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The roles of both neuroinflammation and oxidative stress in the

pathophysiology of epilepsy have begun to receive considerable attention in

recent years. However, these concepts are predominantly studied as separate

entities despite the evidence that neuroinflammatory and redox-based

signaling cascades have significant crosstalk. Oxidative post-translational

modifications have been demonstrated to directly influence the function of

key neuroinflammatory mediators. Neuroinflammation can further be

controlled on the transcriptional level as the transcriptional regulators NF-KB

and nrf2 are activated by reactive oxygen species. Further, neuroinflammation

can induce the increased expression and activity of NADPHoxidase, leading to a

highly oxidative environment. These factors additionally influencemitochondria

function and the metabolic status of neurons and glia, which are already

metabolically stressed in epilepsy. Given the implication of this relationship

to disease pathology, this review explores the numerous mechanisms by which

neuroinflammation and oxidative stress influence one another in the context of

epilepsy. We further examine the efficacy of treatments targeting oxidative

stress and redox regulation in animal and human epilepsies in the literature that

warrant further investigation. Treatment approaches aimed at rectifying

oxidative stress and aberrant redox signaling may enable control of

neuroinflammation and improve patient outcomes.
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Introduction

There are 31 types of epilepsy syndromes classified by the International League

Against Epilepsy (Epilepsy Syndromes, 2022) based on numerous features such as seizure

type, epilepsy presentation, and etiology (Scheffer et al., 2017). This disease complexity

presents a challenge in the treatment of epilepsy, where available anti-seizure medications

(ASMs) that are tailored to the epilepsy syndrome generally only achieve a 30–50%

responder rate (Löscher and Klein, 2021). The prevalence of drug-resistant epilepsy

highlights a need to further understand underlying mechanisms in epilepsy such as

neuroinflammation and consequential signaling cascades, as reviewed further elsewhere

(Vezzani et al., 2019). Yet more recently, oxidative stress and redox dysregulation have
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also emerged as hallmarks in the epilepsy literature (Patel, 2004;

Pearson-Smith & Patel, 2017; Geronzi et al., 2018).

Interestingly, in human epilepsies and animal epilepsy

models, various biomarkers of both oxidative stress and

neuroinflammation are elevated in the brain and periphery.

Neuroinflammation and reactive oxygen species (ROS)

production are both prominent effectors of signaling and are

therefore heavily regulated. It is not unexpected for these

prominent cell signaling processes to have influence on the

regulation of one another. As an evolutionarily conserved

defense mechanism, inflammation in response to infection or

injury promotes and utilizes ROS to kill pathogens or enact rapid,

local signaling. At physiological levels, ROS is an important

second messenger that modulates neuroinflammation at

numerous stages through redox-sensitive mechanisms.

Further, excessive ROS production or redox dysregulation

under oxidative stress damages cells and produces danger

signals that incite neuroinflammation. As oxidative stress and

neuroinflammatory pathways have considerable crosstalk (See

Scheme 1), there is an unmet need for further research exploring

this relationship in the pathophysiology of epilepsy. This can

enable the development of novel redox-based therapeutics,

beyond traditional ASMs which primarily aim to rectify

neural excitatory/inhibitor imbalances at the synapse, to

control neuroinflammation and in turn, epilepsy and/or its

comorbidities.

SCHEME 1
Neuroinflammation andOxidative Stress Cycle in Epilepsy.Initial insults such as systemic infection, traumatic brain injury (TBI), status epilepticus
(SE), and genetic mutations initiate inflammatory and oxidative signaling cascades. NF-KB activation leads to the production of proinflammatory
cytokines such as IL-1β, TNFα, and IL-6, which have been shown to i nduce gliosis, mitochondrial dysfunction, and glutathione (GSH) depletion. GSH
depletion impairs cellular andmitochondrial antioxidant defenses, enabling aberrant oxidative signaling and damage. NAPDHOxidase 2 (NOX2)
upregulation also commonly occurs with neuroinflammation. NOX2 utilizes NADPH, which is needed for the reductive abilities of antioxidant
systems like thioredoxin reductase and glutathione peroxidase, to produce superoxide (O2

-). O2
-is primarily enzymatically converted to the redox-

signaling reactive H2O2. The increased levels of steady-state H2O2 leads to the activation of numerous redox-sensitive pathways that influence
neuroinflammation. For example, NF-KB activation and subsequent microglia activation relies on NOX2 activity, indicating that reactive oxygen
species (ROS) production perpetuates neuroinflammation. Nrf2 is also activated by ROS to increase expression of the antioxidant response element
(ARE) to combat oxidative damage and neuroinflammation, making it an attractive therapeutic target. The danger-associated molecular pattern
(DAMP) HMGB1 is released in response to neuronal damage, which signals through TLR4 to activate NF-KB, induce gliosis, and increase NOX2 and
COX-2 expression. Reduced HMGB1 has chemoattractant properties, but adjacent cysteine residues act as a redox switch where oxidation to a
disulfide form increases affinity for TLR4 and induces cytokine like properties. The NLRP3 inflammasome, which activates IL-1β, can also by activated
by ROS from the mitochondria and NOX. Extracellular matrix (ECM) digesting proteinases such as matrix metalloproteinases (MMPs) are also
upregulated in the neuroinflammatory environment. This can lead to the disruption of the blood brain barrier (BBB) and perineuronal nets (PNs)
surrounding inhibitory parvalbumin interneurons (PVINs). MMP9 has demonstrated redox-sensitive activation, which is associated with the loss of
PNs and death of PVINs. Mitochondria dysfunction can result from excessive mitochondrial ROS (mtROS) which not only accounts for metabolic
alterations, but can lead to inflammation-inducing events such as astrogliosis, apoptosis, and lipid peroxidase mediated death (ferroptosis).
Metabolic dysfunction, excitatory/inhibitory (E/I) imbalance, and neurodegeneration can all result from these oxidative and inflammatory processes
which ultimately contribute to epileptogenesis.
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Oxidative stress in epilepsy

The brain is particularly susceptible to oxidative damage due

to its high metabolic demand and per weight rate of oxygen

consumption. It has long been recognized that ictal cerebral

hypermetabolism is characteristic of seizure disorders, where

increased cerebral oxygen (Meyer et al., 1966) and glucose

consumption (Ingvar and Siesjö, 1983) are observed during

seizure activity in experimental epilepsy models and in

humans (During et al., 1994). These metabolic stresses lead to

interictal metabolic dysfunction which is evidenced by glucose

hypometabolism in chronic epilepsy (Guo et al., 2009) and

mitochondrial metabolic deficits resulting from inhibition of

mitochondrial enzyme complexes in animal and human

epilepsies (Kunz et al., 2000, 1999). It has been demonstrated

that mitochondrial reactive oxygen species (mtROS) damage

mitochondrial electron transport chain complex I,

subsequently decreasing mitochondrial oxidative

phosphorylation (Ryan et al., 2012; Rowley et al., 2015).

Further, pharmacological inhibition of mitochondrial enzyme

complexes results in decreased oxidative phosphorylation and

seizure activity (Fleck et al., 2004).

There are numerous indications that increased ROS

production occurs across epilepsy models, as evidenced by

oxidative damage and impaired redox status. In addition to

Complex I inhibition in humans and animal models of

temporal lobe epilepsy (TLE), the redox regulated TCA cycle

enzymes aconitase and α-ketoglutarate dehydrogenase have been

shown to be inactivated following status epilepticus (SE) in rats

(Cock et al., 2002). Increased mitochondria oxidative

phosphorylation is also shown to increase complex III

mediated mtROS production (Malinska et al., 2010).

Mitochondrial DNA (mtDNA) oxidative damage has also

been found in the kainate model of TLE, along with increases

in mitochondrial H2O2 (Jarrett et al., 2008a). Further, numerous

other animal models and human epilepsies revealed depleted

glutathione (GSH) levels, paired with increased oxidized

glutathione (glutathione disulfide or GSSG) in the

hippocampus or neocortex, indicative of an oxidative

environment (Rumià et al., 2013; Cárdenas-Rodríguez et al.,

2014; Pearson-Smith and Patel, 2017). As GSH acts as a

major antioxidant in the brain, this impaired GSH redox

status can lead to further oxidative damage and redox

dysregulation, which is associated with cognitive deficits,

neuronal death, and mortality in animal epilepsy models.

Indeed, loss of glutathione peroxidase 4, a oxidation-resistant

selenoprotein that utilizes GSH, leads to lipid peroxidation and

subsequent ferroptosis, which is also found in epilepsy models

(Ingold et al., 2018; Cai and Yang, 2021).

The NADPH oxidase (NOX) family of enzymes is another

relevant major source of ROS in the context of epilepsy as

evidenced by activation of NOX2 by kainate-induced SE

(Patel et al., 2005). NOX enzymes utilize NADPH to produce

superoxide (O2
−), which then undergoes primarily enzymatic

dismutation to H2O2. Interestingly, it has been demonstrated that

NMDA receptor activation, which is increased due to excessive

extracellular glutamate in epilepsy, increases O2
− and subsequent

H2O2 production via NOX induction (Brennan et al., 2009;

Kovac et al., 2014). Further, NOX activation has been shown

to be a sufficient trigger of seizure activity, while NOX inhibition

reduced hyperactivity in multiple animal models of epilepsy

(Malkov et al., 2019). It is argued that NOX2, the primary

isoform in microglia, is thought to be the major contributor

of SE-induced ROS production in acquired epilepsies, which has

also been linked to glucose hypometabolism in epileptogenesis

(Zilberter et al., 2022).

Biomarkers of oxidative stress in human epilepsies have

recently received further attention. In the blood of patients

with SE, lower levels of SOD, catalase, GSH, and total

antioxidant capacity were found (Kalita et al., 2019). In drug-

resistant complex partial seizure patient blood, there was an

inverse correlation of vitamin C and positive correlation of the

oxidative damage marker 3-nitrotyrosine to seizure frequency

(Lorigados Pedre et al., 2018). Justifiably, therapies targeting

oxidative stress are currently under investigation. In rat

electrical status epilepticus, GSH increasing drug treatment

was neuroprotective and reduced seizure frequency (Pauletti

et al., 2019). Inhibition of KEAP1 by RTA 408 disinhibits the

antioxidant transcription factor nrf2 and has neuroprotective

and seizure reducing effects in the kainic model of TLE (Shekh-

Ahmad et al., 2018). Treatment with a NOX inhibitor, a catalytic

antioxidant, and a scavenger of reactive oxidized compounds

gamma-ketoaldehydes, have all been shown to prevent

experimental TLE seizure-induced neuronal death (Kim et al.,

2013; Pearson et al., 2017; Pearson-Smith et al., 2017). In

humans, Vitamin E in conjunction with ASMs has been

shown to reduce seizure frequency and oxidative stress

(Mehvari et al., 2016). Further, the high-fat low-carbohydrate

ketogenic diet (KD), which shifts metabolism towards fatty acid

oxidation and away from glycolysis, also has antioxidant

properties which may contribute to its clinical efficacy in

Dravet Syndrome (Caraballo et al., 2005). As a treatment for

experimental or genetic epilepsies in rodents, this diet can reduce

ROS production, activate nrf2, and increase the synthesis of GSH

(Jarrett et al., 2008b; Milder and Patel, 2012).

Clearly, oxidative stress is associated with epilepsy which may

be a consequence of the disease. Interestingly, there is further

evidence indicating that mitochondrial dysfunction and oxidative

stress contribute to epilepsy pathogenesis (Patel, 2004). The most

robust links between oxidative stress or mitochondrial dysfunction

and epilepsy are clear in mitochondrial encephalopathies such as

myclonic epilepsy with ragged-red fibers (MERFF) and Leigh

syndrome. These disorders are characterized by mtDNA

mutations that impair mitochondria electron transport chain

enzyme complexes, which can result in increased ROS

production, oxidative damage, and decreased ATP production
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(Quintana et al., 2010; Wu et al., 2010; Wojtala et al., 2017). Other

genetic epilepsies such as Dravet Syndrome are further associated

with mitochondrial dysfunction (Kumar et al., 2016; Banerji et al.,

2021). Genetic knockouts in mice of mitochondrial superoxide

dismutase (SOD2), which detoxifies O2
− to H2O2, increases

susceptibility to spontaneous and induced seizures (Liang and

Patel, 2004; Liang et al., 2012). Further, the forebrain neuron-

specific conditional knockout of SOD2 also leads to the

presentation of epilepsy in mice (Rowley et al., 2015). Together,

this body of work demonstrates that oxidative stress is not only a

consequence of epilepsy, but also a cause.

Concomitance of neuroinflammation
and oxidative stress in epilepsy

Seizure inciting events such as infection or traumatic brain

injury (TBI) that initiate proinflammatory cascades are also linked

to oxidative stress. Post-traumatic epilepsy (PTE) develops in as

many as 50% of TBI patients, and TBI and chronic epilepsy brain

tissue both display elevated markers of oxidative stress in addition

to cytokines and neurodegeneration (Vezzani et al., 2008; Helmy

et al., 2011; Terrone et al., 2019). NOX2 expression is additionally

elevated in the brain following TBI and in epilepsy as reviewed by

Ma et al., 2018. In experimental models of acquired epilepsy, such

as chemically induced status epilepticus, there are clear signs of

inflammation, reactive gliosis, and neurodegeneration (Loewen

et al., 2016) as well as metabolic and redox dysregulation as

reviewed by Pearson-Smith & Patel, 2017. In a zebrafish model

of Dravet syndrome, there are metabolic irregularities (Kumar

et al., 2016; Banerji et al., 2021) as well as increased astrogliosis

associated gene expression (Tiraboschi et al., 2020), which is also

apparent in a mouse DSmodel (Valassina et al., 2022). In pediatric

drug-resistant epilepsy, levels of IL-1β in peripheral monocytes

correlate to seizure frequency (Yamanaka et al., 2021). Further, an

LPS administration model of systemic inflammation in sepsis in

conjunction with convulsant PTZ treatment in mice increased

seizure susceptibility, which was attenuated with NOX2 genetic

ablation and inhibition (Huang et al., 2018). Theiler’s murine

encephalomyelitis virus (TMEV) model of temporal lope epilepsy

is known to induce neuroinflammation and seizures, but also leads

to oxidative stress as indicated by elevated 3-nitrotyrasine levels

and reduced GSH/GSSG ratios in the hippocampus (Bhuyan et al.,

2015).

Epileptic encephalopathies and genetic epilepsies such as

West, Lennox-Gastaut, Dravet, Lafora, and Leigh syndromes

have additionally shown evidence of gliosis and

neuroinflammation in humans (Kawashima et al., 1999; You

et al., 2009; Salar and Galanopoulou, 2018; Lahuerta et al., 2020;

Valassina et al., 2022). There is also evidence that most of these

types of epilepsies also have a metabolic dysfunction component

given the efficacy of the KD in patients (Wijburg et al., 1992;

Caraballo et al., 2005, 2014; You et al., 2009). As both

neuroinflammation and oxidative stress or metabolic

dysregulation are prevalent across the epilepsies, which are

both argued to be causal and consequential to the disease, the

direct interactions between neuroinflammation and oxidative

stress are key components of disease pathology which deserve

further evaluation.

Neuroinflammatory induction of
oxidative stress

The role of NADPH oxidases in epilepsy has drawn

considerable attention, with findings highlighting a link

between oxidative stress production and inflammation. NOX

expression of the brain isoforms 1, 2 and 4 are highly inducible,

with signs of NOX2 upregulation prevalent in human and animal

epilepsies. As described previously, SE can induce ROS

production through NOX via NMDA receptor activation.

However, NOX expression and activity is also closely linked

to neuroinflammation. Pattern recognition receptor (PRR)

CR3 and TLR4 signaling by damage associated molecular

patterns (DAMPs), such as high mobility group box 1

(HMGB1) released by damaged neurons, is linked to

NOX2 expression and activation in microglia (Pei et al., 2007;

Gao et al., 2011; Bell et al., 2013; Hou et al., 2018). The inhibition

of NF-KB signaling has been shown to reduce LPS induced NOX

and inducible nitric oxide synthase (iNOS) expression in various

peripheral cell types (Kim B et al., 2008; Al-Harbi et al., 2020; Sul

and Ra, 2021). NOX-mediated aberrant ROS production in

response to proinflammatory signaling is a major source of

oxidative stress in epilepsy, and is further linked to interictal

glucose hypometabolism (Malkov et al., 2018). It is suggested that

increased NOX activity induced by SE or trauma increases

steady-state levels of H2O2 directly and indirectly by utilizing

NADPH needed for glutathione reduction, leading to the

inhibition of glycolysis and increased cell susceptibility to

oxidative stress. Further, other NOX2-mediated H2O2 redox

signaling is shown to directly increase mtROS production in

one of the forms of ROS-induced ROS release (Kim et al., 2017).

DAMPs, particularly HMGB1, have been implicated in

epilepsy pathogenesis. HMGB1 and the PRR it can signal

through, TLR4, have increased expression in human and

animal epilepsies. HMGB1 released from neurons and

proinflammatory microglia and has been attributed to both

TBI and epilepsy pathogenesis in experimental models as

reviewed by Paudel et al., 2018. In animal TLE models,

HMGB1 acts through TLR-4 to increase production of

cytokines such as IL-1β, TNFα, and IL-6 (Maroso et al.,

2010). This TLR-4 mediated signaling cascade can activate

NF-KB, leading to the production of these pro-convulsant

cytokines. Cytokines like TNFα can, in turn, induce COX-2

and NOX2 gene expression (Newton et al., 1997; Li et al.,

2009). Interestingly, peripheral inflammation induced by TLR-
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4 activation by systemic LPS exacerbated kainic-acid induced

seizures and elevated hippocampal reactive microglia, levels of

IL-1β, TNFα, and IL-6, and NOX subunit expression (Ho et al.,

2015). The ability of PRR-mediated inflammatory signaling to

increase NOX expression in epilepsy suggests that enabling ROS

production may act as a second messenger to

neuroinflammation.

Tumor necrosis factor alpha (TNFα) further impacts the

oxidative environment and metabolism in the brain by targeting

mitochondria. In neuronal cultures, direct treatment with TNFα
resulted in a time dependent decrease in mitochondrial

respiration, followed by a reduction in cell viability correlated

with increase cytosolic cytochrome c levels (Doll et al., 2015). In

mice, systemic LPS increased brain region specific expression of

IL-1β as well as mitochondrial complex II/III activity, while

decreasing GSH (Noh et al., 2014). Local brain LPS

administration, as well as astrocyte exposure to TNFα and IL-

1β, depleted GSH (Gavillet et al., 2008; Ariza et al., 2010). These

studies indicate that neuroinflammation can influence

mitochondrial function, impair antioxidant defenses, and

cause oxidative stress to contribute to neurodegeneration.

Neuroinflammation in epilepsy is commonly associated with

blood brain barrier (BBB) disruption, allowing infiltration of the

brain parenchyma by peripheral immune cells and serum

albumin as reviewed in detail by Van Vliet et al. (2015). In

addition to exacerbating gliosis and inflammation, BBB

disruption also leads to oxidative damage such as in ischemia-

reperfusion injury where SOD1 deficiency causes exacerbated

neuronal damage and infarct volume (Gasche et al., 2001).

Inhibition of matrix metalloproteinase 9 (MMP9), which

degrades extracellular matrix around the vasculature, rescues

this effect. MMP9 also contributes to parvalbumin positive

inhibitory interneuron (PVIN) cell loss that is found in

epilepsy. MMP9 is upregulated in epilepsy models, and this

ECM proteinase has been shown to degrade the specialized

ECM called perineuronal nets (PN) surrounding PVINs (Kim

et al., 2009; Acar et al., 2015; Rankin-Gee et al., 2015; Dubey et al.,

2017). Interestingly, PVINs are shown to be particularly

susceptible to oxidative stress, and the neuroinflammatory

based degradation of their neuroprotective PNs leads to

oxidative damage and death of these cells (Cabungcal et al.,

2013). In fact, neuronal NOX2 expression which is induced by

neuroinflammation colocalizes with parvalbumin

immunoreactivity in areas of PVIN loss in human TBI

(Schiavone et al., 2017).

Oxidative stress and redox regulation
of neuroinflammation

NOX activity may be induced by proinflammatory signaling

cascades, but it is also necessary for inducing neuroinflammation.

In the kainate and pilocarpine rat experimental models of TLE,

ROS production through NOX activity is associated with

microglial activation and is responsible for neurodegeneration

in these models (Patel et al., 2005; Pestana et al., 2010). SE

induced ROS production and neural cell death were attenuated

by NOX inhibitors (Pestana et al., 2010;Williams et al., 2015) and

overexpression of extracellular SOD (Patel et al., 2005).

Interestingly, the deletion of NOX2 following mouse TBI

(Dohi et al., 2010; Wang et al., 2018) or PTZ-induced SE

(Huang et al., 2018) enhances neurogenesis and reduces

cytokine production, indicating that the ROS production

occurring following trauma is deleterious to neural recovery.

A direct link between NOX activity and inflammation is

apparent, as NOX2 mediated production of O2
− and resulting

increased steady-state H2O2 levels is necessary for NF-KB

activation in macrophages (Li et al., 2018) and for microglia

proliferation (Mander et al., 2006). The NOX2 inhibitor celastrol

attenuated kainate-induced epileptiform activity, indicating that

NOX2 is important for seizure initiation (Malkov et al., 2019). As

it has been suggested that NOX2 is important for the initial

oxidative burst following SE that contributes to seizures in

trauma and chemically induced epilepsy models (Zilberter

et al., 2022), the efficacy of NOX inhibition in chronic

epilepsy and in a clinically relevant window following a

seizure inciting event needs further evaluation. Chronic

administration of apocynin, a NOX inhibitor antioxidant,

following pilocarpine-induced SE did significantly increase

neural survival (Lee et al., 2018). Despite the promise of

NOX2 inhibition in epilepsy models, further efforts to develop

and evaluate clinically translatable BBB permeable compounds

such as GSK2795039 are needed (Hirano et al., 2015; Malkov

et al., 2019).

Excessive ROS levels are toxic, but at physiological levels ROS

such as H2O2 are important second messengers acting through

redox signaling. H2O2 is an efficient activator of the redox-

regulated proinflammatory transcription factor NF-KB, where

redox-regulation activates upstream kinases P13K and NIK

leading to NF-KB translocation and promotor binding.

Further, NOX2 depletion and the NOX inhibitor apocynin

were able to reduce NF-KB activation, demonstrating how

ROS can lead to the increased expression of proinflammatory

cytokines (Kim J et al., 2008). Nrf2, the redox-sensitive

transcription factor controlling expression of the antioxidant

response element (ARE), is an important modulator of the

proinflammatory effects of ROS. For example, nrf2 depletion

has been shown to increase NF-ΚB activation, as well as the

activation of MMP3/9 and TGF-β following mouse TBI leading

to neurodegeneration (Bhowmick et al., 2019). The nrf2 targets

heme oxygenase 1 (HO-1), NQO1, and the GSH producing

enzymes GCLC and GCLM have all been shown to exert anti-

inflammatory effects as reviewed in detail by Ahmed et al., 2017.

Not surprisingly, the inhibition of the nrf2 inhibitor KEAP1 with

RTA 408, particularly in combination with a NOX inhibitor,

prevented cell death and dramatically reduced kainate-induced
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seizures (Shekh-Ahmad et al., 2019, 2018). The KD’s clinical

efficacy in the treatment of various epilepsies may be mediated in

part due to its apparent ability to activate nrf2 (Milder et al.,

2010). These inflammation modifying roles of nrf2 demonstrate

redox-neuroinflammation crosstalk at the transcriptional level

which highlights nrf2 as an important therapeutic target for

controlling both ROS-mediated damage and activation of

proinflammatory cascades.

Certain proinflammatory molecules are also directly regulated

by ROS such as IL-1β, HMGB1, and MMP9. IL-1β activation is

induced by caspase-1 which is activated by the DAMP-sensitive

NLRP3 and NLRC4 inflammasomes (Poyet et al., 2001; Martinon

et al., 2002). NLRP3 has been extensively linked to epilepsy, where

heightened expression and activation is found in animal and

human epilepsies as reviewed by Mohseni-Moghaddam et al.,

2021. ROS can lead to NLRP3 activation through binding to

thioredoxin-interacting protein (TXNIP) binding following

thioredoxin oxidation (Zhou et al., 2011). Further, the crystal

structure of NLRP3 revealed a disulfide bond between conserved

cysteine residues in the inflammasome active site, suggesting

redox-sensitive activity (Bae and Park, 2011). NLRP3 has

indeed been shown to be activated by NOX2 mediated ROS

production (Abais et al., 2014, 2013). Further, mtROS acts as a

second messenger stimulating NLRP3 activation and localization

to the mitochondria to promote IL-1β activation, thus inciting a

proinflammatory signal in response to mitochondria dysfunction

(Zhou et al., 2011; Subramanian et al., 2013). Interestingly,

sulforaphane, an nrf2 activator, has been shown to limit

mtROS generation and prevent both NLRP3 and

NLRC4 activation in murine macrophages (Lee et al., 2016).

Although implicated in neurodegenerative disorders but not

currently in epilepsy, NLRC4 activation has also been found to

be sensitive to mtROS production in astrocytes and contributes to

gliosis (Freeman et al., 2017; Samidurai et al., 2020).

NLRP3 activation further appears to be inhibited by the activity

of the ketone body βHB produced by the KD, suggesting that the

modulation of neuroinflammation contributes to KD efficacy

(Youm et al., 2015). ROS-mediated inflammasome activation

could explain the increased prevalence of IL-1β found in

epilepsy as described above, which may in turn perpetuate cycle

of oxidative stress and neuroinflammation.

HMGB1 contains three redox sensitive cysteine residues and

carries out different immune system roles depending on its redox

state. In the reduced state, HMGB1 acts as a chemoattractant. In

the oxidized state with two nearby cysteines forming a disulfide

bond and the third cysteine unmodified, HMGB1 acts as a

proinflammatory cytokine (Yang et al., 2021) which can

interact with TLR4 (Balosso et al., 2014). Overoxidation

inhibits all HMGB1 functions. Interestingly, combinational

drug treatment with sulforaphane and N-actylcysteine (NAC),

a compound used to enhance GSH levels, also reduced the

production of HMGB1 in the brain and blood in an electrical

SE model (Pauletti et al., 2019).

Finally, MMP9 has also been found to have redox-sensitive

activation, as oxidants have been shown to directly increase

MMP function, contributing to BBB dysfunction (Haorah

et al., 2007). IL-1β-induction of MMP9 was dependent on

NOX2 activity leading to NF-KB and AP-1 transcription

factor activation. Further, this enabled MMP9-dependent

astrocyte migration (Yang et al., 2015). This relationship was

found to be inhibited by the nrf2 activator RTA 408 (Yang et al.,

2019). Incredibly, this redox-sensitive activity of MMP9 is linked

to PVIN/PNN irregularities in neurons with impaired GSH

synthesis (Gclm−/−) in vivo. MMP9 inhibition prevented NF-

KB activation and restored PVIN/PNN integrity, linking redox-

controlled MMP9 to excitatory/inhibitory imbalance (Dwir et al.,

2020). Rectifying redox dysregulation in epilepsy may enable the

control of these proinflammatory pathways.

In the brain, the major regulator of redox status is GSH, which

has also been shown to regulate inflammation. This antioxidant

thiol is utilized as the electron donor by glutathione peroxidase

(GPx) to convert H2O2 to H2O, so the GSH/GSSG ratio is

indicative of the oxidative environment. The expression of

enzymes involved in this process such as GCL and GCLM is

controlled by nrf2 and NF-KB. Post-translational activation of

GCL by dimercaprol in cultured BV-2 microglia prevents LPS-

induced production of proinflammatory cytokines and iNOS

induction (McElroy et al., 2017a). Depletion of GSH with the

GCL inhibitor BSO leads to gliosis and neuroinflammation in the

rat brain, with a particular increase in levels of TNFα (González-

Fraguela et al., 2018). In this study, this is associated with mild

cognitive impairment, suggesting that impaired redox status could

contribute to associated comorbidities in epilepsy. GSH in the

mitochondria is protective against TNFα-induced neurotoxicity,

indicating that GSH depletion in epilepsy may contribute to a

vicious cycle of oxidative stress-neuroinflammation-metabolic

stress (Fernandez-Checa et al., 1997). Impaired glutathione

redox status also enables aberrant oxidative signaling to occur,

which can influence redox sensitive ion channels, neurotransmitter

receptors, and glutamate reuptake by astrocytes. Restoring GSH

redox status may not only control neuroinflammation, but rectify

redox based post-translational modifications that can directly

influence neural excitability. The therapeutic potential of GSH

increasing treatments such as NAC, CoenzymeQ10, sulforaphane,

and Vitamin E has begun to be explored in epilepsy models.

Oxidative stress involves the damage to mtDNA, lipids, and

proteins in the cell which can lead to neuroinflammation.

Astrogliosis is prevalent in the epilepsies, and interestingly a

mouse forebrain neuron-specific knockout of SOD2 resulted in

seizures, oxidative stress, and marked GFAP and vimentin gene

upregulation, indicative of astrogliosis resulting from increased

neuronal mtROS (Fulton et al., 2021). Oxidative stress resulting

from increased mtROS has significant impacts on redox signaling

within neurons (Bao et al., 2009), and can lead to neuronal

apoptosis as described in detail by Méndez-Armenta et al., 2014.

This oxidative damage originating from neurons can induce
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neuroinflammation and gliosis through the release of DAMPs.

Further, oxidative damage to phospholipids can induce

ferroptosis, as described earlier, which has now been directly

linked to the induction of neuroinflammation (Cao Y et al., 2021;

Cui et al., 2021).

Discussion

Together, these studies examining oxidative stress, redox

dysregulation, metabolic alterations, and neuroinflammation

suggest that these processes are all not only involved in the

pathogenesis of epilepsy, but fundamentally linked (See Scheme

1). An infection or traumatic brain injury initiates

proinflammatory cascades that involve the upregulation and

increased activity of NOX. Excessive excitatory signaling

induced by status epilepticus or genetic mutations also

increase NOX activity. Seizure activity increases metabolic

demand in neuronal mitochondria, which increases O2
−

production. The increased oxidative environment resulting

from NOX activity and mtROS production leads to GSH

depletion. Importantly, NOX utilizes NADPH to produce

superoxide, thus depleting NADPH needed by antioxidant

systems such as thioredoxin reductase and glutathione

peroxidase. Together, these processes exacerbate

neuroinflammation through oxidative damage and redox

based activation of NF-KB, as well as of HMGB1,

inflammasomes and IL-1β, and MMP9. NF-KB activation also

increases TNFα, NOX, and COX-2 expression.

Neuroinflammatory cytokines such as TNFα cause

mitochondrial dysfunction when GSH is depleted, as well as

induce reactive astrocytes. This can impair astrocyte regulation of

the tripartite synapse, BBB, and neuronal metabolism. Damaged

neurons and reactive microglia can increase NOX expression, as

well as release MMP9 which degrades ECM around the BBB and

PVIN neurons, leaving them susceptible to oxidative damage.

Regardless of the initial insult, oxidative bursts through NOX and

increased oxidative phosphorylation in the mitochondria induce

metabolic alterations responsible for observed interictal glucose

hypometabolism. Glycolysis further fuels the pentose phosphate

pathway (PPP) which produces NADPH. Together, oxidative

stress and redox dysregulation form a vicious cycle with

neuroinflammation that likely underlies epileptogenesis and

undermines current treatment strategies.

Developing combinational therapies that address neuronal

hyperexcitability as well as oxidative stress may prevent the

deleterious cycle of neuroinflammation and oxidative stress that

contribute to epileptogenesis. Recent advances have identified

redox-based treatment strategies that warrant further

investigation (Yang et al., 2020; Parsons et al., 2022). NOX-

inhibitor therapy has shown neuroprotective effects in

numerous epilepsy models. However, research suggesting

that NOX2 is primarily responsible for the oxidative burst

immediately following SE may not allow for a wide enough

treatment window in patients following their first SE event.

Inhibited interictal glycolysis may contribute to a more

oxidative environment due to the decreased substrate pool

for the PPP. Interestingly, the KD pushes metabolism away

from glycolysis, potentially removing fuel needed to trigger

seizures while introducing ketone bodies. This can diminish

neuroinflammation and induce Nrf2 activation to express the

ARE, which has proven efficacy in treating epilepsy patients.

Indeed, Nrf2 activators such as sulforaphane and hydroxylated

fullerene have restored GSH levels and shown antiepileptic and

neuroprotective properties in numerous epilepsy models

(Wang et al., 2014; Carrasco-Pozo et al., 2015; Pauletti et al.,

2019; Uddin et al., 2020; Cao H et al., 2021; Sandouka and

Shekh-Ahmad, 2021). An antioxidant and metal chelator,

curcumin, was able to reduce gliosis and cytokine levels in

PTZ-induced epilepsy (Kaur et al., 2015). Other redox-based

therapies such as AEOL10150, salicylamine, Coenzyme Q10,

and NAC have also been shown to restore GSH homeostasis,

which is critical to control inflammation, leading to reduction of

seizure burden or comorbidities in animal models (Shin et al.,

2005; Tawfik, 2011; Pearson et al., 2015; McElroy et al., 2017b).

Further, in a small study of patients with refractory epilepsy,

Vitamin E in combination with ASMs increased total

antioxidant capacity, catalase, and glutathione and reduced

seizure frequency (Mehvari et al., 2016). It is herein

proposed that tempering excessive ROS production and

reducing oxidative stress could thereby control

neuroinflammatory processes involved in epilepsy. A

comprehensive treatment strategy broadly effective in

epilepsy may therefore involve a combinational approach of

ASMs coupled with GSH inducing and nrf2 activating

compounds.
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