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Abstract
In metabolic diseases such as Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, the

systemic regulation of postprandial metabolite concentrations is disturbed. To understand

this dysregulation, a quantitative and temporal understanding of systemic postprandial

metabolite handling is needed. Of particular interest is the intertwined regulation of glucose

and non-esterified fatty acids (NEFA), due to the association between disturbed NEFA

metabolism and insulin resistance. However, postprandial glucose metabolism is character-

ized by a dynamic interplay of simultaneously responding regulatory mechanisms, which

have proven difficult to measure directly. Therefore, we propose a mathematical modelling

approach to untangle the systemic interplay between glucose and NEFA in the postprandial

period. The developed model integrates data of both the perturbation of glucose metabolism

by NEFA as measured under clamp conditions, and postprandial time-series of glucose,

insulin, and NEFA. The model can describe independent data not used for fitting, and per-

turbations of NEFA metabolism result in an increased insulin, but not glucose, response,

demonstrating that glucose homeostasis is maintained. Finally, the model is used to show

that NEFA may mediate up to 30–45% of the postprandial increase in insulin-dependent

glucose uptake at two hours after a glucose meal. In conclusion, the presented model can

quantify the systemic interactions of glucose and NEFA in the postprandial state, and may

therefore provide a new method to evaluate the disturbance of this interplay in metabolic

disease.

Introduction
Dysregulation in the postprandial handling of metabolites plays a central role in the develop-
ment of metabolic diseases such as Type 2 Diabetes (T2D) and Non-alcoholic Fatty Liver Dis-
ease. This role can be recognized at a systemic level from the clear correlation between obesity
and these metabolic diseases, as well as from the evidence that postprandial dysregulation of
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glucose or lipid metabolism (independently) predicts the risk of development of metabolic dis-
ease and its complications [1–8]. A good understanding of postprandial handling of metabo-
lites at the systemic level is thus a prerequisite to understanding the development of metabolic
diseases.

Knowledge on postprandial metabolite handling has been greatly expanded over the past
few decades, due to application of stable isotope tracer and NMR spectroscopy techniques to
study systemic and tissue-specific fluxes in glucose and lipid metabolism. In glucose metabo-
lism, a gold standard of postprandial glucose flux measurement was established with the use of
triple tracers [9], and quantification of the increase of postprandial hepatic glycogen stores
have allowed quantification of hepatic glucose fluxes [10–13]. Untangling of postprandial lipid
metabolism has benefited from stable isotope techniques that have revealed the origin of lipids
in lipoprotein or non-esterified fatty acids (NEFA) pools [5,6,14–19]. However, because the
response to a meal is dynamic, fast, and regulated by a wealth of hormonal and neurological
mechanisms [4], the systemic interplay of mechanisms governing postprandial metabolite han-
dling remains incompletely understood.

Plasma NEFA and glucose levels are tightly intertwined, and simultaneous dysregulation of
both NEFA and glucose metabolism is associated with development of insulin resistance and
hepatic lipid accumulation [20–24]. Since the initial proposition of direct interactions between
glucose and NEFA metabolism in 1963 [24], a complex network of lipid–carbohydrate interac-
tions in liver, adipose tissue, and skeletal muscle has been revealed [22,25], wherein NEFA
acutely decreases hepatic insulin sensitivity [26–28] as well as peripheral insulin sensitivity
[22,29,30]. The temporal and quantitative characteristics of these acute systemic NEFA-glucose
interactions have been repeatedly investigated under clamp conditions where glucose and insu-
lin levels are kept constant, and a triglyceride (TG) emulsion is infused [31–37]. However, the
translation of such clamp measurements to a dynamic postprandial situation is difficult, since
the concentrations of metabolites and hormones are both rapidly and simultaneously changing
in the postprandial state. Therefore, we propose a mathematical modelling approach to handle
such translational difficulties, and to gain insight into the systemic, postprandial interplay
between glucose and NEFA.

Ordinary differential equation (ODE) models of the systemic, postprandial glucose-insulin
interplay have been developed for several decades [38–42]. A hallmark model is the meal simu-
lation model developed by Dalla Man et al. [41], which focusses on the postprandial state and
incorporates gold standard systemic glucose flux data. This model has also proven to be of
value as a simulation tool–e.g. in a Type 1 Diabetes simulator [39,43], and as the whole body
component of a hierarchical modelling approach [44]. This meal simulation model does not,
however, incorporate the kinetics of or interplay with NEFA.

For postprandial NEFA kinetics, several models have been introduced [42,45–47]. The
interaction between NEFA and glucose metabolism, however, has not been included in these
approaches, and therefore the effect of NEFA on glucose fluxes cannot be derived from these
models. In summary, no existing model or experimental technique can currently elucidate the
in vivo interplay of NEFA metabolism with the relevant glucose fluxes under postprandial
conditions.

Here, we thus develop a new model for the interplay of glucose, insulin, and NEFA at the
systemic level. The model is based on the model of postprandial glucose-insulin interplay by
Dalla Man et al. [41], and additionally includes NEFA kinetics, postprandial NEFA influx, and
NEFA effects on glucose metabolism. The model is calibrated with data from literature: clamp
data from two sources [32,33], and dynamic data describing the postprandial response to an
intake of either lipid or glucose [48] (Fig 1). The quality of the developed model is tested by its
ability to describe independent data, i.e. data not used for the calibration. Finally, the influence
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of NEFA on systemic glucose metabolism under postprandial conditions is quantitatively ana-
lyzed, thereby integrating the information available from the clamp experiments with a
dynamic physiological situation.

Materials and Methods

Ordinary differential equation model
The mathematical model consists of a system of non-linear ordinary differential equations
(ODEs) and can be represented as follows:

dx
dt

¼ f ðx; p; uÞ; xð0Þ ¼ x0

y ¼ gðx; pÞ
ð1Þ

Where t is time (in minutes) and all other symbols represent vectors. The symbol x repre-
sents the states of the model, x0 denotes the initial values of these states, p are model parame-
ters, f and g are non-linear functions, u represents the model inputs, and finally y are the model
outputs which correspond to measurements.

Model calibration
To calibrate an ordinary differential equation model, model simulations for values of the
parameters p are compared to experimental data. More specifically, model calibration is per-
formed by choosing the parameter values such that they best describe the experimental (cali-
bration) data, i.e. by minimizing a cost function V (Eq 2). V is defined as the squared difference
between model outputs (yi) and measured outputs (yobs i), divided by the experimental variance
(the square of the standard error σi) to account for measurement uncertainty, and therefore
represents the weighed sum of squared residuals.

VðpÞ ¼
X ðyiðp; tÞ � yobsiðtÞÞ2

siðtÞ2
ð2Þ

In this equation, i is the measurement index. During model calibration, an optimization
procedure is employed to determine the optimal values of p (see below).

Fig 1. Overview.Overview of the workflow: model (Fig 2), model calibration with clamp simulations (Figs 3 and 4) and oral challenge simulations (Fig 5),
comparison of the calibrated model with independent data (Fig 6), analysis of model response to NEFA perturbations (Fig 7), and quantification of NEFA
regulation in the meal response (Fig 8).

doi:10.1371/journal.pone.0135665.g001
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Computer software
Data that was only available in a graphical format was digitized with the aid of PlotDigitizer
2.5.0 for Windows. The model was implemented and analyzed in MATLAB (MATLAB, Ver-
sion R2012a, The MathWorks, Inc., Natick, Massachusetts, United States). The ordinary differ-
ential equation model was simulated using the variable step solver ode15s. Optimization and
parameter sampling were performed from multiple starting points with a local, gradient-based
least squares solver and a constrained scalar function solver (the built-in Matlab functions
lsqnonlin and fmincon, respectively). Further information on settings and parameter bound-
aries can be found in S1 File.

Mathematical model
The detailed postprandial glucose-insulin model as published by Dalla Man et al. [41] served as
a basis for the glucose and insulin equations. Similarly, the (fasting) NEFA kinetics are
described by kinetic equations based on those published by Roy and Parker [49]. The NEFA
kinetic equations were modified from [49] to (i) accommodate a non-steady state initial condi-
tion of NEFA [50], to (ii) remove the direct glucose regulation on NEFA dynamics which was
based on ex vivomeasurements [49], and (iii) to include adipose tissue spillover of NEFA
(based on [42]). Herein, spillover represents the variable fraction of fatty acids released from
lipoproteins via lipolysis that are released directly into circulation, instead of being taken up by
the tissue. The full model is visualized in Fig 2.

Plasma NEFA is finally described by Eq 3.

dNEFA
dt

¼ �JA � JB þ JC þ JD ð3Þ

Where JA, JB, JC and JD are given by Eqs 4–8. The term JA represents the concentration
dependent uptake of NEFA by the body, governed by parameter pA.

JA ¼ pANEFA ð4Þ
JB represents insulin dependent inhibition of adipose tissue lipolysis, governed by parameter

pB and the difference between the insulin concentration in the remote compartment Id7 [49]

Fig 2. Mathematical model. The mathematical model of systemic glucose (left), insulin (middle) and NEFA (right) metabolism consists of a total of 18
differential equations. Glucose concentrations are determined by glucose rate of appearance (Ra), endogenous glucose production (EGP), insulin dependent
(Uid) and independent (Uii) glucose uptake and–if applicable–renal excretion (E). Plasma NEFA dynamics are described in Eqs 3–7. In the model, glucose
enters the system via simulated ingestion inQsto1, and lipid appearance is simulated by using the measured plasma TG concentration to calculate fatty acid
spillover. For full model equations, we refer to S2 File. Matlab implementation and simulation files are provided as S3 File.

doi:10.1371/journal.pone.0135665.g002
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and the basal insulin concentration Ib.

JB ¼ pB ðId7 � IbÞNEFA ð5Þ

JC is a net flux that is assumed constant and smaller than zero in the parameterized model;
thus, it represents a basal body fatty acid uptake;

JC ¼ pC ð6Þ

Finally, JD is the influx from the spillover of fatty acids released from plasma lipoproteins in
the adipose tissue. The equation for JD is composed of the absolute flux of fatty acids released
from triglycerides in adipose tissue by insulin-stimulated LPL activity (Jlpl), the insulin-inhib-
ited ratio of fatty acids that are released via spillover (spill), and the distribution volume of
plasma NEFA (VNEFA). Here, spill is the fraction of NEFA released from TG that spills into
plasma, defined as an insulin-dependent fraction between zero and one.

JD ¼ spill � JlplðTGÞ
VNEFA

ð7Þ

Postprandial TG extraction Jlpl (TG) was modelled using the insulin-regulated equation for
lipoprotein lipase lipolysis of TG proposed by Jelic et al. [42], which requires measured sys-
temic TG concentrations as a model input. The TG input is interpolated via a fitted polynomial
function.

The hereby obtained modular model for glucose, insulin and NEFA was further expanded
to account for the NEFA regulation of the glucose fluxes. More specifically, the endogenous
glucose production (EGP) was changed to

EGPðtÞ ¼ kegp1 � kegp2 GpðtÞ � kegp3Id2ðtÞ � kegp4 IpoðtÞ þ
insinf ðtÞ

g

� �
þ kegp5 Nd1ðtÞ ð8Þ

Where, as in Dalla Man et al. [41], Gp(t) is the plasma glucose content (mg/kg), Id2(t) is a
delayed insulin signal, and Ipo(t) is the portal vein insulin concentration and represents insulin
secretion. The modifications include the addition of insinf (t), which represents the insulin infu-
sion rate (pmol/kg/min) and is necessary to describe clamp experiments, and a delayed NEFA
signal Nd1(t) [49]. The variable kegp1 is chosen such that EGP(0) = EGPb. Finally, kegp2, kegp3,
kegp4, γ and kegp5 are model parameters.

Similarly, insulin-dependent glucose uptake (Uid, from [41]) was re-formulated to include
NEFA regulation as follows. Uid is described by

UidðtÞ ¼
Vmax; uid ðId3ðtÞ; Nd1ðtÞÞ GtðtÞ

Km; uid þ GtðtÞ
ð9Þ

Where Gt is the tissue glucose concentration (mg/dL), Km,uid is a model parameter and the
Vmax of the Michaelis-Menten expression is insulin- and NEFA dependent via Eq 10.

Vmax; uid ðId3ðtÞ; Nd1ðtÞÞ ¼ kuid1 þ kuid3
Id3ðtÞ
Nd1ðtÞ

ð10Þ

Here, kuid1 and kuid3 are again model parameters, Id3 is a delayed insulin signal and Nd1 is a
delayed NEFA signal; implemented to represent the observed reciprocal relationship between
NEFA concentrations and insulin-dependent glucose uptake.

Model-Based Quantification of Interplay between Glucose and NEFA
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The complete model describes the systemic pre- and postprandial kinetics of glucose, insu-
lin and NEFA and is outlined in Fig 2. Implementation details, full model equations, and soft-
ware are provided as S1 File, S2 File, and S3 File respectively.

Calibration data
To find values for the 21 free model parameters, a calibration dataset was composed by com-
bining data from three sources [32,33,48]. All data were digitized from plots in the publica-
tions, and hence the model describes the population mean (as do the models in [41,42,49]).

The first two datasets, DCLAMP1 and DCLAMP2, describe the endogenous glucose production
and insulin-dependent glucose uptake in healthy subjects in response to a variety of clamped
conditions. These two datasets were chosen to obtain variability in both the time-scales of the
experiments, as well as the fixed concentrations of glucose and insulin. The final dataset
(DMEAL) describes the response of plasma glucose, insulin, NEFA and TG of a group of young,
healthy men to both an oral glucose tolerance test (OGTT) and an oral lipid tolerance test
(OFTT). This third dataset was chosen for its combination of isolated responses to glucose and
lipids. Taken together, these data allow for estimation of the unknown parameters.

Clamp-datasets
For the first clamp data set (DCLAMP1, Figs 3, 4A and 4B), three groups of subjects (n = 4 for
group A, n = 4 for group B and n = 6 for group C) underwent a hyperinsulinemic (70 μU/mL),
euglycemic (85 mg/dL) clamp. During this clamp, subjects of group A received a continuous
infusion of a TG emulsion and heparin, subjects of group B received only the TG emulsion and
subjects of group C underwent a vehicle (saline) infusion. In group A, heparin is used to stimu-
late lipoprotein lipase activity, resulting in a larger increase of NEFA than in group B. The
NEFA concentrations in the three groups were measured to reach three different plateaus of
NEFA concentration–at means of 766, 562 and 51 μM respectively. The clamps were main-
tained for 6 h, and in the final 3 h of the study EGP and glucose uptake (GU) were calculated
from stable isotope tracer kinetics. For full experimental methods and results we refer to the
original publication [32].

For the second clamp data set (DCLAMP2, Figs 3, 4C and 4D), subjects were again divided
into three groups (n = 6, 7 and 7 for A, B and C respectively); however, here the subjects in
each group underwent a clamp on two different occasions. On one occasion, the subjects
received a simultaneous infusion of a TG emulsion with heparin, while on the other occasion
the infusion only contained vehicle. In each group, the settings of the clamp were designed to
represent a different combination of hyper or eu-glycaemia and hyper- or eu-insulinemia.
Group A underwent a hyperinsulinemic (raised by 100 μU/mL), euglycemic clamp; group B
underwent a hyperglycemic (200 mg/dL), hyperinsulinemic clamp (50 μU/mL) and group C
underwent a protocol in which glucose concentrations were raised (300 mg/dL) under rela-
tively normal insulin concentrations. Each clamp was maintained for 2 hours, and EGP and
GU were determined during the final hour. EGP was only determined in all subjects in group
C, and for this reason, and because insulin infusion rates (necessary to simulate the clamp in
the model) in group A were not reported, only EGP measurements from group C were avail-
able for inclusion in the dataset. For a full description of experimental methods and results we
refer to the original publication [33].

Briefly, simulation of these clamp datasets is performed by fixing the main plasma states of
the plasma glucose content Gp (mg/kg), the plasma insulin content Ip (pmol/kg) and the
plasma NEFA concentration NEFA (μmol/L), as well as the exogenous insulin appearance and
the time-derivative of glucose, to the values reported. In the first dataset (DCLAMP1), the plateau
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values of the clamp were used to define the NEFA concentration during the simulation. In the
second clamp dataset (DCLAMP2), however, the concentration of NEFA did not reach a clear
plateau and instead the concentration was described by the dynamic NEFA response, which
was digitized and interpolated linearly. In each case, an average value for EGP and GU was cal-
culated as in the experimental protocol, and the average value was compared to the measured
value. Both clamp-datasets together contain five EGP measurements (three in DCLAMP1 and
two in DCLAMP2) and nine glucose uptake measurements (three from DCLAMP1 and six from
DCLAMP2).

Oral-challenge dataset
The oral-challenge data DMEAL was obtained from Robertson et al. [48]. It describes the
response of 12 healthy male subjects to oral glucose (OGTT, 100 grams of glucose) and lipid
(OFTT, cream containing 40 grams of fat), measured on two separate occasions. Plasma glu-
cose, insulin, NEFA and TG were measured with high time resolution, especially in the begin-
ning of the protocol (Fig 5). Measurements continue for 6 hours and include the plasma NEFA

Fig 3. Clamp datasets: experimental data and simulation results.Measurements from DCLAMP1 (hyperinsulinemic, euglycemic clamp) [32] (A,B, red
errorbars) and DCLAMP2 [33] (C,D, red errorbars) with superimposed model outputs. The simulation represents the parameter set in Ssel that corresponds to a
minimal value for VEGP. A. Mean EGP as measured over the final half of a 360 minute clamp with low, medium and high NEFA concentration. B. Total
glucose uptake (conditions and measurement time as in A). C. EGPmeasured during the final 60 minutes of the 120 minute clamp in experiments of group C
that underwent an eu-insulinemic, hyperglycemic clamp with a saline infusion (C-) and with a combined intralipid and heparin infusion (C+). D. Total glucose
uptake as in C, for experiments with a hyperinsulinemic euglycemic clamp (group A-, A+), hyperinsulinemic, hyperglycemic clamp (group B-, B+), and an eu-
insulinemic, hyperglycemic clamp (group C- and C+). A short summary of the implementation in the model is provided in the Materials and Methods; full
details of implementation can be found in S1 File.

doi:10.1371/journal.pone.0135665.g003
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overshoot. The oral challenges were consumed in the morning, following an overnight fast pre-
ceded by a high-carbohydrate evening meal. For a full description of experimental methods
and results we refer to [48].

Simulation was performed with inputs of glucose into the stomach compartment. Plasma
TG concentrations were set to experimentally determined values, using a polynomial for
interpolation.

Optimization and parameter sampling
The model was calibrated to the entire calibration dataset (DMEAL, DCLAMP1 and DCLAMP2) as
described in Eq (2). Most parameters were fixed to the values reported in [41,42,49,51], while
remaining free parameters were estimated based on the calibration data. Free parameters are
parameters with no previous known value or parameters presumed to be modified from the
original value as a result of changes to the model or the conditions (See S1 File).

To investigate propagation of parameter uncertainty in predictions and analyses a collection
of parameter sets was selected (using a method based on Step 1 in [52]). First, parameter sets
yielding a cost function value within 120% of the lowest obtained cost function value were
selected from a large parameter sampling obtained during optimization procedures. Parameter

Fig 4. Model calibration on clamp data. To investigate propagation of parameter uncertainty in predictions and analyses a collection of parameter sets was
selected. Measurements from DCLAMP1 (hyperinsulinemic, euglycemic clamp) [32] (A,B, red errorbars) and DCLAMP2 [33] (C,D, red errorbars) with
superimposed model outputs as in Fig 3. Here, simulations representing the complete collection of selected parameter sets (Ssel) are shown, depictured as
dots shaded from dark green for poor fits of EGP (high values of VEGP) to light green for low VEGP. We note in C, that not all parameter sets from Ssel describe
the data, and that a bad correspondence of the simulations in A and C is shown with dark green color.

doi:10.1371/journal.pone.0135665.g004
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sets within this collection with extreme values of each parameter were chosen for visualization,
this selection of parameter sets is referred to as Sext. For some parameter sets in Sext, however,
the obtained value of the minimal stomach emptying parameter (kra3) was equal to or lower
than the value determined for a mixed meal [41,51]. As has been shown previously, this param-
eter should have a higher value for an OGTT than for a mixed meal [51]. Therefore, a second
selection for the parameter sets was undertaken. The selection Ssel contains the extremes of the
parameter sets that (1) have a cost function value within 120% of the lowest obtained cost func-
tion value and (2) have a value of at least 0.009 min-1 for kra3 (further information can be
found in S1 File).

Fig 5. Model calibration onmeal responses.Data from DMEAL [48] (red errorbars) and model simulations (Sext, grey curves; and Ssel, green shading as in
Fig 4) in response to an OGTT (A) and an OFTT (B).

doi:10.1371/journal.pone.0135665.g005
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To visualize the propagation of a good or bad fit to the EGP data in the remaining analyses,
the cost function value was also calculated for (only) the five EGP data points in Fig 4A and
4C. This value is referred to as VEGP and is used for visualization in Figs 4–8 (shades of green).

Analysis of perturbations in NEFAmetabolism
To examine the behavior of the model in response to acute changes of NEFA metabolism, we
investigated how perturbations of postprandial NEFA dynamics affected the OGTT response
simulation of DMEAL. Perturbation of NEFA metabolism was simulated in two ways: through
elevation of fasting NEFA concentrations (Pbas) and by reduction of the insulin sensitivity of
lipolysis (Plip). In both cases, the perturbation of NEFA metabolism is performed by choosing a

Fig 6. Model prediction–NEFA kinetics during amulti-step insulin infusion. To verify general NEFA kinetics, a multi-step insulin infusion (Campbell et al.
[53]) was modelled by fixing glucose (A) and insulin (B) to clamped concentrations. As TG was not measured, it was fixed at 1000 μM. The initial NEFA
concentration was fixed at the measured value. (C) Simulated NEFA concentration, Ssel (shades of green, as in Fig 4) and measurements of the independent
clamp dataset [53] (red errorbars).

doi:10.1371/journal.pone.0135665.g006
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different value for a single parameter of NEFAmetabolism. To analyze the effects of the perturba-
tion on the system, the change of the area under the curve (AUC) of plasma glucose, insulin and
NEFA concentrations during an OGTT was then determined. These perturbations yield a higher
AUC for NEFA by design, but only affect glucose and insulin kinetics and AUC indirectly.

In the first perturbation Pbas, the OGTT simulation was repeated after changing the fasting
concentration of plasma NEFA (NEFA0). In the second perturbation Plip, the initial concentra-
tion of NEFA was not changed. Instead, simulations of the OGTT were performed in which
the characteristic postprandial insulin-mediated fall of the concentration of NEFA was
decreased. This was achieved by tuning the value of the insulin-dependent lipolysis parameter
(pB) to the desired reduction of the postprandial fall of the concentration of NEFA. The model
was then simulated with all parameters except for pB at their original value.

Analysis of the contribution of NEFA to glucose regulation
To evaluate the contribution of NEFA-mediated regulation of postprandial glucose metabo-
lism, the following quantitative analysis was performed. First, the regulation of Uid and EGP
during the OGTT (DMEAL) was divided into (1) the non-NEFA regulated contributions and (2)
the NEFA regulation terms. Then the NEFA regulation term was divided by the sum of all reg-
ulatory terms to obtain the relative contribution of NEFA to the total regulation of insulin-
dependent glucose uptake RN,Uid(t) and the relative contribution of NEFA to the total regula-
tion of endogenous glucose production RN,EGP(t). The calculation of these variables is difficult
when the total regulation approaches zero, and therefore only the maximal values of these

Fig 7. Model analysis–glucose homeostasis. Perturbations of NEFAmetabolism affect the AUC of the
glucose, insulin and NEFA responses to the OGTT. A-D. Overview of perturbation strategy. A. Original OGTT
response model. B. Perturbed model. C. Perturbation by increasing the initial NEFA concentration (Pbas in the
illustration). D. Perturbation by reducing the insulin dependent inhibition of lipolysis (Plip in the illustration).
E-G-I. Relative change in AUC of NEFA (E), glucose (G) and insulin (I) in response to an increase in the initial
concentration of NEFA. F-H-J. Relative change in AUC of NEFA (F), glucose (H) and insulin (J) in response
to reduced insulin-dependent inhibition of lipolysis. Red markers represent individual simulation results per
parameter set; the shaded area (dark red) gives the full range.

doi:10.1371/journal.pone.0135665.g007

Fig 8. Model analysis—contribution of NEFA regulation in the postprandial glucose response. A. Relative contribution of regulation by the NEFA-
regulation term Nd1(t), on Uid during an OGTT, plotted at the time point where the absolute value of the NEFA regulation of Uid is maximal. B. Relative
dependence of EGP suppression on the regulation by NEFA, plotted at the time point when the absolute NEFA-induced suppression is maximal. Colors
indicate VEGP (green shading as in Fig 4). The individual results represent the parameter sets in Ssel.

doi:10.1371/journal.pone.0135665.g008
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regulations are selected for plotting. Equations and details of the implementation can be found
in the S4 File.

Results
We developed a new mathematical model for the dynamic interplay of NEFA with insulin and
glucose metabolism, as detailed in Materials and Methods. The new model is calibrated against
published data from three sources: data of the NEFA-dependent hyperglycemic and/or hyper-
insulinemic clamp response from [32,33], and data of the dynamic postprandial response from
[48]. The calibration of the model is visualized in Figs 3–5.

Simulation of glucose response to different clamp conditions
Fig 3 shows the model output for a parameter set that describes the calibration data adequately,
including EGPmeasurements of the clamp datasets (Fig 3A and 3C). Hereto the parameter set in
Ssel (a selection of accepted parameter sets chosen for their extreme parameter values, see Materi-
als andMethods) was selected that has the minimal value for VEGP (the cost function value calcu-
lated for (only) the five EGP data points in Fig 3A and 3C). The model outputs closely resemble
the experimental data in both absolute value and relative response to different conditions. The
model demonstrates that inhibition of the endogenous glucose production (EGP) by insulin is
progressively reduced when the concentration of NEFA is increased during the different clamp
conditions (Fig 3A and 3C), and that the inhibitory effect on insulin-dependent glucose uptake
(i.e. insulin resistance) is dependent on the concentration of NEFA (Fig 3B and 3D). The model
also reproduces the inability of NEFA to inhibit glucose uptake when the concentration of insulin
is not elevated (Fig 3D). It should be noted that the original Dalla Manmodel [41] is unable to
accurately simulate glucose uptake or EGP in the presence of NEFA (S1 Fig).

The new model is thus able to reproduce the clamp-datasets well. Next, it was investigated
how uncertainty in the data propagates in the model outcome. In Fig 4, the model output for
all parameter sets in Ssel is shown. In particular, for some selected sets of parameters EGP is
completely suppressed in the clamp studies with basal insulin concentrations and hyperglyce-
mia (dark green in Fig 4C). In other words, some of the parameter sets display good over-all
agreement with data, even though they fail to reproduce the EGP data in Fig 3C. As only a few
data points of EGP are included in the total cost function for model calibration, the full collec-
tion of accepted parameter values also contains parameter sets that yield unphysiological
results for EGP. Since a correct description of the EGP is important for the physiological rele-
vance of the model we trace how variability in EGP correlates with other model outcomes.
Hereto the color scheme introduced in Fig 4 is repeated in the simulations shown in Figs 5, 6
and 8. The shade of green therefore denotes how well a particular parameter set fits the EGP
data, where lighter green indicates a better fit to the EGP data.

Simulation of dynamic response to oral challenges
Simulations of the model for postprandial dynamics following oral challenges demonstrate
that the model is able to reproduce the dynamic response seen following the ingestion of glu-
cose (OGTT, Fig 5A) and cream (OFTT, Fig 5B). In Fig 5, accepted parameter sets Ssel (green)
are compared with parameter sets Sext (grey). Sext is a larger collection of parameter sets than
Ssel and includes solutions with unphysiologically low values of the minimal stomach emptying
parameter kra3 (Materials and Methods).

In response to the glucose challenge (Fig 5A), plasma TG concentration changes little, while
the concentration of glucose displays a transient peak at approximately 50 minutes followed by
a non-monotonic decrease up to an undershoot at 240 minutes (Fig 5A, second panel). The
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concentration of plasma NEFA, meanwhile, shows an initial decrease in response to the post-
prandial insulin peak, followed by a post-absorptive overshoot (Fig 5A, forth panel). This
behavior is reproduced well by the model. Between 120 and 240 minutes, no data are available,
and this is reflected in a large variation in the dynamics within Sext (grey), including some
responses that display a large second peak of glucose appearance.

The OFTT dynamics are characterized by a lack of glucose or insulin response and a slow,
transient increase in plasma TG concentration, visible in both the model and data (Fig 5B). A
small decline in the concentration of NEFA is followed by a late overshoot, which is more mod-
erate than in the response to the OGTT. The model is able to capture these responses well. For
all the different parameter sets in Ssel, integration of the simulated glucose ingestion flux results
in a total glucose ingestion that entails far less than one gram of glucose (S3 File). As a negligi-
ble amount of glucose is ingested, the glucose ingestion parameters hardly contribute to the
model response during an OFTT simulation and therefore are unidentifiable. Therefore, when
selecting the parameter sets for Ssel, these parameters are not included in the selection of the
most extreme parameter sets.

The NEFA kinetic parameters are compatible with independent data
Following model calibration, the model was used to predict the response to an independent
clamp experiment. The independent data were obtained from a study by Campbell et al. [53]
and describes the response of NEFA metabolism to a series of euglycemic hyperinsulinemic
clamps in which the insulin infusion rate is stepwise increased every two hours (Fig 6).

In the simulation, the initial concentration of NEFA was fixed to the basal NEFA concentra-
tion as reported in Campbell et al. [53], and the concentrations of glucose and insulin were
fixed to the reported values per cascade step, while TG was fixed at 1 mM because data were
not available (Fig 6A and 6B). The final insulin concentration of 13450 pM in [53] was not sim-
ulated, as the insulin concentration during this step is far outside the normal physiological
ranges. The model correctly predicts the experimentally measured decline in the concentration
of NEFA in response to step-wise increased concentrations of insulin (Fig 6C), although the
third data point is underestimated for some parameter sets.

Model simulations predict that glucose homeostasis is maintained during
perturbations of NEFA metabolism
To better understand the behavior of the model, we performed a series of simulations in which
NEFA metabolism was perturbed and compared the changes in the area under the curve
(AUC) of glucose, insulin, and NEFA during the OGTT simulations (Fig 7). In the first series
of perturbations, we simulated an increased initial concentration of NEFA (as demonstrated in
Fig 7C), and in the second series, we reduced postprandial inhibition of lipolysis by insulin (as
demonstrated in Fig 7D).

Both perturbations can be seen to clearly affect the simulated NEFA concentration–i.e. the
AUC is increased (Fig 7E and 7F). In contrast, the AUC of the glucose response remains close to
the unperturbed AUC (Fig 7G and 7H). However, the AUC of insulin is increased (Fig 7I and
7J), and this indicates that the maintained glucose homeostasis is the result of insulin control.

Model analysis reveals that NEFAmay mediate up to 45% of the
postprandial glucose control
Finally, we used the model to determine the relative contribution of regulation by NEFA in the
control of EGP and Uid (Fig 8). Uid is controlled by insulin (activation) and NEFA (inhibition),
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as described in Materials and Methods. EGP is a summation of inhibition by glucose itself (glu-
cose effectiveness), inhibition by insulin and decrease of this inhibition by NEFA. However,
because NEFA concentrations decrease rapidly in response to the OGTT, the effective regula-
tion of NEFA during this period is to inhibit EGP and stimulate Uid. In the OGTT simulations,
we determined the maximal contribution of the NEFA regulation terms in relation to the full
regulation of EGP and Uid, for each of the parameter sets in Ssel. For every parameter set, we
plotted the (relative) contribution of the NEFA dependent regulation term to the total regula-
tion at the time point where the NEFA-regulation term is maximal (Fig 8). A more detailed
explanation of the calculations for Fig 8 is provided in the S4 File.

The results show that in the model, the regulation of Uid by NEFA (Fig 8A) is consistent in
all parameter sets with a maximal value at approximately 100 min and is a contributor (30–
45%) to Uid during the late postprandial period. The regulation of EGP by NEFA (Fig 8B) is
more variable between the parameter sets. Nevertheless, the coloring shows that the parameter
sets in which the contribution is low correspond to a poor value of VEGP, i.e. to a poor agree-
ment with the EGP clamp data in Fig 4A and 4C.

Discussion
We have developed a model of postprandial systemic metabolism of glucose, insulin, and
NEFA in humans, in order to describe and quantify the dynamic interplay between systemic
glucose and NEFA homeostasis following the ingestion of an oral challenge. The model
describes the calibration data and exhibits robust insulin-mediated compensation for perturba-
tions of NEFA metabolism. By analyzing multiple parameter sets that reasonably describe the
data, we have obtained a collection of responses that provides insight into the uncertainty of
parameters and predictions. The value of the model is demonstrated in the analysis of post-
prandial metabolism of glucose, in which the postprandial decrease of the concentration of
NEFA is shown to have a substantial contribution to the regulation of EGP and insulin-depen-
dent glucose uptake. Specifically, in the later stages of the response to an oral glucose challenge
(100–150 minutes after the ingestion of glucose), the model predicts that the NEFA-mediated
signal has a contribution of between 30 and 45% to insulin-dependent glucose uptake, and a
similar contribution to EGP. The model thus provides an important step towards untangling
the postprandial dynamics of the interplay of glucose and lipid metabolism.

Our study integrates NEFA kinetics in a systemic model of glucose metabolism [41], and
extends and adapts the equations describing NEFA kinetics in the model developed by Roy
and Parker [49] in several directions. First, the model in [49] was stripped of the direct glucose-
to-NEFA regulation, for which it lacked in vivo data. Next, the equations were extended to cap-
ture two characteristics of the data: (i) the absence of a steady state concentration of NEFA
under fasting conditions, and (ii) the additional influx of NEFA, as seen following a lipid-rich
meal, from adipose tissue spillover. The first extension (i) is of importance to differentiate the
postprandial changes in concentrations of NEFA from the natural variation of NEFA concen-
trations seen even if no oral challenge is ingested [54]. Additionally, the first extension is neces-
sary to reproduce the initial phase of the postprandial response [50]. The second extension (ii)
is of importance because the spillover of NEFA from hydrolysis of circulating TG has a large
contribution to the post-absorptive overshoot in the NEFA concentration [42,55]. Therefore,
as the NEFA kinetic model [49] did not include postprandial spillover, physiological equations
to describe this were included, as derived in [42].

The method and model proposed herein provide an in vivo estimate of the postprandial
glucose-NEFA-insulin interactions at a systemic level, and provide information not accessible
without a dynamic model. In a different approach presented in [56], glucose-NEFA
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interactions were quantified based on random perturbations in the fasting state in dogs, using
Principal Dynamic Modes. Such an approach has several limitations in comparison to our
approach, as the method neither includes the postprandial response, nor provides a detailed-,
flux-based overview of the glucose-insulin-NEFA regulatory system. It is also possible to probe
the NEFA contribution in the postprandial responses experimentally, e.g. by changing the ini-
tial NEFA concentration [57,58]. However, such perturbations are difficult to interpret in prac-
tice, since the NEFA concentration is a dynamic part of the system and thus changes
continually; systemic responses to such perturbations are complex, involving several feedbacks
and direct and indirect effects. In contrast, with our model we can study the contribution of
NEFA without perturbing the response. Instead, we incorporate the effect of NEFA on glucose
production and clearance as measured in clamp studies in a model that describes the postpran-
dial situation. In healthy subjects, the glucose-insulin system maintains glucose homeostasis in
spite of external influences, and our model reflects this tight control. The robustness of glucose
homeostasis to perturbations in the concentration of NEFA has been retained in the new
model (Fig 7). The effect of perturbations in NEFA metabolism on glucose metabolism pres-
ents itself mainly through increased insulin concentrations.

Some limitations of the approach must also be considered. First of all, limitations stem from
combining several models and several datasets from literature. This implies that we assume all
data represents the mean of the same population (of lean, healthy subjects) under comparable
conditions. This may not, in all cases, be applicable, and this may hinder simultaneous agree-
ment of the model with all data. Secondly, while the included datasets capture the key charac-
teristics of the interaction we investigate, they are limited in their detail of NEFA metabolism.
Therefore, only information on the net value of the NEFA fluxes is included in the dataset, and
therefore only the net fluxes are described in the model. In other words, the NEFA kinetics are
represented well by the model, but these are calculated from net fluxes, and does not distin-
guish between e.g. an increased uptake and a lowered release of NEFA. Absolute or tissue-spe-
cific NEFA fluxes remain an area for future development. In the literature, postprandial
adipose [19] and hepatic [14] lipid fluxes have been quantified. These studies provide a scope
for future model testing, validation, and extension.

The model presented here combines strengths of several included previously existing mod-
els, but simultaneously inherits limitations from each of these sources. In particular, our model
contains a large number of remote insulin compartments that each represent a different
phenomenological delayed signal, the kinetics of which are inherently difficult to identify as
there are no direct measurements of these delays. A second model limitation is that we have
not included a direct stimulatory effect of NEFA on the release of insulin from the β-cells [59].
In the model, the effect of NEFA on insulin is instead achieved as a result of the ability of
NEFA to increase the circulating concentration of glucose, which in turn increases insulin
release to the circulation. Finally, the model requires the input of TG concentration for a calcu-
lation of NEFA influx due to spillover. These TG measurements are not always available, and
for this reason the concentration of TG was fixed to a constant value in the simulation of the
independent dataset (Fig 6).

In the future, continued development of the model will allow further analyses of the inter-
play of glucose–NEFA. Model extensions could include data describing mixed meals or
detailed NEFA fluxes. A model that has been extended with organ-specific fluxes of NEFA
could be used to connect more detailed models of tissue and organ metabolism. Such a model
could translate between drug simulations of intracellular signaling and metabolism to the
whole-body level, as previously done for the dynamics of glucose and insulin [44]. Mathemati-
cal models have been shown to be useful in elucidating disease development [60,61] and there-
fore another interesting avenue for future model application is in the investigation of the
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development of metabolic disease–particularly Type 2 Diabetes (T2D). The defining feature of
T2D is a loss of the control of blood glucose concentrations, which is due to insulin resistance
and insufficient insulin secretion. However, the detailed mechanism underlying T2D [62–64]
is still not fully known. Dysregulation of glucose levels in T2D is regularly accompanied by a
corresponding dysregulation of lipid metabolism: elevations of circulating glucose levels are
accompanied by elevations of the levels of NEFA and TG [65,66]. The herein proposed model-
based estimation of the interplay between glucose and lipid metabolism is useful to gain better
insight in the changes in this interplay in the postprandial period and can contribute to a better
understanding of development of T2D.

Supporting Information
S1 Fig. Simulation of clamp datasets with the Dalla Man model. Data of clamp datasets (as
Figs 3 and 4) with Dalla Man model simulations superimposed.
(EPS)

S1 File. Simulations details. Description of the simulation corresponding to each dataset, as
well as details of model optimization.
(PDF)

S2 File. Model equations.Model equations and parameter values for the Glucose-NEFA
model and the Dalla Man model.
(PDF)

S3 File. Simulation files. Zip file containing all Matlab m-files to generate figures. The zip-file
includes a README file, containing an overview of the simulation files and basic instructions.
(ZIP)

S4 File. Model analysis. Equations and implementation of (1) analysis of the relative control
of NEFA in postprandial glucose metabolism and (2) analysis of model response to NEFA
metabolism perturbation.
(PDF)
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