

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Ethyl 5-methyl-3-phenylisoxazole-4carboxylate

#### Chandra,<sup>a</sup> K. Raghu,<sup>b</sup> S. Jeyaseelan,<sup>c</sup> K. B. Umesha<sup>b</sup> and M. Mahendra<sup>a</sup>\*

<sup>a</sup>Department of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, <sup>b</sup>Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India, and <sup>c</sup>Department of Physics, St Philomena's College, Mysore, India

Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

Received 5 April 2013; accepted 23 May 2013

Key indicators: single-crystal X-ray study; T = 273 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.054; wR factor = 0.186; data-to-parameter ratio = 13.2.

In the title compound, C<sub>13</sub>H<sub>13</sub>NO<sub>3</sub>, the dihedral angle between the phenyl and isoxazole rings is 43.40 (13)°. The ethoxycarbonyl group is rotated out of the plane of the isoxazole ring by 16.2 (13)°.

#### **Related literature**

For the biological and pharmacological importance of isoxazoles, see: Lin et al. (1997). For the synthesis of isoxazole derivatives and a related structure, see: Chandra et al. (2013).



#### **Experimental**

#### Crystal data

| C <sub>13</sub> H <sub>13</sub> NO <sub>3</sub> | $V = 1192.3 (18) \text{ Å}^3$     |
|-------------------------------------------------|-----------------------------------|
| $M_r = 231.24$                                  | Z = 4                             |
| Monoclinic, $P2_1/c$                            | Mo $K\alpha$ radiation            |
| a = 9.750 (8) Å                                 | $\mu = 0.09 \text{ mm}^{-1}$      |
| b = 14.589 (13)  Å                              | T = 273  K                        |
| c = 9.397 (8) Å                                 | $0.30 \times 0.25 \times 0.20$ mm |
| $\beta = 116.872 \ (13)^{\circ}$                |                                   |
|                                                 |                                   |

#### Data collection

Refinement

2060 reflections

S = 0.99

 $R[F^2 > 2\sigma(F^2)] = 0.054$ wR(F<sup>2</sup>) = 0.186

| Bruker APEXII CCD area-detector |
|---------------------------------|
| diffractometer                  |
| 10036 measured reflections      |

2060 independent reflections 1340 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.039$ 

156 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$ 

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Chandra would like to thank the University of Mysore for awarding an RFSMS fellowship under the head DV5/Physics/ 389/RFSMS/2009-2010/10.07.2012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2309).

#### References

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chandra, Raghu, K., Srikantamurthy, N., Umesha, K. B., Palani, K. & Mahendra, M. (2013). Acta Cryst. E69, o388.

Lin, S. T., Kuo, S. H. & Yang, F. M. (1997). J. Org. Chem. 62, 5229-5231.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supplementary materials

Acta Cryst. (2013). E69, o987 [doi:10.1107/S160053681301427X]

# Ethyl 5-methyl-3-phenylisoxazole-4-carboxylate

## Chandra, K. Raghu, S. Jeyaseelan, K. B. Umesha and M. Mahendra

## Comment

Isoxazole and its derivatives are of well known heterocyclic compounds, which have a variety of biologically activities; such as anti-convulsant, antibacterial, antiasthmatic, and other pharmacological activities (Lin *et al.*, 1997). In view of their importance we have special interest in the synthesis and structural studies of isoxazole derivatives (Chandra *et al.*, 2013). Within this project, the title compound was prepared and characterized by single-crystal X-ray diffraction.

In the molecular structure of the title compound (Fig. 1), the dihedral angle between the phenyl ring (C1/C2/C3/C4/C5/C6) and the isoxazole ring (C7/N8/O9/C10/C12) amount to 43.40 (13)°. The ethoxycarbonyl unit is not in same plane with the isoxazole ring, as indicated by the torsion angle of 16.2 (13)°.

#### **Experimental**

A mixture of benzaldehyde oxime (1 g, 8.33 mmol), chloramine-T (2.33 g, 8.33 mmol) and freshly distilled ethyl acetoacetate (2.16 g, 16.6 mmol) in ethyl alcohol (20 ml) were stirred at 10°C about 6 h. The progress of the reaction was monitored by TLC. After the completion of the reaction the solvent was evaporated in vacuum. The solids thus obtained were recrystalized from hot ethanol to get single crystals of the title compound.

## Refinement

The H atoms were placed in idealized positions and allowed to ride on their parent atoms with C–H distances in the range of 0.93 to 0.97 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  (1.5 for methyl H atoms).

## **Computing details**

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).



#### Figure 1

Perspective diagram of the title molecule with labeling and displacement ellipsoids drawn at the 50% probability level.

#### Ethyl 5-methyl-3-phenylisoxazole-4-carboxylate

Crystal data

C<sub>13</sub>H<sub>13</sub>NO<sub>3</sub>  $M_r = 231.24$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 9.750 (8) Å b = 14.589 (13) Å c = 9.397 (8) Å  $\beta = 116.872$  (13)° V = 1192.3 (18) Å<sup>3</sup> Z = 4

#### Data collection

Bruker APEXII CCD area-detector diffractometer  $\omega$  and  $\varphi$  scans 10036 measured reflections 2060 independent reflections 1340 reflections with  $I > 2\sigma(I)$  F(000) = 488  $D_x = 1.288 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2060 reflections  $\theta = 2.3-25.0^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 273 KBlock, yellow  $0.30 \times 0.25 \times 0.20 \text{ mm}$ 

 $R_{int} = 0.039$   $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$   $h = -11 \rightarrow 11$   $k = -17 \rightarrow 17$  $l = -11 \rightarrow 11$  Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.054$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.186$                               | neighbouring sites                                         |
| S = 0.99                                        | H-atom parameters constrained                              |
| 2060 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.1145P)^2]$                    |
| 156 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|-------------|--------------|--------------|-----------------------------|
| O9   | 0.6154 (2)  | 0.13026 (13) | -0.1802 (3)  | 0.0780 (8)                  |
| O14  | 0.6825 (2)  | 0.12137 (19) | 0.2907 (3)   | 0.1153 (12)                 |
| O15  | 0.4317 (2)  | 0.09643 (11) | 0.17563 (19) | 0.0667 (6)                  |
| N8   | 0.4554 (3)  | 0.14345 (15) | -0.2522 (3)  | 0.0747 (9)                  |
| C1   | 0.1443 (3)  | 0.10417 (18) | -0.3147 (3)  | 0.0721 (10)                 |
| C2   | -0.0093 (3) | 0.1141 (2)   | -0.3603 (4)  | 0.0840 (11)                 |
| C3   | -0.0594 (3) | 0.1676 (2)   | -0.2736 (4)  | 0.0861 (11)                 |
| C4   | 0.0469 (3)  | 0.21272 (19) | -0.1411 (4)  | 0.0798 (11)                 |
| C5   | 0.2008 (3)  | 0.20332 (16) | -0.0937 (3)  | 0.0649 (9)                  |
| C6   | 0.2520 (3)  | 0.14949 (15) | -0.1799 (3)  | 0.0571 (8)                  |
| C7   | 0.4161 (3)  | 0.13941 (14) | -0.1372 (3)  | 0.0577 (8)                  |
| C10  | 0.6666 (3)  | 0.11924 (16) | -0.0234 (3)  | 0.0646 (9)                  |
| C11  | 0.8327 (3)  | 0.0997 (2)   | 0.0691 (4)   | 0.0865 (11)                 |
| C12  | 0.5479 (3)  | 0.12501 (14) | 0.0123 (3)   | 0.0592 (8)                  |
| C13  | 0.5628 (3)  | 0.11456 (17) | 0.1739 (3)   | 0.0654 (9)                  |
| C16  | 0.4341 (4)  | 0.0912 (2)   | 0.3301 (3)   | 0.0824 (11)                 |
| C17  | 0.2752 (4)  | 0.0730 (2)   | 0.3043 (4)   | 0.0957 (14)                 |
| H1   | 0.17710     | 0.06700      | -0.37380     | 0.0870*                     |
| H2   | -0.08040    | 0.08420      | -0.45110     | 0.1010*                     |
| H3   | -0.16400    | 0.17340      | -0.30390     | 0.1030*                     |
| H4   | 0.01350     | 0.25020      | -0.08290     | 0.0950*                     |
| Н5   | 0.27120     | 0.23350      | -0.00280     | 0.0780*                     |
| H11A | 0.85120     | 0.03600      | 0.05850      | 0.1300*                     |
| H11B | 0.86540     | 0.11380      | 0.17950      | 0.1300*                     |
| H11C | 0.88940     | 0.13650      | 0.02920      | 0.1300*                     |
| H16A | 0.47100     | 0.14850      | 0.38720      | 0.0990*                     |

# supplementary materials

| H16B | 0.50210 | 0.04240 | 0.39260 | 0.0990* |
|------|---------|---------|---------|---------|
| H17A | 0.20880 | 0.12140 | 0.24150 | 0.1430* |
| H17B | 0.27330 | 0.06990 | 0.40550 | 0.1430* |
| H17C | 0.24040 | 0.01570 | 0.24930 | 0.1430* |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 09  | 0.0756 (13) | 0.0937 (13) | 0.0679 (14) | 0.0024 (9)   | 0.0352 (11) | 0.0109 (10)  |
| O14 | 0.0684 (14) | 0.196 (3)   | 0.0521 (14) | -0.0009 (13) | 0.0015 (11) | -0.0013 (13) |
| O15 | 0.0746 (12) | 0.0772 (11) | 0.0415 (10) | -0.0015 (8)  | 0.0203 (9)  | 0.0048 (7)   |
| N8  | 0.0768 (16) | 0.0898 (15) | 0.0555 (15) | 0.0044 (11)  | 0.0281 (12) | 0.0099 (11)  |
| C1  | 0.0728 (18) | 0.0765 (16) | 0.0501 (16) | -0.0049 (12) | 0.0129 (13) | -0.0015 (12) |
| C2  | 0.072 (2)   | 0.091 (2)   | 0.0633 (19) | -0.0137 (15) | 0.0079 (16) | 0.0049 (15)  |
| C3  | 0.0632 (18) | 0.091 (2)   | 0.092 (2)   | 0.0039 (15)  | 0.0245 (18) | 0.0233 (18)  |
| C4  | 0.081 (2)   | 0.0796 (17) | 0.076 (2)   | 0.0125 (14)  | 0.0329 (16) | 0.0104 (15)  |
| C5  | 0.0744 (17) | 0.0609 (14) | 0.0497 (15) | 0.0009 (11)  | 0.0195 (13) | 0.0038 (11)  |
| C6  | 0.0634 (15) | 0.0558 (12) | 0.0411 (14) | -0.0012 (10) | 0.0139 (12) | 0.0063 (10)  |
| C7  | 0.0676 (16) | 0.0533 (13) | 0.0445 (15) | -0.0043 (10) | 0.0186 (12) | 0.0011 (10)  |
| C10 | 0.0661 (16) | 0.0592 (13) | 0.0621 (18) | -0.0047 (11) | 0.0234 (14) | 0.0014 (11)  |
| C11 | 0.0643 (18) | 0.096 (2)   | 0.091 (2)   | -0.0043 (14) | 0.0279 (16) | 0.0033 (16)  |
| C12 | 0.0619 (15) | 0.0555 (12) | 0.0494 (15) | -0.0033 (10) | 0.0157 (12) | 0.0027 (10)  |
| C13 | 0.0633 (17) | 0.0723 (15) | 0.0466 (16) | 0.0026 (12)  | 0.0126 (13) | 0.0014 (11)  |
| C16 | 0.110 (2)   | 0.090 (2)   | 0.0457 (16) | 0.0163 (16)  | 0.0338 (16) | 0.0099 (13)  |
| C17 | 0.121 (3)   | 0.098 (2)   | 0.090(2)    | 0.0003 (18)  | 0.067 (2)   | -0.0064 (18) |

Geometric parameters (Å, °)

| O9—N8                 | 1.405 (4) | C12—C13                 | 1.467 (4) |  |
|-----------------------|-----------|-------------------------|-----------|--|
| O9—C10                | 1.335 (4) | C16—C17                 | 1.480 (6) |  |
| O14—C13               | 1.191 (4) | C1—H1                   | 0.9300    |  |
| O15—C13               | 1.313 (4) | C2—H2                   | 0.9300    |  |
| O15—C16               | 1.443 (4) | С3—Н3                   | 0.9300    |  |
| N8—C7                 | 1.301 (4) | C4—H4                   | 0.9300    |  |
| C1—C2                 | 1.367 (5) | С5—Н5                   | 0.9300    |  |
| C1—C6                 | 1.394 (4) | C11—H11A                | 0.9600    |  |
| C2—C3                 | 1.368 (5) | C11—H11B                | 0.9600    |  |
| C3—C4                 | 1.375 (5) | C11—H11C                | 0.9600    |  |
| C4—C5                 | 1.366 (5) | C16—H16A                | 0.9700    |  |
| C5—C6                 | 1.374 (4) | C16—H16B                | 0.9700    |  |
| C6—C7                 | 1.470 (5) | C17—H17A                | 0.9600    |  |
| C7—C12                | 1.427 (4) | C17—H17B                | 0.9600    |  |
| C10-C11               | 1.479 (5) | C17—H17C                | 0.9600    |  |
| C10—C12               | 1.345 (5) |                         |           |  |
| O14···C2 <sup>i</sup> | 3.300 (5) | C5…H17A <sup>iii</sup>  | 3.0100    |  |
| O14…C11               | 3.056 (5) | С12…Н5                  | 3.0800    |  |
| O15…C5                | 2.959 (4) | C13…H11B                | 2.9300    |  |
| O15…C10 <sup>ii</sup> | 3.410 (4) | С13…Н5                  | 3.1000    |  |
| O15…C6                | 3.089 (4) | C16…H16B <sup>vii</sup> | 3.0800    |  |
|                       |           |                         |           |  |

| O9…H17C <sup>ii</sup> | 2.7900    | H1…N8                       | 2.6700   |
|-----------------------|-----------|-----------------------------|----------|
| O14…H16B              | 2.6200    | H2…O14 <sup>iv</sup>        | 2.5400   |
| O14…H11B              | 2.4400    | H4…H11C <sup>vi</sup>       | 2.5500   |
| O14…H16A              | 2.6300    | H4····C1 <sup>v</sup>       | 3.1000   |
| O14···H2 <sup>i</sup> | 2.5400    | H4····C2 <sup>v</sup>       | 2.9600   |
| 015…Н5                | 2.6200    | H5…O15                      | 2.6200   |
| N8…H1                 | 2.6700    | H5…C12                      | 3.0800   |
| N8…H5 <sup>iii</sup>  | 2.8600    | H5…C13                      | 3.1000   |
| C2…O14 <sup>iv</sup>  | 3.300 (5) | H5…N8 <sup>v</sup>          | 2.8600   |
| C5…C17 <sup>iii</sup> | 3.567 (5) | H11B…O14                    | 2.4400   |
| C5…C13                | 3.526 (5) | H11B…C13                    | 2.9300   |
| C5…O15                | 2.959 (4) | H11C····C4 <sup>viii</sup>  | 2.8900   |
| C6…O15                | 3.089 (4) | H11C····H4 <sup>viii</sup>  | 2.5500   |
| C10…O15 <sup>ii</sup> | 3.410 (4) | H16A…O14                    | 2.6300   |
| C11…O14               | 3.056 (5) | H16B…O14                    | 2.6200   |
| C13····C5             | 3.526 (5) | H16B····C16 <sup>vii</sup>  | 3.0800   |
| C17…C5 <sup>v</sup>   | 3.567 (5) | H16B····H16B <sup>vii</sup> | 2.3800   |
| C1…H4 <sup>iii</sup>  | 3.1000    | H17A…C5 <sup>v</sup>        | 3.0100   |
| C2…H4 <sup>iii</sup>  | 2.9600    | H17C…O9 <sup>ii</sup>       | 2.7900   |
| C4…H11C <sup>vi</sup> | 2.8900    |                             |          |
|                       |           |                             |          |
| N8—O9—C10             | 109.1 (2) | C1—C2—H2                    | 120.00   |
| C13—O15—C16           | 116.7 (2) | С3—С2—Н2                    | 120.00   |
| O9—N8—C7              | 105.9 (2) | С2—С3—Н3                    | 120.00   |
| C2—C1—C6              | 120.2 (3) | С4—С3—Н3                    | 120.00   |
| C1—C2—C3              | 120.6 (3) | C3—C4—H4                    | 120.00   |
| C2—C3—C4              | 119.1 (3) | C5—C4—H4                    | 119.00   |
| C3—C4—C5              | 121.0 (3) | С4—С5—Н5                    | 120.00   |
| C4—C5—C6              | 120.2 (3) | С6—С5—Н5                    | 120.00   |
| C1—C6—C5              | 118.8 (3) | C10—C11—H11A                | 109.00   |
| C1—C6—C7              | 118.7 (2) | C10-C11-H11B                | 110.00   |
| C5—C6—C7              | 122.5 (2) | C10—C11—H11C                | 109.00   |
| N8—C7—C6              | 117.5 (2) | H11A—C11—H11B               | 109.00   |
| N8—C7—C12             | 110.6 (3) | H11A—C11—H11C               | 109.00   |
| C6—C7—C12             | 131.9 (3) | H11B—C11—H11C               | 109.00   |
| O9—C10—C11            | 115.8 (3) | O15—C16—H16A                | 110.00   |
| O9—C10—C12            | 109.5 (3) | O15—C16—H16B                | 110.00   |
| C11—C10—C12           | 134.6 (3) | C17—C16—H16A                | 110.00   |
| C7—C12—C10            | 104.9 (2) | C17—C16—H16B                | 110.00   |
| C7—C12—C13            | 131.2 (3) | H16A—C16—H16B               | 108.00   |
| C10—C12—C13           | 123.9 (3) | С16—С17—Н17А                | 110.00   |
| O14—C13—O15           | 124.0 (3) | C16—C17—H17B                | 109.00   |
| O14—C13—C12           | 122.9 (3) | С16—С17—Н17С                | 109.00   |
| O15—C13—C12           | 113.1 (2) | H17A—C17—H17B               | 110.00   |
| O15—C16—C17           | 107.8 (2) | H17A—C17—H17C               | 109.00   |
| C2—C1—H1              | 120.00    | H17B—C17—H17C               | 109.00   |
| С6—С1—Н1              | 120.00    |                             |          |
|                       |           |                             |          |
| C10—O9—N8—C7          | -0.4 (3)  | C1—C6—C7—N8                 | 42.7 (3) |

| 176.9 (2)    | C1—C6—C7—C12                                                                                                                                                                             | -137.0 (3)                                                                                                                                                                                                                                                                                                                                              |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.3 (3)     | C5—C6—C7—N8                                                                                                                                                                              | -136.0 (3)                                                                                                                                                                                                                                                                                                                                              |
| 4.6 (4)      | C5—C6—C7—C12                                                                                                                                                                             | 44.3 (4)                                                                                                                                                                                                                                                                                                                                                |
| -175.9 (2)   | N8—C7—C12—C10                                                                                                                                                                            | -1.1 (3)                                                                                                                                                                                                                                                                                                                                                |
| 178.4 (2)    | N8—C7—C12—C13                                                                                                                                                                            | -179.1 (2)                                                                                                                                                                                                                                                                                                                                              |
| -178.90 (18) | C6—C7—C12—C10                                                                                                                                                                            | 178.7 (2)                                                                                                                                                                                                                                                                                                                                               |
| 0.9 (2)      | C6—C7—C12—C13                                                                                                                                                                            | 0.7 (4)                                                                                                                                                                                                                                                                                                                                                 |
| -0.8 (4)     | O9—C10—C12—C7                                                                                                                                                                            | 0.8 (3)                                                                                                                                                                                                                                                                                                                                                 |
| 0.6 (4)      | O9—C10—C12—C13                                                                                                                                                                           | 179.0 (2)                                                                                                                                                                                                                                                                                                                                               |
| -178.2 (2)   | C11—C10—C12—C7                                                                                                                                                                           | -175.7 (3)                                                                                                                                                                                                                                                                                                                                              |
| 1.1 (5)      | C11—C10—C12—C13                                                                                                                                                                          | 2.4 (4)                                                                                                                                                                                                                                                                                                                                                 |
| -1.3 (5)     | C7—C12—C13—O14                                                                                                                                                                           | -164.3 (3)                                                                                                                                                                                                                                                                                                                                              |
| 1.1 (4)      | C7—C12—C13—O15                                                                                                                                                                           | 16.2 (3)                                                                                                                                                                                                                                                                                                                                                |
| -0.7 (4)     | C10-C12-C13-O14                                                                                                                                                                          | 18.0 (4)                                                                                                                                                                                                                                                                                                                                                |
| 178.0 (2)    | C10-C12-C13-O15                                                                                                                                                                          | -161.5 (2)                                                                                                                                                                                                                                                                                                                                              |
|              | $176.9 (2) \\ -0.3 (3) \\ 4.6 (4) \\ -175.9 (2) \\ 178.4 (2) \\ -178.90 (18) \\ 0.9 (2) \\ -0.8 (4) \\ 0.6 (4) \\ -178.2 (2) \\ 1.1 (5) \\ -1.3 (5) \\ 1.1 (4) \\ -0.7 (4) \\ 178.0 (2)$ | 176.9(2) $C1-C6-C7-C12$ $-0.3(3)$ $C5-C6-C7-N8$ $4.6(4)$ $C5-C6-C7-C12$ $-175.9(2)$ $N8-C7-C12-C10$ $178.4(2)$ $N8-C7-C12-C10$ $0.9(2)$ $C6-C7-C12-C13$ $-0.8(4)$ $O9-C10-C12-C13$ $-178.2(2)$ $C11-C10-C12-C7$ $1.1(5)$ $C11-C10-C12-C13$ $-1.3(5)$ $C7-C12-C13-O14$ $1.1(4)$ $C7-C12-C13-O14$ $1.1(4)$ $C7-C12-C13-O14$ $1.78.0(2)$ $C10-C12-C13-O15$ |

Symmetry codes: (i) *x*+1, *y*, *z*+1; (ii) –*x*+1, –*y*, –*z*; (iii) *x*, –*y*+1/2, *z*-1/2; (iv) *x*-1, *y*, *z*-1; (v) *x*, –*y*+1/2, *z*+1/2; (vi) *x*-1, *y*, *z*; (vii) –*x*+1, –*y*, –*z*+1; (viii) *x*+1, *y*, *z*.