture content was determined as ([initial mass − dried
mass]/initial mass) × 100.

2.10. Texture Analysis: Hardness, Cohesiveness, and Penetration Test

To analyze the changes in the tortillas due to the addition of CPH, texture profile
analysis (TPA; analysis of hardness, cohesiveness, and puncture force) was conducted using
a TA-XT2i Texture Analyzer (Texture Technologies Corp., Scarsdale, NY, USA). For TPA,
tortilla circular portions of controls or treatments (7.2 cm diameter and 1.75 ± 0.15 mm
thickness) were cut from the center of the tortilla with a mold after being tempered at
room temperature (21 ◦C). They were compressed between a metallic TA 90 plate and a TA
25 aluminum probe of 2” diameter. Pretest speed and posttest speed were 3 mm/s, test
speed was 1 mm/s with a target mode strain of 60% and 3 s between bites. Trigger type
force was set at 10 g. Puncture test was carried out with a cylinder penetrometer probe
(4 mm); the probe was passed through the tortilla sample. Test parameters were set at
5 mm/s of pre-speed and post-speed, 2 mm/s of test speed, and 20 g of trigger. Tortillas
from each fortification treatment were evaluated after 20 min, 48 h, and 7 days stored at
4 ◦C. The means from three replicates are reported.

2.11. Dipeptidyl Peptidase Inhibition Biochemical Assay

The potential of DPPIV inhibition was tested in the composite chickpea hydrolysate
and in fresh tortillas before and after SGID. DPPIV inhibition was measured using the
DPP-IVGLO® Protease Assay (G8351, Promega, Madison, WI, USA). A 25 µL of DPP-
IVGLO® reagent was added to a white-walled 96-well plate containing either 20 µL of
water as blank, 20 µL sitagliptin (control) solution (0.1 µM), or 20 µL of white and blue
fortified tortilla aliquots. An enzyme control was used adding 20 µL of water and 5 µL of
purified DPPIV human enzyme (10 ng/mL). Additionally, 25 µL of DPP-IVGLO® reagent
was added to every well. Luminescence was measured after mixing and incubating for
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30 min using a Synergy2 multiwell plate reader (Biotek Instruments, Winooski, VT, USA).
Percentage inhibition was calculated from the blank and enzyme control for each chickpea
hydrolysate analyzed.

2.12. Simulated Gastrointestinal Digestion (SGID) of Chickpea-Fortified Tortillas

To evaluate the effect of fortification on tortilla digestibility, a simulated digestion
method was performed following the methodology used by Megías et al. [40]. In detail,
one g of tortilla was used to test controls or treatments. The tortillas were crushed with a
mortar and washed with water in a 1:10 ratio. An enzyme/substrate (E/S) ratio of 1:20
was used for both pepsin (5337.5 U/mL) and pancreatin (8 × USP). For pepsin digestion,
the pH was adjusted to 2.0, and the chickpea isolate dilution was brought to 37 ◦C, the
enzyme was added, and the solution was stirred for 1.5 h. Then, pH was adjusted to 6.8
and pancreatin was added and stirred for 1.5 h. Enzymes were inactivated in a water bath
at 79 ◦C for 10 min. Digests were centrifuged to separate solids at 20,000× g for 5 min at
4 ◦C. Aliquots were filtered through a 0.22 µm cutoff syringe filter and frozen at −20 ◦C
until further analysis.

2.13. Statistical Analysis

Independent triplicates were tested and analyzed. Data are expressed as mean ±
standard deviation. Statistical analyses and differences among groups were tested accord-
ing to their statistical significance using one-way ANOVA and Tukey’s test. Differences
were considered significant at p < 0.05. Correlation analysis was performed to evaluate
associations among variables.

3. Results
3.1. Peptide Sequencing, Soluble Protein, and DPPIV Inhibition

To analyze the initial characteristics of the composite chickpea hydrolysate produced,
soluble protein and DPPIV inhibition were determined (Figure 1a). Information on the
peptides originated from chickpea storage proteins is shown in Figure 1b,c (FDLPAL),
where the peptide mass and precursor ion for this peptide is shown. In addition, further
analysis of another peptide sequence from lectin is shown in Figure S1.

Table 1 shows the peptide sequences found in the composite chickpea hydrolysate
used to fortify the tortillas. All peptides included in Table 1 were found to have potential
to inhibit DPPIV using the BIOPEP database. The characteristics of the peptides include a
wide range of pI (3.12–11.13) and hydrophobicity (7.21–27.05 kcal/mol). These features
indicate a wide potential application of the hydrolysate since it is soluble at pH values
from 2 to 12.

The analysis of molecular docking of peptides (Figure 2) shows interactions with the
crystal structure of DPPIV with an energy of affinity of −5.8 kcal/mol for FDLPAL with
the amino acids SER 212, TRP 154, THR 156, and TRP 215. The energy of affinity for the
sequence GPGGGGR was −5.7 kcal/mol interacting with TRP154, PRO 159, TRP 305, TRP
157, LEU 214, and TRP 216 in addition to the amino acids TRP215, SER 212, and THR 156,
similar to peptide FDLPAL. Energy of affinity was compared with that of vildagliptin of
−6.2 kcal/mol. Vildagliptin (LAF237) is an orally active antihyperglycemic agent that
selectively inhibits DPPIV.
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Table 1. Peptides sequences determined by LC-ESI-MSMS from optimized chickpea hydrolysate with in silico potential DPPIV inhibitory activity obtained from isolated protein using
bromelain +.

Peptide Sequence Molecular Mass
(g/mol)

Blast Match
Parental Protein PI Net

Charge
Hydrophobicity
(Kcal * mol −1) Chemical Structure

KDGGTAPAAGSGGGGAR 1385.663 Metabolic protein 9.8 1 27.05
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Table 1. Cont.

Peptide Sequence Molecular Mass
(g/mol)

Blast Match
Parental Protein PI Net

Charge
Hydrophobicity
(Kcal * mol −1) Chemical Structure
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Figure 2. Docking interaction and DPPIV enzyme–peptide location for optimized chickpea bromelain hydrolysate peptide
sequences FDLPAL and GPGGGGR. (a) FDLPAL, best pose of chickpea peptide Phe-Asp-Leu-Pro-Ala-Leu (structure in
gray, left) in the molecular docking study of sequences with DPPIV. GPGGGGR, best pose of chickpea peptide Gly-Pro-
Gly-Gly-Gly-Gly-Arg (structure in gray, right) in the molecular docking study of sequences with DPPIV. (b) Position of
peptide Phe-Asp-Leu-Pro-Ala-Leu (circled in red, left) in the molecular docking study with DPPIV. Position of peptide
Gly-Pro-Gly-Gly-Gly-Gly-Arg (circled in red, right) in the molecular docking study with DPPIV.

SDS-PAGE profile and soluble protein (Figure S2 and Table 2) show the positive impact
of the addition of the hydrolysates to the tortillas. The soluble protein of the composite
CPH was 44.69± 2.23%. All CPH fortification ratios showed significant difference (p < 0.05)
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in soluble protein from the control and among them, but there was no difference between
maize types for the same fortification levels.

Changes in color (Table 2) were observed in both blue and white maize tortillas. Most
color changes were observed in blue maize tortillas (p < 0.05). In contrast, 5% fortification
of white maize tortillas did not show significant changes in either L*, a*, or b* values.
Differences in ∆E can be interpreted as changes perceived by the human eye in comparison
with the control. It can be due to the light yellowish color of the hydrolysate when
solubilized in water. Losses in anthocyanins due to cooking and changes in pH in blue
maize masa and tortillas have been studied previously [41]. In the present study, cooking
time and temperature conditions were the same for all the tortillas, including the control.

3.2. Moisture Analysis

The presence of CPH in the fortified tortilla slightly affected its moisture content
(Table 3). In fresh tortillas, for both blue and white maize tortilla, moisture content was
higher for the 10% fortification ratio compared with the control tortillas. The second highest
moisture content was for the 5% fortification ratio in white tortillas, while 15% and 0%
were not significantly different. In fresh blue tortillas, there was no difference in moisture
content at 0%, 5%, or 15% fortification ratios. At 48 h of storage, 0% fortification had the
highest moisture content in white tortillas, while blue tortillas did not show a difference
among fortification ratios. After 7 days of storage, the trend was similar, with no significant
change in moisture content for both blue and white tortillas. However, the presence of
the hydrolysate from 5% to 15% allowed the tortillas, blue and white, to remain with
constant moisture content over storage time as when fresh—different from tortillas with
no hydrolysate (white and blue), which had a significant moisture increase after 48 h. For
white and blue tortillas, this increase remained constant even after 7 days, and it was
statistically similar to the 48 h data (p > 0.05).

In this study, the tortillas weighted 10 g and had an average thickness of 1.95 ± 0.14 mm
for white tortillas and 2.04± 0.10 for blue maize tortillas, with no difference among fortifica-
tion ratios. The average diameter (Table 3) for white maize tortillas was of 81.06 ± 1.33 mm,
with no difference among fortification ratios. For blue maize tortillas of 0–10% fortification
level, the average diameter was 80.69 ± 1.78, and for the 15%, the fortification ratio was
78 ± 0.94 mm.

3.3. Texture Analysis

Texture analysis showed that when tortillas were fresh, there was a relationship
between fortification levels and hardness (Table 4). For fresh tortillas, white maize treat-
ments resulted in higher hardness values at 10% and 15% fortification ratios (27.47 and
25.58 N, respectively), in comparison with the control (13.56 ± 1.66, p < 0.05). For fresh
blue maize tortillas, only the 15% fortification showed significant lower hardness values
(16.71 ± 2.63 N). After 7 days of storage, the hardness of the blue tortillas at 10% fortifica-
tion level was 21.53 N, higher than any other fortification level (p < 0.05). However, when
compared with the initial hardness (fresh tortilla), 10% and 15% fortification levels did not
show a difference (p > 0.05) in this texture parameter. White tortillas with 10% fortification
ratio showed the highest hardness value (32.38 ± 1.12 N), followed by the 15% fortification
ratio (25.39 ± 1.51 N) (p < 0.05). After 7 days, tortillas with no hydrolysate had an air
pocket, which separated the tortillas into two layers. They also felt soggier and blander
than the fortified tortillas that did not have air pockets. TPA graphical representation
of fresh and after 7 days analysis for the control and for 15% fortification are shown in
Figure S3. Values of cohesiveness and penetration force did not show significant trends
with increasing fortification.
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Table 2. Soluble protein and color changes of tortillas fortified with different ratios of optimized chickpea hydrolysate with DPPIV inhibitory activity obtained from isolated protein using
bromelain.

Ratios of Chickpea Hydrolysate
Added to Tortilla (%, w/w)

Soluble Protein
(g/100 g Tortilla) L* a* b* Hue Angle

(Radians) ∆E Color Match

White maize
tortilla

0 4.02 ± 0.91 d 73.47 ± 0.67 a 2.00 ± 0.01 c 26.90 ± 0.01 c 1.50 ± 0.01 a n/a
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Table 3. Thickness and diameter of fresh tortillas and moisture over storage time of tortillas fortified at different ratios with
optimized chickpea hydrolysate with DPPIV inhibitory activity obtained from isolated protein using bromelain.

Fortification Ratio
(%, w/w)

Thickness (mm) Diameter (mm) Moisture (%)

Fresh Tortilla Fresh Tortilla 0 h 48 h 7 days

White maize
tortilla

0 2.09 ± 0.25 a 80.08 ± 1.33a 34.47 ± 1.65 Bc 70.97 ± 7.30 Aa 64.93 ± 4.77 Aa
5 1.80 ± 0.09 a 81.13 ± 1.23 a 43.86 ± 0.40 Ab 52.04 ± 6.36 Abc 45.64 ± 5.98 Ab

10 2.03 ± 0.06 a 82.91 ± 0.19 a 52.09 ± 4.84 Aa 55.24 ± 8.49 Aab 59.87 ± 3.91 Aa
15 1.87 ± 0.12 a 80.11 ± 1.14 a 36.94 ± 1.81 Abc 37.28 ± 0.31 Ac 41.25 ± 3.21 Ab

Blue maize
tortilla

0 2.09 ± 0.10 a 81.89 ± 0.33 a 39.48 ± 4.12 Bb 56.75 ± 8.94 Aa 48.23 ± 2.87 ABab
5 1.94 ± 0.10 a 81.07 ± 1.27 a 46.29 ± 4.31 Ab 38.19 ± 8.01 Aa 44.83 ± 2.29 Ab

10 2.17 ± 0.09 a 79.11 ± 1.09 ab 59.94 ± 3.81 Aa 55.45 ± 9.85 Aa 56.28 ± 299 Aa
15 1.97 ± 0.13 a 78.00 ± 0.94 b 36.55 ± 2.82 Ab 36.08 ± 4.92 Aa 37.91 ± 4.50 Ab

Results show the mean of thickness, diameter, and moisture percentage ± standard deviation. Different letters among samples indicate
significant differences (p < 0.05). Lowercase shows significant difference among fortification treatments. Capital letters show significant
difference among storage times. Statistical analysis was made separately for white and blue maize tortillas.

3.4. DPPIV Inhibitory Activity

The DPPIV inhibitory activity of the composite sample of CPH was of 97.38 ± 0.45%.
The statistical analysis of DPPIV was performed among fortification ratios, either for white
or blue maize tortillas (Figure 3a, lowercase letters), and then between white and blue
maize tortillas for specific fortification levels (Figure 3a, capital letters). The results show
significant differences (p < 0.05) between white and blue maize at 0%, 5%, and 10% forti-
fication levels, with blue maize tortillas having higher DPPIV inhibition in comparison
with the control: 82% inhibition at 5% fortification level and 87% inhibition at 10% forti-
fication level. At 15% fortification, there were not significant differences between maize
varieties (95% for blue maize tortilla and 91% for white maize tortilla). White maize tortilla
increased from 11% (0% fortification) to 72%, 82%, and 91% of DPPIV inhibition activity
as the fortification level increased. In order to assure that the observed DPPIV activity
remained after digestion, a SGID experiment using pepsin and pancreatin was performed.
After SGID, there was no difference (p < 0.05) between blue or maize tortillas for DPPIV
inhibition, showing a range from 41% to 61% DPPIV inhibition (Figure 3b).

Foods 2021, 10, x FOR PEER REVIEW 18 of 24 
 

 

3.4.  DPPIV Inhibitory Activity 
The DPPIV inhibitory activity of the composite sample of CPH was of 97.38 ± 0.45%. 

The statistical analysis of DPPIV was performed among fortification ratios, either for 
white or blue maize tortillas (Figure 3a, lowercase letters), and then between white and 
blue maize tortillas for specific fortification levels (Figure 3a, capital letters). The results 
show significant differences (p < 0.05) between white and blue maize at 0%, 5%, and 10% 
fortification levels, with blue maize tortillas having higher DPPIV inhibition in compari-
son with the control: 82% inhibition at 5% fortification level and 87% inhibition at 10% 
fortification level. At 15% fortification, there were not significant differences between 
maize varieties (95% for blue maize tortilla and 91% for white maize tortilla). White maize 
tortilla increased from 11% (0% fortification) to 72%, 82%, and 91% of DPPIV inhibition 
activity as the fortification level increased. In order to assure that the observed DPPIV 
activity remained after digestion, a SGID experiment using pepsin and pancreatin was 
performed. After SGID, there was no difference (p < 0.05) between blue or maize tortillas 
for DPPIV inhibition, showing a range from 41% to 61% DPPIV inhibition (Figure 3b). 

 
(a) (b) 

Figure 3. DPPIV inhibition of white and blue tortillas fortified at 0, 5, 10, and 15% with optimized chickpea hydrolysate 
with DPPIV activity obtained from isolated protein using bromelain. (a) Comparison among fortification ratios either for 
white or blue maize is represented with lowercase letters (p < 0.05). Comparison between white and blue maize for specific 
fortification levels is indicated with capital letters (p < 0.05). (b) DPPIV activity after a simulated gastrointestinal digestion 
(SGID) using pepsin and pancreatin. 

4. Discussion 
Analyzing the solubility in the composite chickpea hydrolysate, we observed similar 

behavior reported in previous studies [42] as a result of the enzymatic hydrolysis that pro-
vides better solubility, stability, and functional properties to the hydrolysates in compar-
ison with protein concentrates or isolates. The increased solubility in protein hydrolysates 
is explained by the reduced molecular weight and increased hydrophilicity resulting from 
the increase in free carboxyl and amine groups [43]. Peptide sequence FDLPAL has been 
previously reported [31] as originating from storage proteins. One more sequence found 
that GPGGGGR originated from trypsin inhibitors, showing the resistance of these an-
tinutrients to hydrolysis conditions and heat treatments. 

Peptide fraction LL from the sequence LLR reported in the present study was pre-
dicted previously [4] from a theoretical hydrolysis of chickpea legumin by stem bromelain 
with other bioactivity in addition to DPPIV inhibition, such as glucose uptake stimulator. 
Other sequences reported from bromelain hydrolysis [8] found peptides with a repeated 
presence of glycine (GGG and GGGG) and glycine alanine and arginine (GAR, GR), which 

Fortified tortillas Tortilla digests 

Figure 3. DPPIV inhibition of white and blue tortillas fortified at 0, 5, 10, and 15% with optimized chickpea hydrolysate
with DPPIV activity obtained from isolated protein using bromelain. (a) Comparison among fortification ratios either for
white or blue maize is represented with lowercase letters (p < 0.05). Comparison between white and blue maize for specific
fortification levels is indicated with capital letters (p < 0.05). (b) DPPIV activity after a simulated gastrointestinal digestion
(SGID) using pepsin and pancreatin.



Foods 2021, 10, 1835 14 of 20

Table 4. Texture analysis of tortillas fortified with optimized chickpea hydrolysate with DPPIV inhibitory activity obtained from isolated protein using bromelain at different ratios and at
different storage times.

Fortified Tortilla (% w/w)
0 h 48 h 7 days

Hardness (N) Cohesiveness Penetration
Force (N) Hardness (N) Cohesiveness Penetration

Force (N) Hardness (N) Cohesiveness Penetration
Force (N)

White maize
tortilla

0 13.56 ± 1.66 Bb 0.90 ± 0.04 Aa 0.18 ± 0.01 Ba 16.97 ± 0.49 Ab 0.92 ± 0.05 Aa 0.18 ± 0.02 Bb 3.63 ± 0.37 Cd 0.91 ± 0.02 Aa 0.35 ± 0.04 Aa

5 9.96 ± 0.76 Bb 0.89 ± 0.03 Aa 0.22 ± 0.05 Aa 12.15 ± 3.15 Bb 0.92 ± 0.05 Aa 0.26 ± 0.05 Aa 18.60 ± 0.48 Ac 0.94 ± 0.03 Aa 0.35 ± 0.10 Aa

10 27.47 ± 3.18 Ba 0.94 ± 0.02 Aa 0.15 ± 0.04 Aa 25.51 ± 1.96 Ba 0.93 ± 0.05 Aa 0.20 ± 0.01 Aa 32.38 ± 1.12 Aa 0.95 ± 0.03 Aa 0.20 ± 0.03 Ab

15 25.58 ± 4.01 Aa 0.90 ± 0.04 Aa 0.21 ± 0.01 Aa 24.24 ± 2.02 Aa 0.90 ± 0.05 Aa 0.21 ± 0.03 Aa 25.39 ± 1.51 Ab 0.96 ± 0.01 Aa 0.21 ± 0.03 Aab

Blue maize
tortilla

0 26.63 ± 1.99 Aa 0.95 ± 0.02 Aa 0.13 ± 0.01 Cc 14.34 ± 0.95 Ba 0.93 ± 0.04 Aa 0.20 ± 0.02 Bb 5.74 ± 0.35 Cc 0.91 ± 0.05 Aa 0.61 ± 0.03 Aa

5 20.34 ± 3.97 Aa 0.89 ± 0.03 Aa 0.28 ± 0.02 Ba 19.50 ± 3.72 Aa 0.92 ± 0.04 Aa 0.28 ± 0.03 Ba 11.43 ± 0.48 Bb 0.94 ± 0.01 Aa 0.34 ± 0.01 Ab

10 26.39 ± 3.76 Aa 0.94 ± 0.03 Aa 0.13 ± 0.02 Bc 14.38 ± 2.55 Ba 0.91 ± 0.05 Aa 0.20 ± 0.01 Ab 21.53 ± 2.45 Aa 0.94 ± 0.01 Aa 0.18 ± 0.03 Ac

15 16.71 ± 2.63 Ab 0.91 ± 0.02 Aa 0.22 ± 0.02 Bb 12.98 ± 2.84 Aa 0.93 ± 0.02 Aa 0.25 ± 0.01 ABa 13.38 ± 0.90 Ab 0.93 ± 0.03 Aa 0.29 ± 0.03 Ab

Results show the mean texture values ± standard deviation. Different letters among samples indicate significant differences (p < 0.05). Lowercase shows significant difference between fortification treatments.
Capital letters show significant difference among store time.
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4. Discussion

Analyzing the solubility in the composite chickpea hydrolysate, we observed similar
behavior reported in previous studies [42] as a result of the enzymatic hydrolysis that pro-
vides better solubility, stability, and functional properties to the hydrolysates in comparison
with protein concentrates or isolates. The increased solubility in protein hydrolysates is
explained by the reduced molecular weight and increased hydrophilicity resulting from the
increase in free carboxyl and amine groups [43]. Peptide sequence FDLPAL has been previ-
ously reported [31] as originating from storage proteins. One more sequence found that
GPGGGGR originated from trypsin inhibitors, showing the resistance of these antinutrients
to hydrolysis conditions and heat treatments.

Peptide fraction LL from the sequence LLR reported in the present study was predicted
previously [4] from a theoretical hydrolysis of chickpea legumin by stem bromelain with
other bioactivity in addition to DPPIV inhibition, such as glucose uptake stimulator. Other
sequences reported from bromelain hydrolysis [8] found peptides with a repeated presence
of glycine (GGG and GGGG) and glycine alanine and arginine (GAR, GR), which were also
common in the sequences found in this study. Findings can be related to the unspecific
activity of the bromelain to hydrolyze proteins. Bromelain, a cysteine endopeptidase
has a preference for peptide bonds distant from the N- or C-termini [44]. Due to this
characteristic, we were able to observe a wide range of molecular weights in the peptides
identified (400.27–1385.66 g/mol). In other studies [8,31], similar findings were reported.
These researchers identified peptide sequences as large as 1670.8 g/mol and as small as
549.29 g/mol. Lastly, peptide sequence KEGGGTGTGAAR identified in previous in silico
analysis from pepsin–pancreatin hydrolysis [4] reported similar peptide characteristics in
pI, charge, and hydrophobicity as the KDGGTAPAAGSGGGGAR sequence that was found
in the studied composite chickpea hydrolysate.

The initial soluble protein at 0% tortilla fortification was of 4.0 g of soluble protein per
100 g of tortilla, lower than the total protein reported in the maize flour packaging (10 g
of total protein per 100 g of flour). A similar phenomenon has been reported, and it has
been related to the aggregation of the proteins during masa making, due to mixing and
degradation of globulins during the cooking process [45]. However, fortifications at the
5% level showed an increase (p < 0.05), compared with the tortilla with no fortification, in
soluble protein concentration of 105% (8 g/100 g tortilla) for both blue and white tortilla
and up to 13 g/100 g tortilla at a 15% fortification ratio. It can be observed in the SDS-PAGE
gels (Figure S2) that the hydrolysate profile predominates even after the cooking process.
The >10 kDa protein bands from the maize flour correspond to zein protein [46]; other
proteins may have degraded by the processing conditions. The remaining proteins present
in the tortillas are of lower molecular weight (<10 kDa). The intensity of the bands were
observed to increase as the fortification ratios increased (Figure S2).

According to Food and Drug Administration (FDA) regulations, food fortification is
considered when the fortified food contains at least 10% or more of the daily reference
value for protein expressed as a percentage of the daily value per 100 g of food. The
daily reference value for protein is 50 g per day based on a 2000 calorie daily diet [47];
therefore, a protein concentration of 5 g per portion would be enough to comply with the
FDA fortification requirements. A traditional corn tortilla in Mexico is 30 g on average.
Considering a traditionally commercial-size tortilla (30 g), a fortification with a CPH of 5%
and a portion size of two pieces of tortillas would represent an average consumption of
4.75 g of soluble protein. These results were expected due to an increase in the percentage
of the hydrolysate added. Increases in the solubility of hydrolyzed proteins have been
reported [48,49], although there are not enough studies that report the impact of the
application of plant protein hydrolysates in food products.

Moisture content in tortillas has been previously reported to be 40–50% [50–52]. It
has been correlated with the increase of firmness (penetration force) in the staling process,
along with the recrystallization of starch chains [52]. In the control tortillas, although there
was an increase in moisture content observed, the penetration force increased, confirming
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the changes in texture on the tortilla after 7 days that was observed in other studies [50].
These changes are also attributed to starch retrogradation and syneresis [50,53]. For
the fortified tortillas, the observed constant moisture over time can be explained due
to the water holding capacity of proteins. Water holding capacity refers to the total
amount of water that proteins can bind, and it is a physical property linked to the ability
of a food structure to prevent water from being released from the three-dimensional
structure of the protein [54–56]. Due to the different ways in which proteins interact
with water, the effect of constant moisture in fortified tortillas can be explained by the
changes in functionality of hydrolysates in regard to water holding capacity and higher
water absorption capacity [57,58]. Depending on the structure of the protein, a water
molecule can interact with the proteins, adding polar groups on the protein surface through
hydrogen bonds, through electrostatic interactions with amino acid sidechains, or through
hydrophobic interactions [56]. In this case, the characteristics of the chickpea hydrolysate
(high hydrophobicity, size, and charge of the peptides) are expected to facilitate interactions
between molecules of water and hydrophilic groups of the protein side chains via hydrogen
bonding, and therefore the increased water holding capacity [55,56]. Thus, the addition
of hydrolysates as ingredients can increase water holding capacity [59–61], showing no
difference in moisture over time.

Previously, it has been found that texture in maize tortillas can vary due to differ-
ences related to the grain since different maize varieties provide different rheological
properties to the final product [41]. For a maize tortilla to be strong and flexible, protein–
protein and protein–starch interactions are key [62,63]. The addition of extra protein in
the form of hydrolysates affects these interactions, impacting on the texture, as reported
before [20,43,62,63]. As observed in the results, the texture of a fresh white tortilla was
impacted at higher fortification levels (10% and 15%), and the texture after 7 days remained
with no difference, demonstrating that higher fortification levels can help in keeping the
texture constant over time. The results for fresh blue maize tortillas showed that a higher
amount of hydrolysate (15%) decreased the hardness of the tortilla. Some studies have
shown that the interaction of phenolic compounds with proteins affects not only the water
binding capacity but also the protein–protein interactions, and therefore the texture [59].
These interactions depend on the structure of the phenolic compounds and the protein,
as well as on the protein concentration. In this case, we observed that at 15% fortification
level, phenolic compounds seem to increase the interaction with the proteins, reducing the
protein–water interactions and having an impact on the lower hardness value.

Changes in texture reported in previous fortification studies [64] of tortillas using
pulses showed that the use of a protein concentrate of Phaseolus lunatus beans at 7.5%
and added lysine (0.15%) and tryptophan (0.3%) had an impact on cohesion, reducing
this texture parameter. This is in comparison with the present study, where the use of a
chickpea hydrolysate at 15% or lower did not affect the cohesion of the tortillas tested.
Additionally, Lecuona et al. [64] also reported changes in hardness at a 7.5% fortification
of bean protein concentrate, enough to show increase in hardness in white maize tortillas.
According to the results reported in this study, it is with fortifications of 10% and higher
that the hydrolysate had an impact on the hardness of white maize tortillas.

As observed in the chickpea hydrolysate composite sample, the DPPIV inhibitory
activity obtained by using bromelain to hydrolyze chickpea protein isolates is higher than
the bioactivity that has been previously found in pepsin–pancreatin digests [31].

After the application of the hydrolysate in the maize tortilla, a higher bioactivity was
shown in blue tortillas. In blue maize, the main phenolic compound that has been previ-
ously associated with maize tortillas is ferulic acid. Ferulic acid has shown antioxidant,
anti-inflammatory, and anticarcinogenic properties [58,65,66]. Other phenolics, antho-
cyanins, have also been studied and have shown potential to modulate protein activity in
pathways involved in insulin secretion, insulin resistance, and carbohydrate absorption [67].
The interaction between phenolic compounds and enzymes can potentially destabilize the
enzyme position or orientation of substrate binding or catalytic residues, inhibiting the



Foods 2021, 10, 1835 17 of 20

enzyme activity and increasing DPPIV inhibition [68]. Thus, phenolic compounds present
in blue maize tortillas can potentially inhibit DPPIV, explaining the higher bioactivity
shown from 0% to 10% fortification ratios. However, at 15% fortification, both blue and
white tortillas showed no differences in their DPPIV inhibitory activity. This can be due
to the higher protein concentration, since some studies have analyzed the interaction of
phenolic compounds and proteins and have observed that in the presence of high protein
concentrations, polyphenols interact at the hydrophobic sites of proteins, which might also
influence bioactivity [59].

Studies on bioactivity after gastrointestinal digestion have shown different results due
to the complexity of the process, and wide differences have been reported from in vitro
and in vivo studies. In general, the stability of bioactive compounds through digestion
seems to be related to the composition and length of the compound tested [69]. Further
analyses are needed to understand how the digestive process can change the bioactivity of
chickpea hydrolysates in animal or clinical studies.

Further statistical correlations showed a negative correlation between hue and DPPIV
activity (Table S1); the higher the hue value, the lower the DPPIV inhibition.

The relevance of this research is the application of a chickpea hydrolysate with DPPIV
inhibition that not only improved the soluble protein concentration of the tested product
but also kept its bioactivity after processing conditions. In comparison with protein con-
centrates or isolates that have been used in the past to fortify food products, the optimized
chickpea hydrolysate showed very good solubility and good physical characteristics that
have the potential to be accepted by consumers.

5. Conclusions

Chickpea optimized bromelain hydrolysate produced from chickpea isolated proteins
showed a high DPPIV inhibitory capacity. There was an increased DPPIV inhibitory activity
as the fortification ratio increased. Tortilla fortification at 5% (w/w) level of hydrolysate led
to a positive increase in soluble protein of 105% compared with the control tortilla. The
bioactivity remained after processing conditions of dry cooking for 2 min at 232 ◦C during
tortilla preparation. Nevertheless, fortification resulted in changes in color and texture that
can have an impact on consumer acceptability. The optimized CPH has the potential to be
used in a different range of food categories to improve soluble protein concentration and
bioactivity to prevent T2DM and benefit its management. Further research is needed to
evaluate the sensory characteristics, consumer acceptance, and clinical effect of CPH on
DM indicators.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10081835/s1, Table S1: Correlations among different parameters of blue and white
fortified tortillas, Figure S1: Mass spectra indicating elution time, peptide mass, and precursor ion
M/z value of peptide GPGGGGR, Figure S2: Low molecular weight protein profile of blue (B) and
white (W) maize tortillas fortified with different chickpea hydrolysate ratios (0%, 5%, 10%, 15%),
Figure S3: TPA graphics of white tortilla fresh and after 7 days (control and 15% fortification). (a)
TPA fresh control white tortilla, (b) TPA control white tortilla after 7 days, (c) TPA fresh white tortilla
with 15% fortification level, (d) TPA white tortilla with 15% fortification level after 7 days.
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