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Abstract

Synaptic clustering on neuronal dendrites has been hypothesized to play an important role

in implementing pattern recognition. Neighboring synapses on a dendritic branch can inter-

act in a synergistic, cooperative manner via nonlinear voltage-dependent mechanisms,

such as NMDA receptors. Inspired by the NMDA receptor, the single-branch clusteron learn-

ing algorithm takes advantage of location-dependent multiplicative nonlinearities to solve

classification tasks by randomly shuffling the locations of “under-performing” synapses on a

model dendrite during learning (“structural plasticity”), eventually resulting in synapses with

correlated activity being placed next to each other on the dendrite. We propose an alterna-

tive model, the gradient clusteron, or G-clusteron, which uses an analytically-derived gradi-

ent descent rule where synapses are "attracted to" or "repelled from" each other in an input-

and location-dependent manner. We demonstrate the classification ability of this algorithm

by testing it on the MNIST handwritten digit dataset and show that, when using a softmax

activation function, the accuracy of the G-clusteron on the all-versus-all MNIST task (~85%)

approaches that of logistic regression (~93%). In addition to the location update rule, we

also derive a learning rule for the synaptic weights of the G-clusteron (“functional plasticity”)

and show that a G-clusteron that utilizes the weight update rule can achieve ~89% accuracy

on the MNIST task. We also show that a G-clusteron with both the weight and location

update rules can learn to solve the XOR problem from arbitrary initial conditions.

Author summary

Artificial neural networks (ANNs) have become among the most powerful tools in artifi-

cial intelligence and machine learning, enabling computers to solve complex tasks like

image recognition. Inspired by the brain, ANNs are composed of simple neuron-like

units that perform a weighted sum of their synaptic inputs. Artificial neurons can “learn”

by modifying the weight of each input. Biological neurons, however, are more complex.
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Synapses in a real neuron can interact nonlinearly with each other in a distance-depen-

dent manner due to voltage-dependent mechanisms, such as the NMDA receptor. We

created a model neuron, called the Gradient clusteron (G-clusteron) which can use dis-

tance-dependent nonlinearities to learn to solve classification tasks by making its synapses

attract or repel each other. We tested the G-clusteron on its ability to recognize handwrit-

ten digits from the MNIST dataset and showed that it can achieve a high level of classifica-

tion accuracy (~85%) just by updating its synaptic locations. We also derive a rule for

updating the synaptic weights of the G-clusteron and show that having the ability to

update both its synaptic weights and synaptic locations allows the G-clusteron to solve the

“exclusive or” (XOR) problem, which is famously impossible for a linear neuron.

Introduction

In the discipline of machine learning, artificial neural networks (ANNs) have gained great

popularity due to their impressive success in solving a wide variety of computational tasks [1].

ANNs also hold a special appeal due to their similarity to the networks of neurons in biological

brains, lending hope to the possibility that ANNs might serve as a general-purpose framework

for replicating human-like cognition. ANNs have also been used by computational neurosci-

entists to model activity dynamics, computation, and learning processes in the brain [2–6].

Despite their utility for both machine learning and neuroscience, ANNs operate at a level of

abstraction that disregards many of the details of biological neural networks. In particular, the

artificial neurons in ANNs integrate their inputs linearly; that is to say, each input to a neuron

in an ANN is given an independent weight and the neuron applies an activation function to

the linear weighted sum of its inputs.

In contrast, synapses in biological neurons display an assortment of nonlinear interactions

due to the passive biophysical properties of the cell as well as the active properties of voltage-

gated ion channels. One nonlinear channel of particular interest is linked to the N-methyl-D-

aspartate (NMDA) receptor. The NMDA channel is both ligand-gated and voltage-gated [7–

9], allowing neighboring synapses on a dendrite to interact in a cooperative, supralinear man-

ner. When two nearby NMDA synapses are activated simultaneously, the voltage-dependence

of the NMDA receptor creates a voltage perturbation (depolarization) that is greater than the

linear sum of the two inputs had they been activated independently [10].

The NMDA receptor has been shown to play a crucial role in structural plasticity, or the

growth and elimination of synapses between neurons [11–14]. Structural plasticity plays a cru-

cial role in development and learning [15–19]. Structural plasticity increases the likelihood

that temporally correlated synapses are placed next to each other [12, 14, 20–22], which may

take advantage of the NMDA supralinearity. While some structural plasticity may be due to

new presynaptic-postsynaptic pairs being formed, structural plasticity can allow neurons with

extant synaptic connections between them to find the most functionally effective dendritic

location to make a synapse. The commonality of multiple synaptic contacts between a single

presynaptic-postsynaptic pair of cells, as shown by electron microscopy [23–26], as well as evi-

dence that the number of multiple synapse boutons increases in an enriched environment

[27], lends support to the idea that connected neurons may be sampling dendritic locations so

as to optimize synaptic placement.

The synergistic coactivation of neighboring inputs on the dendrite via nonlinear NMDA

receptors and the ability of a neuron to relocalize its synapses in response to correlated activity

have been theorized to have a computational function. An early framework proposed that, by
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placing synapses with correlated inputs next to each other, a neuron could learn to solve classi-

fication tasks. To demonstrate this capability, Bartlett Mel [28] created a simplified model of a

neuron with a single dendrite called the clusteron. The clusteron’s dendrite consisted of a

sequence of discrete locations, from 1 to N, where N is the number of features in the input (in

an image, N would be the number of pixels). Each input to the neuron would impinge upon a

specific dendritic location. The “activation” of each synapse was defined as the direct input to

that synapse multiplied by the sum of the inputs to nearby synapses within a fixed radius on

the dendrite.

In order to train the clusteron to recognize a class of patterns (e.g. to identify pictures con-

taining the digit 2), the clusteron is presented with patterns from the class to be recognized

(called the positive class) and stores the average activation of each synapse per pattern. At

every epoch of learning, the clusteron randomly swaps the locations of “poorly performing”

synapses (i.e. synapses with a low activation relative to the other synapses) with each other on

the dendrite, eventually resulting in a configuration wherein correlated inputs become spatially

adjacent to each other. The adjacent correlated synapses interact nonlinearly with each other,

leading to a higher overall activation for the positive class of patterns.

The clusteron model has spurred a wave of research into synaptic clustering, the idea that

synapses may be selectively bunched together on a dendrite (structural clustering), and that

synaptic clusters may receive correlated inputs which can influence a neuron’s computation

(functional clustering) [29]. Recent experimental work has provided evidence for both struc-

tural and functional clustering [14, 19, 30–33] with implications for visual orientation selectiv-

ity [32] and multimodal sensory adaptation [19]. For a review of both experimental and

modeling work pertaining to synaptic clustering, see [29].

In this work, we propose an alternative model for learning via dendritic nonlinearities and

structural plasticity on the single dendrite, which we call the gradient clusteron, or G-clusteron.

Unlike the original clusteron model, the G-clusteron uses a dendrite with continuous-valued

locations (as opposed to the discrete locations in the clusteron) and a bell-shaped distance-

dependent function to model the location-dependence of interactions between synapses.

These modifications allow us to analytically derive a gradient descent-based learning rule for

the synaptic locations of the inputs to the G-clusteron. We show that the G-clusteron’s location

update rule can learn to solve the classic MNIST handwritten digit multiclass classification

task with accuracy comparable to logistic regression (i.e. a linear classifier of the form

ŷ ¼ sigmoidðw � xÞ, where ŷ represents the predicted probability that the input pattern x
belongs to the positive class and w is a learned weight vector). Moreover, we derive an addi-

tional plasticity rule for the synaptic weights of the G-clusteron and show that when the synap-

tic location update rule and the synaptic weight update rule are used simultaneously, the G-

clusteron can learn to solve the exclusive or (XOR) binary classification task, a feat which can-

not be accomplished by a linear classifier [34].

Results

The G-clusteron is a model neuron with a single one-dimensional “dendrite” containing syn-

apses at various dendritic locations (Fig 1A). The activation of a synapse is defined as the prod-

uct of its weighted input with a distance-weighted sum of the weighted input of every synapse

on the dendrite (including itself).

Formally, for a given real-valued input pattern vector x = [x1,x2. . .xN], the real-valued acti-

vation, ai, of the synapse with index i is:

ai ¼ wixi

XN

j¼1
f ðli; ljÞwjxj ð1Þ
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where li is the real-valued location of synapse i on the dendrite, wi is the real-valued weight of

synapse i, and f(li, lj) is a bell curve-shaped distance-dependent function which determines

how much each synapse affects each other synapse, defined as:

f ðli; ljÞ ¼ e
� ðli � ljÞ

2

r ð2Þ

where r is a positive-valued “radius” hyperparameter that determines the width of the curve.

(From a biophysical standpoint, Eq 2 is analogous to the distance-dependence of the voltage

response of a passive cable to an instantaneous current impulse [35]. In this framework, r can

be thought of as the square of the cable length constant λ, where l
2
¼

rm
ra

, i.e. the ratio of the

membrane resistance rm (in O�cm) to the axial resistance ra (inO/cm).)

Note that f(li, lj) = 1 when li = lj (i.e. when synapses i and j occupy the same location) and

that f(li, lj) approaches 0 as synapses i and j move further away from each other (Fig 1B). Also

note that f(li, lj) = f(lj, li). For convenience of notation and computation, we define a matrix F

Fig 1. G-clusteron model and synaptic location update rule. (A) Schematic of the G-clusteron. Each input xi is associated with a synapse at location li and weight wi.

The activation of each synapse is affected by each other synapse according to a distance-dependent factor (dashed curves). A threshold function is applied to the sum of

the activations. (B) Schematic of distance-dependent interactions [Eqs 2 and 3]. The distance-dependent factor between synapse 1 and synapses 2, 3, and itself are shown

as blue points along the distance-dependent function (dashed curve). Synapse 1 interacts maximally with itself, moderately with synapse 2, and slightly with synapse 3.

Even though the inputs and weights for all synapses are identical, the activations (shaded rectangles, darker shades indicate larger activation) differ due to the relative

locations of the synapses (e.g. synapse 1 is centrally located so it is affected by synapses 2 and 3 more than synapses 2 and 3 affect each other). (C) Schematic of the sign-

dependence of the location update rule (Eq 7). Colors of the synapses indicate the sign of the weighted inputs (wx). For positive patterns (left column), two synapses

attract each other if their weighted inputs have the same sign (left column, top and center) and repel each other if the weighted inputs have opposite signs (left column,

bottom). In negative patterns this is reversed (right column). (D) Effect of input and weight magnitude on the magnitude of the location update rule. The magnitude of

the attraction and repulsion (arrow length) is proportional to |wixi�wjxj|. (E) Top: Magnitude of the location update rule as a function of the distance between two

synapses. Bottom: Three examples for the location-dependence of the update rule (aligned to the curve above). Arrow length denotes magnitude of update. This

magnitude is multiplied by the weighted input factor of the learning rule from D as well as the magnitude of the error |ŷ � y| to obtain the final magnitude.

https://doi.org/10.1371/journal.pcbi.1009015.g001
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such that

Fij ¼ f ðli; ljÞ ð3Þ

F is thus a symmetric matrix with ones on its diagonal.

For a given pattern of presynaptic inputs x, the G-clusteron sums its activations together

with a bias term b to produce:

hðxÞ ¼
XN

i¼1

ai � b ð4Þ

Because we will be using the G-clusteron as a binary classifier, we apply a sigmoidal nonlin-

earity g to h(x) and produce an output ŷ ranging between 0 and 1:

ŷ ¼ gðhðxÞÞ ð5Þ

As in logistic regression, ŷ can be interpreted as a probability estimate for the binary label for

the input pattern x, with values closer to 0 representing a prediction for the label 0 (called the

negative class) and values closer to 1 representing a prediction for the label 1 (called the posi-

tive class).

The G-clusteron thus differs from the original clusteron [28] in two important ways: 1)

each synapse has a real-valued location on the dendrite instead of an integer-indexed location

and 2) each synapse’s activation function depends on the inputs of its neighbors as a gradually

decreasing distance-dependent function as opposed to a hard cutoff at a fixed distance.

Defining the output of the G-clusteron in this fashion allows us to derive a gradient descent

plasticity rule for the synaptic locations (assuming a logit or cross-entropy error loss function,

see Methods). For each input pattern presented to the G-clusteron, we update each synaptic

location according to the rule:

li  li þ Dli ð6Þ

where Δli is the update to the location of synapse i defined as:

Dli ¼ � ZLðŷ � yÞ
XN

j¼1

ðlj � liÞFijwixiwjxj ð7Þ

where y20,1 is the true label (negative or positive class) for pattern x, and ηL is the positive-val-

ued learning rate for the synaptic locations. This gradient rule for each synapse can be under-

stood as summing over “forces” that depend on pairwise interactions between that synapse

and each of the other synapses on the dendrite. The interaction between two synapses depends

both on the weighted inputs of the synapses (wixi and wjxj) and the distance between the syn-

apses in the following manner (see S1 Text for further explanation):

1. For positive-class training patterns (y = 1), synapses with same-sign weighted inputs (i.e.

sign(wixi) = sign(wjxj)) exhibit “attraction” while synapses with opposite-sign weighted

inputs (i.e. sign(wixi) = −sign(wjxj)) exhibit “repulsion” (Fig 1C, left).

2. For negative-class training patterns (y = 0), this trend is reversed: same-sign synapses are

repelled, while opposite-sign synapses attract (Fig 1C, right).

3. The magnitude of attraction and repulsion between two synapses is proportional to the

product of the weighted inputs of the two synapses (Fig 1D).

PLOS COMPUTATIONAL BIOLOGY The gradient clusteron
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4. The magnitude of attraction and repulsion between two synapses is distance-dependent.

The attractive/repulsive force is small at very small distances, becomes larger at intermedi-

ate distances, and shrinks again at large distances (Fig 1E).

The magnitude of the update for each synapse is also scaled by the magnitude of the error

term, |ŷ � y|.

Eq 7 can be interpreted as a vector field along the dendrite, like force fields in physical sys-

tems of particles. If we consider a “unit synapse” such that wx = 1 at an arbitrary location l on

the dendrite, the magnitude and direction of the “force vector” created by the plasticity rule at

that location for a given input pattern x is given by:

Dl ¼ � ZLðŷ � yÞ
XN

j¼1

ðlj � lÞf ðl; ljÞwjxj ð8Þ

This interpretation of the location plasticity rule can provide some intuition as to how such an

algorithm might be implemented biologically. We can imagine extracellular chemical signals

being released at regions of the dendrite where there is a concentration of synaptic activity.

Excitatory and inhibitory inputs would have different chemical signals associated with them.

The diffusion of these chemicals in the extracellular space around the dendrite would create a

location-dependent field of chemical gradients. These chemical gradients could induce presyn-

aptic axons to form or eliminate synapses on the dendritic regions that were recently active,

with differential effects for excitatory and inhibitory synapses.

Toy examples

To illustrate how the location update learning rule works, we consider several toy problems.

For these problems, instead of training the G-clusteron to discriminate between two classes,

we will show what happens when the G-clusteron is given a dataset where all examples are

from the positive class (in other words, the G-clusteron is tasked with maximizing its output

on all the input patterns, see Methods for an explanation of how the error signal ŷ � y is

implemented in these tasks) and when all examples are from the negative class (so the G-clus-

teron must minimize its output for all input patterns). For all the examples in this section, all

synaptic weights are fixed to have the value 1 and don’t change over the course of learning; our

results thus strictly depend on the synaptic locations and input values.

For the first toy problem, we create a single synaptic input vector x where the values of x are

randomly distributed between -1 and 1. This input vector is repeatedly presented to the G-

clusteron with a positive label (y = 1), such that the G-clusteron will attempt to maximize its

overall activation. Because the interaction between synapses in Eq 1 is multiplicative, a sensible

strategy would be to minimize the distance between synapses with same-sign inputs and maxi-

mize the distance between synapses with opposite-sign inputs. This would result in two clus-

ters on the dendrite: one with positive-valued synaptic inputs and one with negative-valued

synaptic inputs. The location update rule, by causing attraction between same-sign synapses

and repulsion between opposite-sign synapses, does exactly this (Fig 2A and S1 Movie).

We now show how the radius hyperparameter r (i.e. the width of the distance-dependent

curve) affects the learning rule for input patterns from the positive class. In the first example, r
was sufficiently large relative to the initial dispersion of synapses such that all the synapses

could “feel” each other, thus enabling all synapses with the same sign to eventually aggregate

into a single cluster. However, if r is reduced, synapses that start further apart from each other

do not exert a strong pull on each other, so instead the learning rule operates in a more local

fashion, creating several same-sign clusters (Fig 2B and S2 Movie).
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We next train the G-clusteron on the same input pattern, but this time with a negative label

(y = 0), such that the G-clusteron will minimize its overall activation. Here we pre-initialize the

G-clusteron in a high-activation state where synapses start in separated homogenous-signed

clusters. Inversely to the first strategy, we would like opposite-sign inputs to become inter-

mixed. Because the plasticity rule flips attraction and repulsion for input patterns from the

negative class, we achieve the expected result (Fig 2C and S3 Movie).

Having demonstrated that the G-clusteron learns by aggregating and dispersing same-sign

and opposite-sign synaptic inputs for individual input patterns, we now illustrate that this

mechanism serves to learn the correlation structure of a dataset comprised of multiple input

patterns. To this end, we create a 20-dimensional multivariate Gaussian distribution where

each dimension of the Gaussian had a mean of 0 and a covariance matrix S such that:

Sij ¼

1

0:7

� 0:2

if i ¼ j

if i 6¼ j anddi=5e ¼ dj=5e

otherwise

ð9Þ

8
>>>><

>>>>:

In other words, dimensions x1. . .x5 were all positively correlated with each other, as were

dimensions x6. . .x10, x11. . .x15, and x16. . .x20, but otherwise, dimensions were slightly nega-

tively correlated (Fig 3A). As such, each vector sampled from this distribution would exhibit

similarity between the first five dimensions, second five dimensions, and so forth (Fig 3B).

As the mean of each dimension is 0, a linear neuron (without a bias) would be unable to

increase its average output on this dataset, as there is no independent information in each syn-

apse that could be given a linear weight. However, the G-clusteron can take advantage of the

correlational structure of the data. Because the groups of positively correlated inputs will tend

Fig 2. Dynamics of synaptic clustering due to the G-clusteron update rule. (A) Training the G-clusteron on a single positive pattern (see S1 Movie). Synaptic input

values (colored circles) were drawn uniformly between -1 and +1. Position of circles along the X-axis denotes synaptic location on dendrite; their location along the Y-

axis denotes synaptic activation value. In the initial epoch (left), synaptic locations are randomly initialized in close proximity. During learning, synapses with positive

inputs (x>0) move in the opposite direction from synapses with negative inputs (x<0). In the final epoch (right) separate clusters are observed for positive and

negative inputs. Dashed blue line shows the average synaptic activation, which in this case is increased by the plasticity rule. Arrows at the top of each panel denote the

magnitude and direction of the “force field” created by the plasticity rule (Eq 8); by convention, the arrow at each location points in the direction that a unitary positive

input (wx = 1) would move according to the plasticity rule. Blue curve at the bottom of the left panel shows the width of the distance-dependent function (dependent

on the radius hyperparameter r) for this example. (B) Same as A with a smaller value for r (see S2 Movie). Here the plasticity rule operates on a more local scale,

creating multiple smaller same-sign clusters instead of two larger clusters as in A. (C) Same as A for a negative pattern (see S3 Movie). Before learning, synapses are

initialized in separate clusters for positive and negative inputs (left). Over the course of the learning, synapses are pulled toward each other until they are intermixed

(right). Note that after learning the average activation level decreases.

https://doi.org/10.1371/journal.pcbi.1009015.g002
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to all be either all-positive or all-negative in any given input pattern, the learning rule will grad-

ually move the positively correlated synapses together, creating dendritic clusters of synapses

with correlated inputs. As these clusters form, the output of the G-clusteron increases (Fig 3C

and S4 Movie). Inversely, the G-clusteron can learn to decrease its output on this dataset by

clustering negatively correlated inputs (Fig 3D and S5 Movie). We verified that the G-clus-

teron appropriately increases or decreases its average activation for this task by running 100

trials of the algorithm and checking the average activation before and after learning (See

S2 Text). The average activation on the positive class task before learning was 0.86, and after

learning was 2.95 (average signed d’ = 1.095). For the negative class task, the average activation

before learning was 2.03, and after learning was 0.44 (average signed d’ = −1.155).

Learning MNIST

The ability of the G-clusteron to learn the correlational structure of a dataset enables it to per-

form supervised classification by aggregating correlated inputs from the patterns where y = 1

and disaggregating correlated inputs from the patterns where y = 0 (Fig 4A). We trained the

G-clusteron on the MNIST dataset of images of handwritten digits [36] and compared its per-

formance to that of the original clusteron from [28] as well as to logistic regression. Before

attempting the all-versus-all classification task, we test the G-clusteron separately on each digit

in a one-versus-all classification paradigm (example shown in Fig 4B). For each digit from

0–9, a G-clusteron was trained on a dataset where half of the images were of that digit (positive

class, label y = 1) and half of the images contained other digits (negative class, label y = 0). The

G-clusteron was then tested on a holdout test set (See Methods). This procedure was repeated

for the original clusteron (only positive-class training examples are used for the original clus-

teron, see Methods) as well as logistic regression. The learning and testing process was

repeated 10 times for each classifier to ensure performance stability. The results are shown in

Table 1.

Fig 3. Dynamics of synaptic clustering for a multivariate Gaussian dataset with correlated input dimensions. (A) Covariance matrix for multivariate Gaussian

example (Eq 9). This covariance matrix generates samples where dimensions x1. . .x5, x6. . .x10, and so on are positively correlated with each other, while all other

correlations are negative. (B) Patterns drawn from the multivariate Gaussian defined with the covariance matrix in A. Each row is an input pattern presented to the G-

clusteron. (C) The G-clusteron is initialized with randomized synaptic locations (left) and presented with positive-labeled input patterns as in B (see S4 Movie).

Correlated inputs have the same shape; colors indicate input values for the pattern (as in B) presented in the depicted epoch of the algorithm. To increase activation, the

G-clusteron groups together correlated inputs (right). (D) Same as C but for a negative example (see S5 Movie). For illustration, the G-clusteron is initialized with

correlated inputs clustered together (left), as in the right panel of C. Over the course of learning the synapses eventually form clusters of negatively correlated synapses

(right).

https://doi.org/10.1371/journal.pcbi.1009015.g003
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Fig 4. G-clusteron classification of handwritten digits (MNIST) and the resultant distribution of synaptic locations and activations. (A) Schematic of G-

clusteron performing the one-versus-all classification task, where it must produce a larger activation for images containing the positive class 2 (digit with red

border) than any other number (digit with blue border). Colored circles in the digit images indicate exemplar pixel locations mapped to exemplar synapses on the

dendrite with the same color, generating two dendritic clusters (green-blue and orange-yellow, respectively). The synapses within these clusters will be maximally

activated if both inputs to the cluster are the same sign (i.e. both black or both white), while opposite sign inputs will result in lower activation. (B) Exemplar

histogram of sum of synaptic activations from the G-clusteron tasked with classifying the digit 2 (label y = 1, red) versus all other digits (label y = 0, blue) before

learning (left) and after learning (right). Over the course of learning, the G-clusteron increases its activation on images containing a 2 relative to images displaying

other digits, enabling binary classification. Blue vertical line is the value of the bias term. (C) Synaptic activations for positive (top) and negative (bottom) patterns
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For all digits, all three classifiers achieved a classification accuracy far above chance level of

50%. Depending on the particular digit, the clusteron achieved between 74.4% and 92.8%

accuracy, the G-clusteron achieved between 80.7% and 96.8% accuracy, and logistic regression

achieved between 91.2% and 98.3% accuracy. We emphasize that both the clusteron and the

G-clusteron had all their weights fixed to 1 during the entire learning procedure and were only

able to update their synaptic locations. Our results on the one-versus-all MNIST task thus

demonstrate the remarkable efficacy of structural plasticity-based learning and suggest that the

G-clusteron algorithm may be superior to the original clusteron algorithm for solving certain

tasks.

The distribution of synapses and synaptic activations before and after learning MNIST

(Fig 4C–4E) can be instructive in understanding how the G-clusteron operates. In many

instances, over the course of learning, the synapses on the dendrite moved from an approxi-

mately uniform synaptic density to a more clustered structure, with some regions of the den-

drite having a higher synaptic density than others (Fig 4E). These higher density areas

occasionally had larger activations for patterns from the positive class than for patterns from

the negative class (Fig 4D), suggesting that the G-clusteron may be building structural clusters

to take advantage of correlated inputs in the positive class relative to the negative class. How-

ever, not all high-density clusters showed high activation, and some high-activation regions

were low density. Thus, while the G-clusteron learning algorithm does produce structural clus-

ters as a consequence of learning, there is not a guaranteed correspondence between the struc-

tural clusters and activation level in a complex task like image classification.

Having shown that the clusteron and G-clusteron exhibit satisfactory performance on the

one-versus-all MNIST task, we now turn to the harder problem of all-versus-all classification.

Here, we wish to train a single-layer network of 10 classifiers on the MNIST dataset (one for

each digit) and have the network classify each digit correctly. We consider two standard ways

to train a single-layer network on a multiclass classification problem. In the one-versus-rest

(OVR) method, 10 units are independently trained on a one-versus-all paradigm, as before,

and the classifier which produces the largest output (ŷ) for a given input pattern is declared the

“winner”, and the input pattern is assigned to the positive class for that classifier (Fig 5A). In

the softmax (SM) method, the units are trained simultaneously on each example and the raw

outputs (h(x)) of all units are passed through a softmax function (see Methods), which nor-

malizes the output of each unit by the sum of the outputs of all the units in the layer (Fig 5B).

This normalized output is then used in the error term ŷ � y when calculating the update rule.

Because the softmax method allows the classifiers to communicate with each other via the out-

put normalization, it can often lead to superior results for multiclass classification [37].

Importantly, the original single-dendrite clusteron does not utilize an error signal in its

learning rule, so the original clusteron can only be trained on the multiclass task with the OVR

before (left) and after (right) learning. Note the increase in synaptic activations for positive patterns during learning. (D) Sum of the activations within small bins of

dendritic length averaged over positive (red) and negative (blue) datasets before and after learning (aligned with C). Note that there are small regions (functional

clusters) where the activations for positive patterns is much larger than for negative patterns. (E) Synaptic density per bin (same for positive and negative input

patterns, aligned with C-D). Note that there are several high-density regions (structural clusters) that sometimes correspond to the functional clusters.

https://doi.org/10.1371/journal.pcbi.1009015.g004

Table 1. Accuracies of one-versus-all on the MNIST handwritten digit dataset. Values are averaged over ten runs, with standard deviations in parentheses.

0 1 2 3 4 5 6 7 8 9

Clusteron 92.8 (0.8) 83.6(5.3) 82.5(0.5) 85.0(0.5) 77.6(1.7) 74.4(1.5) 87.5(0.8) 87.8(0.8) 80.2(1.1) 81.3(1.0)

Gradient Clusteron 96.8(0.4) 93.9(4.4) 87.6(5.3) 88.5(0.9) 91.8(1.1) 80.7(4.1) 95.1(0.4) 90.1(5.0) 82.3(4.3) 85.8(3.6)

Logistic Regression 98.2(0.0) 98.3(0.0) 94.4(0.0) 93.3(0.0) 96.7(0.0) 91.6(0.0) 96.5(0.0) 95.4(0.0) 91.2(0.0) 92.3(0.0)

https://doi.org/10.1371/journal.pcbi.1009015.t001
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paradigm (Fig 5C). Both logistic regression and the G-clusteron, however, do use an error

term, making it straightforward to perform multiclass classification with both the OVR and

SM methods.

To test the performance of the G-clusteron under both multiclass classification paradigms,

we trained the original clusteron, the G-clusteron, and logistic regression using the OVR

method, and the G-clusteron and logistic regression (but not the original clusteron) using the

SM method. As with the previous task, learning for all classifiers was repeated 10 times to

ensure stability.

When using the OVR paradigm, the original clusteron achieved an average accuracy of

70.1%, the G-clusteron achieves 74.3% accuracy, and logistic regression achieves 92.2% accu-

racy. While both the original clusteron and the G-clusteron achieve performance far better

than chance level of 10%, neither of them do nearly as well as logistic regression. However,

Fig 5. Multiclass classification with the G-clusteron on handwritten digits (MNIST). (A) One-versus-rest (OVR) learning scheme for the G-clusteron. Classifiers for

each digit are trained independently on both positive (red border) and negative (blue border) digits. (B) Softmax (SM) classification scheme for the G-clusteron.

Classifiers are trained simultaneously on each example and the sums of the synaptic activations for each classifier are fed into a softmax function which normalizes the

output of each classifier by the output of all the classifiers. The error term used to update each classifier for an input digit thus has information about the output of all the

classifiers for that digit. (C) OVR learning scheme for the original clusteron. On each epoch, each classifier is presented with an entire dataset consisting only of positive

examples (red borders), and θ—the mean synaptic activation over the dataset—is calculated. The clusteron learns by randomly shuffling the locations of synapses whose

activation was less than θ. Because each classifier only trains on positive examples and because there is no error term that can be communicated to other classifiers, the

original clusteron does not lend itself to a softmax architecture as in B. (D) Mean accuracy for clusteron, G-clusteron (with either only the location update rule, only the

weight update rule, or both rules), and logistic regression on the all-versus-all MNIST task using either the OVR method (blue) or SM method (orange). Error bars

indicate standard deviation. Note that the original clusteron cannot use the SM method.

https://doi.org/10.1371/journal.pcbi.1009015.g005
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when we train the G-clusteron using the SM method, it achieves an impressive accuracy of

85.3%, closing in on logistic regression’s 92.6% accuracy in the SM scheme (Fig 5D). Although

not superior to logistic regression, 85.3% accuracy on an all-versus-all MNIST classification

task is notable for an algorithm that can only modify synaptic locations and not synaptic

weights.

Synaptic weight update rule for the G-clusteron

In addition to the location update rule, we also derive a gradient descent rule for the weights of

the G-clusteron of the form:

wi  wi þ Dwi ð10Þ

Where Δwi is the update to the weight of synapse i defined as (assuming a logit or cross-

entropy error loss function, see Methods):

Dwi ¼ � ZWðŷ � yÞ
ai

wi
ð11Þ

with ηW as the positive-valued learning rate for the weights. This rule can either be used on its

own or in conjunction with the location update rule (Eq 6) by simultaneously updating the

weights and locations using their respective rules during each epoch. To see if the weight

update rule can improve the accuracy of the G-clusteron on the all-versus-all MNIST task, we

trained a single-layer G-clusteron network that used only the weight update rule as well as a

network that used both the location update rule and the weight update rule simultaneously,

using both the OVR and SM protocols.

When only the weight update rule was used, the G-clusteron achieved an accuracy of 77.9%

for OVR and 89.3% for SM, and when both the weight and location update rules were used

simultaneously, the G-clusteron achieved an improved accuracy of 81.2% for OVR and a simi-

lar accuracy of 89.1% for SM. Thus, being able to manipulate synaptic weights may allow the

G-clusteron to achieve slightly superior accuracy relative to a G-clusteron that can only update

its synaptic locations (Fig 5D).

Although the G-clusteron with both the weight and location update rules did not perform

as well as logistic regression on the MNIST task, this does not indicate that the theoretical clas-

sification capacity of the G-clusteron is inferior to that of a linear classifier. In fact, we prove

(see S3 Text) that if a G-clusteron with an arbitrary localization of synapses is equipped with a

single additional “bias synapse” x0 (x0 = 1 for all input patterns, this is distinct from the 0th-

order bias term b), it can approximate a linear classifier to an arbitrary degree of precision by

appropriately assigning the weights. The discrepancy in classification accuracy in this task

between logistic regression and the G-clusteron with a weight update rule is thus likely due to

the G-clusteron’s failure to converge to a global minimum of the loss function rather than an

inability to implement a linear separation boundary. Future optimizations to the learning algo-

rithm might therefore allow the G-clusteron to surpass the accuracy of logistic regression on

MNIST. In any event, we will now show that the G-clusteron is indeed superior to a linear clas-

sifier with respect to one particularly famous task: the XOR problem.

XOR problem

To motivate the use of the weight update rule in combination with the location update rule for

the G-clusteron, we consider the XOR function. The XOR function receives two bits of binary

input (x1 and x2) and returns a 1 if the input bits are different or a 0 if the input bits are the

same. The XOR function famously cannot be implemented by linear classifiers like the
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perceptron [34]. It is thus valuable to demonstrate that the G-clusteron can implement this

function. We first wish to show that there are values for the parameters (i.e. the weights—w1

and w2—and the locations—l1 and l2—of the two synapses) of the G-clusteron that will result

in a correct implementation of the XOR function. We then show that a G-clusteron must be

able to update both its synaptic locations and its synaptic weights if it is to learn to solve the

XOR problem from every arbitrary initialization of its parameter values.

To implement the XOR function, the parameters of the G-clusteron must satisfy both of the

following inequalities (See Methods):

w2

2
< � 2 � F12 � w1w2 ð12Þ

w2

1
< � 2 � F12 � w1w2 ð13Þ

Note that although we originally have 4 parameters (w1, w2, l1, and l2), the solution space satis-

fying these inequalities (Fig 6A and 6B) can be expressed in terms of only three parameters:

w1, w2, and F12.

When expressed in this manner, there are several things to observe about these inequalities.

First, note that for F12�0.5, there is no way to assign the weights such that Eqs 12 and 13 are

satisfied (Fig 6B, left). This means that if the two synapses are initialized sufficiently far away

from each other such that their distance-dependent factor is less than 0.5, a G-clusteron with

only a weight update rule (Eq 10) would have no way to solve the XOR problem.

Moreover, the range of weights that are valid to solve the XOR problem increases as F12

increases from 0.5 to 1, where the solution space for the weights is maximal (Fig 6B, center and

right). In other words, as the synapses move closer together, there is a larger set of weights that

would satisfy Eqs 12 and 13. However, even when the synapses occupy the exact same location

(i.e. F12 = 1), there is still a large range of invalid weights. For example, if both weights are ini-

tialized with the same sign, a G-clusteron with only a location update rule (Eq 6) could not

implement the XOR function (Fig 6B and 6C). Therefore, for the G-clusteron to solve XOR

from arbitrary initial parameter values, it must be able to update both its weights and its

locations.

To demonstrate this numerically, we created 3 G-clusterons: one with only a weight update

rule, one with only a location update rule, and one with both update rules. For each G-clus-

teron, we ran 1000 trials with randomized initializations of the inputs and labels for the XOR

problem. Each trial ran for 10,000 epochs or until convergence (see Methods).

For a G-clusteron with only the weight update rule, a trial was designated as “possible to

converge” if some weight assignment could produce the correct XOR output given the initiali-

zation of the two synaptic locations, which can only occur if the initial F12 was greater than 0.5.

For a G-clusteron with only the location update rule, a trial was designated as “possible to con-

verge” if some location assignment could produce the correct XOR output given the initializa-

tion of its synaptic weights. Because the solution space for XOR grows as the synapses move

closer to each other, this entails that the initial weights would have to satisfy Eqs 12 and 13

given that F12 = 1 (in other words, the weights must fall in the overlap shaded region of Fig 6B,

right panel). For the G-clusteron with both the weight and the location update rules, all trials

could potentially converge (Fig 6D).

The G-clusteron with only the weight update rule converged for 475 trials out of 485 trials

analytically possible to converge (Fig 6D and 6E), unexpectedly failing on trials where F12 was

initialized slightly above the boundary condition of 0.5, because the solution space for the

weights when F12 is fixed near 0.5 is small (Fig 6B middle), and it can therefore take the
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learning algorithm an exorbitantly long time to direct the weights into this exactingly narrow

range of values.

The G-clusteron with only the location update rule converged for 247 trials out of 251 trials

analytically possible to converge (Fig 6D and 6F), unexpectedly failing on trials where F12 was

initialized very close to 0, as before, and also on trials where the weights were initialized very

close to the boundary of the solution space (Fig 6B, right panel). In these cases, it was evidently

difficult for the algorithm to find the bias value with sufficient precision to correctly perform

the classification, even though the weights and locations were analytically valid.

Only the G-clusteron with both the weight and the location update rules was able to con-

verge on almost all of the trials (947 out of 1000 trials), unexpectedly failing only on trials

where F12 was initialized very close to 0 (Fig 6D and 6G). These unexpected failures occurred

because the magnitude of the location update rule for a given epoch scales with the value of F12

and the weights at that epoch (Eq 7). Thus, if F12 is initialized very close to 0, the synaptic loca-

tions may only move a miniscule amount each time the gradient rule is applied, depending on

the values of the other parameters.

Discussion

We have shown that the G-clusteron is a robust single-neuron learning algorithm that can

solve real-world classification tasks, such as MNIST handwritten digit classification. The G-

clusteron’s ability to solve this task merely by moving synapses on its dendrite without using

synaptic weights demonstrates the computational potential of structural plasticity that makes

use of distance-dependent nonlinearities.

While the original single-dendrite clusteron [28] also exhibits impressive performance

when tasked with one-versus-all classification on a single digit, the lack of a supervised gradi-

ent descent-based plasticity rule makes it difficult to scale this algorithm to a multiclass classifi-

cation problem, as the clusteron learning rule does not have an error signal that can be

communicated between neurons within a layer via a softmax activation function.

The gradient descent plasticity rule of the G-clusteron enables effective multiclass classifica-

tion and allows the use of a variety of techniques developed for classic ANNs. For example, we

used the ADAM momentum-based adaptive learning method [38] to dynamically optimize

our learning rate. Bringing dendritic cluster-based plasticity algorithms within the fold of gra-

dient descent learning opens up many possibilities for the extension of the G-clusteron algo-

rithm using the extant mathematical frameworks and robust literature for learning with

gradient descent in ANNs [39].

Fig 6. The G-clusteron requires the weight and location update rules to solve the XOR problem from arbitrary initial conditions. (A) Analytical solution to

XOR problem. Green area represents the parameter space in terms of the two weights, w1 and w2, and the distance-dependent factor, F12, which would produce

the correct outputs for the XOR problem. (B) Representation in weight space of the analytical solution to XOR, shown for selected values of F12 (i.e. slices in the

F12 axis of A). The blue region satisfies the inequality from Eq 12, and the yellow region satisfies the inequality from Eq 13. The G-clusteron can solve the XOR

problem when both inequalities are satisfied (overlap region, same as green region in A). Note that the solution space for the weights is null when F12<0.5 and

increases as F12 approaches 1. However, there are many weight assignments that never satisfy both inequalities. (C) Examples of correct and incorrect parameter

assignments for the XOR problem. Some weight assignments never produce a correct solution for XOR regardless of the distance between the synapses (top).

Moreover, if the synapses are too far away from each other, there are no weights that satisfy the XOR relation (middle). Thus, solving XOR from arbitrary initial

conditions requires that the synapses be close together and the weights appropriately set (bottom). (D) Number of trials that were analytically possible to converge

versus trials that successfully converged on the XOR problem for the G-clusteron trained with only the weight update rule, only the location update rule, or both

rules. (E) Top: Convergence (marker shape and color, see legend) as a function of the initial parameters of 1000 randomly initialized G-clusterons with only the

weight update rule. Note that only trials in which the initial value for F12 was greater than 0.5 converged. Bottom: Convergence as a function of the final

parameters of the G-clusterons after learning. Note that converged trials fall within the region specified in A. (F) Same as E for G-clusteron using only the location

update rule. Note that only trials in which the initial values for the weights were within the overlap region of B (right panel) were able to converge. (G) Same as E

for G-clusteron with both the weight and location update rules. Almost all trials converge to the correct solution.

https://doi.org/10.1371/journal.pcbi.1009015.g006
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We have also shown that incorporating a plasticity rule for the weights in a G-clusteron

alongside the dendritic location plasticity rule enables the G-clusteron to solve the classic line-

arly inseparable XOR problem [34]. This reinforces the possibility that neuron models with

dendritic nonlinearities may be more computationally powerful than the linear nodes used in

ANNs [40–43].

Relationship to previous work

The original clusteron model [28] has been developed into the “two-layer model” [40, 41] in

which synapses are linearly summed within dendritic branches, and each branch computes a

sigmoidal nonlinearity of its input before sending its output to the soma where a final nonline-

arity is applied. Unlike the original clusteron, this two-layer model does employ a supervised

learning strategy that applies gradient descent to modify synaptic stability, which in turn deter-

mines how synapses are mapped to individual branches [40], however it does not directly

learn exact synaptic locations via gradient descent as we do here. The two-layer model has

been shown to achieve above 96% accuracy on a binary MNIST classification task (although

not directly comparable to the tasks in our study, this result was superior to a linear classifier)

[44]. A two-layer neuron with two branches can also implement the XOR function by, for

example, having one branch implement OR, the other branch implement NAND, and the

soma implement AND, each of which is a linear operation. We emphasize that the G-clus-

teron, as a single-branch model, is not in competition with the two-layer model in terms of

classification performance. Rather, the G-clusteron is a model of very local, distance-depen-

dent nonlinearities that may occur within a single dendritic branch. The sigmoidal output of

the G-clusteron can be interpreted as a branch-level nonlinearity (as opposed to a somatic

nonlinearity) and the G-clusteron can thus be incorporated as the branch-level unit in a two-

layer model. This would provide an interesting avenue of future research.

In addition to the two-layer model [40, 41], there have been a variety of other attempts to

model learning with dendrites and dendritic nonlinearities [45–47]. These models also tend to

treat the dendritic branch (or sometimes an entire dendritic tree) as discrete loci of nonlinear-

ity. Conceivably, both discrete, branch- or tree-dependent nonlinearities and fluid, location-

dependent nonlinearities could exist simultaneously, further expanding the computational

capabilities of real neurons.

Although our work here treats dendrites with NMDA receptors as nonlinear integration

units, recent work [48] has shown that a detailed biophysical model of a cortical layer 5 pyrami-

dal cell with NMDA synapses and other active mechanisms can implement the perceptron

learning algorithm, implying that a neuron can behave as a linear classifier. However, this does

not preclude the possibility of nonlinear integration and plasticity rules; rather it should be

taken as an indication a neuron can elect to apply a simple plasticity rule that ignores the syner-

gistic interactions between synapses and still manage to solve classification tasks as a perceptron

would. Moreover, Mel [49] has shown that a clusteron-like algorithm can also be implemented

in a detailed biophysical model of a cortical pyramidal cell with NMDA synapses.

The original clusteron [28] fits within the framework of subsampled quadratic classifiers, as

the clusteron sums a subset of its N2 mixed terms xixj [42]. The G-clusteron can be thought of

as a “constrained” quadratic classifier in the sense that the equation for the G-clusteron con-

tains all N2 mixed terms, but the coefficients of these terms–the entries of the F matrix–are

“tied together” in the sense that F must be produced from a matrix representing distances

between points in one dimension, and not all matrices are valid distance matrices. The G-clus-

teron therefore gives us N2 mixed terms for the price of N location parameters, but at the cost

of not being able to manipulate each of the N2 coefficients independently.
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From a computational standpoint, we note that the covariance perceptron [50] also takes a

correlation-based approach to solving learning tasks.

Biological plausibility

The G-clusteron takes several liberties with respect to the biological phenomena from which it

is inspired. While a multiplicative activation function may be a tolerable first-order approxi-

mation of the synergetic cooperation between NMDA synapses, a sigmoidal function provides

a closer fit [41]. Even to the extent that a multiplicative model does portray the synergistic rela-

tionship between excitatory NMDA synapses, such a relationship does not exist between excit-

atory synapses and inhibitory synapses or between inhibitory synapses and other inhibitory

synapses. The multiplicative interaction with negative inputs, however, is essential to the learn-

ing protocol of the G-clusteron, so this aspect of our algorithm should be viewed as “biologi-

cally inspired” rather than an accurate depiction of what occurs in real biological cells. We do

note, however, that clustering dynamics have been observed to occur between dendritic spines

and inhibitory synapses [51].

Although in real biological neurons there is voltage attenuation from the dendrite to the

soma [52, 53], we have chosen not to include this feature in the G-clusteron in order to empha-

size the effect of local interactions, to maintain similarity to the original clusteron model [28],

and to keep the model relatively simple. This choice can be justified biologically either on the

basis of “synaptic democracy” [54, 55], where synaptic weights are adjusted to compensate for

attenuation, or by noting that in some cases the high input resistance of distal dendritic regions

may help balance out attenuation to the soma in active dendrites [56].

While some have posited that the dendritic branch may be the fundamental computational

unit within a neuron [57, 58], there is reason to believe that interesting clustering dynamics

occur within branches on a more local scale. Although there is no consensus definition for syn-

aptic clustering, several studies have shown that cluster-related dynamics occur on a scale

from 0–15 μm. Synapses are more likely to exhibit correlated activity if they are within 10 μm

of each other [14]. Relatedly, the intercontact distance (ICD) between synapses decreases from

~10 μm to ~5 μm in owl inferior colliculus following an adaptation protocol [19]. Moreover,

the relevant range for BDNF-dependent clustering seems to be ~15 μm [11], and the spread of

Ras, which allows “crosstalk” between synapses in a long-term potentiation (LTP) protocol, is

limited to ~10 μm [59, 60]. Heterosynaptic plasticity—structural long-term depression (LTD)

occurring near spines that underwent structural LTP—also occurs on a scale of ~10 μm [21].

The mechanism of learning synaptic locations in the G-clusteron, namely the attraction

and repulsion of synapses based on the activity of their presynaptic inputs, also warrants dis-

cussion from a biological standpoint. As we have described, the computation of the “forces”

exerted by each synapse results in a vector field along the dendrite with regions of attraction

and repulsion. Such a vector field could be implemented by the release of attractive or repul-

sive chemical factors in proportion to the local dendritic activation which diffuse in the extra-

cellular space, creating a distance-dependent gradient that effectively sums the “pull” of the

synapses that were active along the dendrite. The attractive factors could stimulate the growth

of presynaptic axonal boutons or postsynaptic filopodia at specific regions of the dendrite,

while the repulsive factors could eliminate existing synapses.

Brain-derived neurotrophic factor (BDNF) and its precursor, proBDNF, are strong candi-

dates for the signaling mechanism underlying the sort of structural plasticity we suggest here.

BDNF has been shown to be responsible for structural plasticity in development by stabilizing

correlated synapses during development, while proBDNF weakens synapses that exhibit

uncorrelated activity [11]. Another possible signaling agent is estradiol, which is also involved
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in the formation of new spines [61] and interacts with BDNF in spine regulation pathways

[62]. Astrocytes and microglia, which play an important role in spine elimination [63] may

also be implicated in our model as a mechanism for intelligently rearranging synapses on the

dendrite in response to local activity.

We note that the NMDA receptor is not only a mechanism for voltage nonlinearities; the

receptor also plays a crucial role in the plasticity process itself by allowing Ca2+ ions to enter

into the postsynaptic cell, initializing a cascade that can result in LTP or LTD, depending on

the stimulation protocol used [64, 65]. Interestingly, the NMDA receptor is involved in struc-

tural plasticity as well, as the release of proBDNF and BDNF is NMDA-dependent [11, 12].

Moreover, there is evidence that both LTP and LTD protocols can cause structural plasticity

changes, with LTP encouraging the growth of new spines and LTD resulting in spine retrac-

tion [66]. This lends support to the idea that structural and functional plasticity may be hap-

pening simultaneously, both mediated by the NMDA receptor.

Several testable experimental predictions emerge from the G-clusteron’s location update

rule. If presynaptic axons are indeed being coaxed into moving their synapses along chemical

gradients, we might expect to see axonal boutons being destroyed and new boutons from the

same axon forming a short distance away. We may also expect to see different clustering pat-

terns on different regions of the dendrite due to different lengths constants, as in Fig 2A and

2B. Because the length constant λ increases with dendritic diameter [35, 53], we might expect

that thinner regions of dendrite would have a larger number of small clusters than wider

regions, which may tend to group synapses into a smaller number of large clusters. However,

these effects would likely depend on the exact nature of the task that the neuron performs.

The distance-dependence of the weight update rule (Eq 11) of the G-clusteron can also be

understood in a biological framework. Experimental evidence has shown that when LTP is

induced in one synaptic spine, the threshold for LTP induction in nearby spines within ~10μm

is reduced [67], a process mediated by the intracellular diffusion of Ras [59]. The G-clusteron’s

weight update rule qualitatively expresses a similar phenomenon–if a synapse has a strong

input such that its weight increases a large amount, nearby synapses will require less input to

achieve a large weight update.

Both the weight and location update rules in our model require an error signal (ŷ � y). A

prominent candidate for this error signal is the neuromodulator dopamine, which has been

shown to correspond to reward prediction error [68]. Dopamine has also been demonstrated

to be necessary for LTP in hippocampal CA1 [69] and is involved in learning and plasticity

processes in cortex [70], adding support to the idea that dopamine-mediated error signals play

an important role in supervised learning.

Future directions

The G-clusteron can be extended in a variety of directions. Because the G-clusteron is inspired

by biological dendrites, we use one-dimensional synaptic locations, but our model and algo-

rithm can be modified such that synapses interact with each other as a function of distance in a

space with arbitrarily high dimensions, instead of merely moving along a line. Presynaptic

axons ostensibly do not just need to localize their boutons within a branch; they may also want

to decide between branches of the same neuron or among different neurons. As such, a 2D or

3D G-clusteron, where synapses are localized within the plane of a neuron’s branching struc-

ture or within a 3D volume of brain tissue, also has some biological motivation. The 2D or 3D

case may be more relevant during early development, when the brain is being wired up for the

first time, whereas the one-dimensional case presented here may be more relevant to later

stages of development or adulthood, when the brain is densely packed and neuronal processes
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are likely more restricted in their motion, possibly limited to resampling locations along a den-

dritic branch.

Our model can also be made more biologically plausible in a number of ways, such as by

using a sigmoidal nonlinearity instead of a multiplicative nonlinearity [40, 41], incorporating

recent work regarding distance-dependent interactions between nonlinear synapses [71–73],

or incorporating attenuation from the dendrite to the soma [52, 53]. One recent study [74]

used an attenuation-based model to show how neurons could learn probability distributions

via creating multiple synaptic connections at different dendritic locations. It would be valuable

to see how incorporating these features into the G-clusteron model would affect both the

weight and location gradient update rules.

As with any single-neuron model, the G-clusteron should also be explored in the context of

a multi-layer network. The G-clusteron’s gradient descent-based update rules lend themselves

to the possibility of a backpropagation algorithm for a deep network of G-clusteron neurons.

This can create exciting directions for a version of deep learning that incorporates synaptic

weight updates together with dendritic nonlinearities and structural plasticity.

Methods

Derivation of location update rule for the G-clusteron

We wish to derive a learning rule that updates the synaptic locations on each iteration of the

algorithm of the form:

li  li þ Dli

Where Δli is proportional to the gradient of the error with respect to the locations. For an arbi-

trary loss function J and nonlinearity g where we have J(g(h(li))) we have:

Dli ¼ � ZL
dJ
dli

By the chain rule we have:

dJ
dli
¼
dJ
dg
dg
dh
dh
dli

The first two factors of the gradient, dJ
dg and dg

dh, are specific to the cost function and non-linear-

ity chosen. In our case, we use the logit cross-entropy error

JðyÞ ¼ � ylogðŷÞ � ð1 � yÞlogð1 � ŷÞ ð14Þ

and sigmoidal nonlinearity

gðhÞ ¼
1

1þ e� h
ð15Þ

We therefore have (see [75] for elaboration):

dJ
dg
dg
dh
¼ ŷ � y ð16Þ

For the final term (see S4 Text for full derivation of dh
dli

):

dh
dli
¼

4

r

XN

j¼1

ðlj � liÞFijwixiwjxj
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We thus have:

dJ
dli
¼ ŷ � yð Þ

4

r

XN

j¼1

ðlj � liÞFijwixiwjxj

We can subsume the constant factor 4
r into the learning rate ηL, which gives:

Dli ¼ � ZLðŷ � yÞ
XN

j¼1

ðlj � liÞFijwixiwjxj

Which gives our location update rule (Eq 7). This same expression holds if we use a softmax

nonlinearity:

ŷi ¼
ehi
P

je
hj

and a cross-entropy cost function:

JðyÞ ¼ �
X

i

yilogðŷiÞ

as we do for the multiclass MNIST classification task (See [75]). (Here i and j refer to the class

labels in a multiclass classification task).

Derivation of bias update rule

We also require a rule for the update of the bias term b. As above:

b bþ Db ð17Þ

Db ¼ � ZB
dJ
db

And

dJ
db
¼
dJ
dg
dg
dh
dh
db

The first two terms are as above, the final term is:

dh
db
¼ � 1

so we have

dJ
db
¼ � ŷ � yð Þ

And

Db ¼ ZBðŷ � yÞ ð18Þ

Where ηB is the positive-valued bias learning rate. (Note the difference in sign relative to the

location and weight update rules.)
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Derivation of weight update rule

In addition to the location update rule, we also derive a gradient descent rule for the weights of

the G-clusteron of the form:

wi  wi þ Dwi

Where:

Dwi ¼ � ZW
dJ
dwi

We have

dJ
dwi
¼
dJ
dg
dg
dh

dh
dwi

As with the location update rule, we have:

dJ
dg
dg
dh
¼ ŷ � y

Taking the derivative dh
dwi

we obtain (see S5 Text for full derivation of dh
dwi

):

dh
dwi
¼ 2xi

XN

j¼1

Fijwjxj ¼
2ai

wi

We can subsume the constant factor 2 into the learning rate. The weight update rule for the G-

clusteron is thus:

Dwi ¼ � ZW ŷ � yð Þ
ai

wi

Efficient computation and batch learning

For computational efficiency on the MNIST task, the output of the G-clusteron and the learn-

ing rules can be implemented in a vectorized fashion. We assume here that we will be working

with a dataset comprised of multiple input patterns, with indices p21,2. . .P. We will denote

input j in pattern p as xðpÞj . To efficiently calculate each synaptic activation over an entire data-

set, we define a matrix S such that

Spj ¼ wjx
ðpÞ
j ð19Þ

We also define a signed distance matrix D where:

Dij ¼ lj � li ð20Þ

The distance-dependent factor matrix F can be expressed in terms of D:

Fij ¼ e
� D2

ij
r ð21Þ

The activation for synapse j in pattern p, aðpÞj , is the element Apj of matrix A, which can be com-

puted as:

A ¼ S�ðSFÞ ð22Þ

Where ˚ denotes the Hadamard product, i.e. elementwise multiplication.
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For the location update rule, we utilize a batch protocol where updates are performed after

observing P patterns (P here is the size of the batch, not the dataset). Here, for each pattern p
in the batch we define a matrix Q(p) such that

QðpÞij ¼ wix
ðpÞ
i wjx

ðpÞ
j ð23Þ

The derivative of the loss function on the entire batch with respect to location li is given by:

dJ
dli
¼

1

P

XP

p¼1

dJðpÞ

dli
¼

1

P

XP

p¼1

ðŷðpÞ � yðpÞÞ
4

r

XN

j¼1

ðlj � liÞf ðli; ljÞwix
ðpÞ
i wjx

ðpÞ
j ð24Þ

Using our matrix notation, we have

dJ
dli
¼

1

P

XP

p¼1

ðŷðpÞ � yðpÞÞ
4

r

XN

j¼1

½F�D�QðpÞ�ij ð25Þ

However, this is computationally intensive as it requires an elementwise multiplication for

every input pattern in the batch (F˚D can be precomputed for the entire batch, but F˚D˚Q(p) is

different for every input pattern). We therefore rearrange and obtain:

dJ
dli
¼

4

r

XN

j¼1

F�D�
1

p

XP

p¼1

ðŷðpÞ � yðpÞÞQðpÞ
 !" #

ij

ð26Þ

Which averages over all input patterns in the batch first, requiring only two elementwise mul-

tiplications regardless of batch size.

For the weight update rule we have:

dJ
dwi
¼

1

P

XP

p¼1

dJðpÞ

dwi
¼

1

P

XP

p¼1

ðŷðpÞ � yðpÞÞ
2ai

ðpÞ

wi
¼

2

P

XP

p¼1

ðŷðpÞ � yðpÞÞ
Api

wi

Which can be efficiently computed for all weights in all patterns simultaneously by multiplying

each row p of A by ŷðpÞ � yðpÞ and dividing each column i of A by wi.

Toy examples

To train the G-clusteron to continually increase or decrease its activation on a particular input

pattern or dataset, we treated the activation function as a threshold function which always

returned the wrong answer such that it would perform the maximal update at each epoch. For

patterns with label y = 0, we fixed ŷ ¼ 1 such that ŷ � y ¼ 1, for patterns with label y = 1, we

fixed ŷ ¼ 0 such that ŷ � y ¼ � 1.

Learning MNIST

For the MNIST learning tasks, we used the Tensorflow [76] MNIST dataset [36], which is com-

posed of 60,000 training examples and 10,000 test examples. The examples are split roughly

evenly between the 10 digits. As a preprocessing step, we centered the data such that each

image had a mean pixel value of 0.

The logistic regression implementation used as our baseline for comparison on MNIST was

the default implementation in the Scikit-learn library [77], which uses the ‘LBFGS’ solver [78]

and an L2 regularization penalty. Using the stochastic average gradient (‘SAG’) [79] solver and

no regularization penalty achieves similar results (see repository linked in Code and Data
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Availability Statement). The original clusteron algorithm was implemented in Python by the

authors using the description from [28].

For the one-versus-all experiments, the original clusteron was trained only on positive

training examples, ~6,000 examples per digit. The G-clusteron and logistic regression classifi-

ers were trained on a balanced dataset with ~6000 images of the digit from the positive class

and ~6000 total images of other digits. The test set was evenly split between positive and nega-

tive examples. Hyperparameters and runtimes for the one-versus-all task can be found in

Table 2.

For the all-versus-all experiments, each of the 10 clusteron units were trained on all images

from their positive class. Each G-clusteron and logistic regression classifier was trained with

the entire MNIST dataset. Hyperparameters and runtimes for all-versus-all tasks are shown in

Table 3.

For both one-versus-all and all-versus-all (SM and OVR), the hyperparameter r of the G-

clusteron was always set to 0.23. For the original clusteron, synapses interacted if they were

within 10 synapses of each other. Hyperparameters were hand-tuned to maximize accuracy in

all cases.

Table 2. Hyperparameters for one-versus-all learning protocols.

Epochs Batch size ηB ηW ηL Runtime (seconds)

Clusteron 100 ~ ~ ~ ~ 810

G-clusteron 100 50 0.04 0 5�10−5 700

Logistic regression Default logistic regression algorithm from the Scikit-learn library [77]. Parameters: {solver: ‘lbfgs’,

max_iter: 100, multiclass: ‘ovr’}

OVR: 67

SM: 23

https://doi.org/10.1371/journal.pcbi.1009015.t002

Table 3. Hyperparameters for all-versus-all learning protocols. Abbreviations: WR/LR/BR: weight/location/both rules, respectively. OVR: one-versus-rest, SM:

softmax.

Epochs Batch size ηB ηW ηL Runtime (seconds)

Clusteron 100 ~ ~ ~ ~ 827

G-clusteron (WR, OVR) 100 100 0.04 10−4 0 395

G-clusteron (LR, OVR) 100 100 0.04 0 4�10−5 1986

G-clusteron (BR, OVR) 100 100 0.04 10−4 4�10−5 1095

G-clusteron (WR, SM) 2000 30 10−5 10−5 0 317

G-clusteron (LR, SM) 2000 3 5�10−6 0 5�10−6 755

G-clusteron (BR, SM) 2000 5 10−5 10−5 10−5 961

Logistic regression Default logistic regression from the Scikit-learn library [77]. Parameters: {solver: ‘lbfgs’,

max_iter: 100, multiclass: ‘ovr’ for OVR or ‘multinomial’ for SM}

OVR: 67

SM: 23

https://doi.org/10.1371/journal.pcbi.1009015.t003

Table 4. XOR function.

Input Output

x1 x2 x1 XOR x2

0 0 0

1 0 1

0 1 1

1 1 0

https://doi.org/10.1371/journal.pcbi.1009015.t004
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XOR problem

The XOR function is defined as (Table 4):

For the G-clusteron to solve the XOR problem, we require:

maxðhð0; 0Þ; hð1; 1ÞÞ < minðhð0; 1Þ; hð1; 0ÞÞ ð27Þ

where h(x) is the output of the G-clusteron on the input vector x (In our case, the vector [x1,

x2]) before applying the sigmoidal nonlinearity, as defined in Eq 4.

In the case of two inputs, h(x) can be written as:

hðx1; x2Þ ¼ w1x1ðw1x1 þ F12w2x2Þ þ w2x2ðF12w1x1 þ w2x2Þ � b ð28Þ

We therefore have (Table 5):

From Eqs 27 and 28 and Table 5, we require:

w2

1
þ w2

2
þ 2 � F12 � w1w2 � b < w2

1
� b ð29Þ

and

w2

1
þ w2

2
þ 2 � F12 � w1w2 � b < w2

2
� b ð30Þ

which can be simplified to Eqs 12 and 13 in Results. (Note that there are two other inequalities

that follow from Eqs 27 and 28, namely that w2
1
> 0 and w2

2
> 0, which require that neither w1

nor w2 are equal to 0, however Eqs 29 and 30 already guarantee this.)

To test the different G-clusteron learning rules on the XOR dataset, we created a G-clus-

teron for each of the three learning paradigms: weight update rule only, location update rule

only, and both weight and location update rules together. Each G-clusteron was run on 1000

trials with different parameter initializations for 10,000 epochs per trial.

For each trial, the weight values were chosen randomly from a uniform distribution within

[-1,1], and the initial locations were chosen such that F12 was uniformly distributed within

[0,1]. The G-clusterons were trained with a stochastic gradient descent protocol such that each

epoch, one out of the four input vectors for the XOR function (Table 4) were presented to the

G-clusteron, which would update its parameters according to the relevant update rule(s). For

Table 5. G-clusteron outputs for two binary inputs.

Input Output

x1 x2 h(x1, x2)

0 0 −b

1 0 w2
1
� b

0 1 w2
2
� b

1 1 w2
1
þ w2

2
þ 2 � F12 � w1w2 � b

https://doi.org/10.1371/journal.pcbi.1009015.t005

Table 6. Hyperparameters for XOR problem.

XOR ηB ηW ηL Net runtime (seconds)

Weight rule 0.0025 0.09 0 ~8100

Location rule 0.0025 0 0.05 ~11,880

Both rules 0.1 0.08 0.12 ~864

https://doi.org/10.1371/journal.pcbi.1009015.t006
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computational efficiency, we stopped the learning protocol on a given trial when the algorithm

converged. Convergence was defined as achieving perfect accuracy on a test set of all 4 input

vectors of the XOR problem for 10 consecutive epochs. Hyperparameters and the net runtime

for all 10,000 trials are shown in Table 6.

For the XOR problem, the r hyperparameter was set to 1. Momentum was not used for the

XOR problem. Hyperparameters were hand-tuned to maximize the number of converged tri-

als. Runtimes differed due to different convergence probabilities for the different rules.

All scripts were written in Python and run on an Acer Aspire 5 Notebook laptop with an i7-

10510U quad-core processor (1.80 GHz) and 16GB RAM, running on a Windows 10 operating

system.

Supporting information

S1 Movie. (Movie for Fig 2A) Dynamics of synaptic clustering due to the G-clusteron loca-

tion update rule, using a large value for the r parameter and trained on a single positive-

labeled pattern. Synapse locations are initiated randomly, and then separated into groups of

synapses with positive or negative inputs.

(MP4)

S2 Movie. (Movie for Fig 2B) Same as S1 Movie but using a small value for the r parameter.

(MP4)

S3 Movie. (Movie for Fig 2C) Similar to S1 Movie, but trained on a negative example, with

synapse locations initiated such that synapses are clustered with same-sign input values.

Over the course of learning, clusters are dispersed, leading to lower overall activation.

(MP4)

S4 Movie. (Movie for Fig 3C) Dynamics of synaptic clustering for a G-clusteron trained on

positive-labeled input patterns from a multivariate Gaussian dataset with multiple groups

of positively correlated inputs.

(MP4)

S5 Movie. (Movie for Fig 3D) Same as S4 Movie, but with negative-labeled input patterns.

Clusters of negatively correlated inputs are formed over the course of learning.

(MP4)

S1 Text. Explanation of signs and directionality in the location update rule.

(PDF)

S2 Text. Results for multiple trial runs of the multivariate Gaussian task.

(PDF)

S3 Text. Proof that the G-clusteron can approximate a linear classifier by adding an addi-

tional “bias synapse” and setting the weights and bias appropriately.

(PDF)

S4 Text. Extended derivation of location update rule.

(PDF)

S5 Text. Extended derivation of weight update rule.

(PDF)
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