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Abstract: The reprogrammable CRISPR/Cas9 genome editing tool’s growing popularity is hindered
by unwanted off-target effects. Efforts have been directed toward designing efficient guide RNAs as
well as identifying potential off-target threats, yet factors that determine efficiency and off-target activity
remain obscure. Based on sequence features, previous machine learning models performed poorly on
new datasets, thus there is a need for the incorporation of novel features. The binding energy estimation
of the gRNA-DNA hybrid as well as the Cas9-gRNA-DNA hybrid allowed generating better performing
machine learning models for the prediction of Cas9 activity. The analysis of feature contribution towards
the model output on a limited dataset indicated that energy features played a determining role along
with the sequence features. The binding energy features proved essential for the prediction of on-target
activity and off-target sites. The plateau, in the performance on unseen datasets, of current machine
learning models could be overcome by incorporating novel features, such as binding energy, among
others. The models are provided on GitHub (GitHub Inc., San Francisco, CA, USA).

Keywords: CRISPR/Cas9; genome editing; machine learning; SHAP values; binding energy; off-targets

1. Introduction

Clustered regularly interspersed short palindromic repeats (CRISPR) and its associated
nuclease Cas9 constitute a versatile and reprogrammable genome editing mechanism that
has been repurposed as a widely used tool [1–3]. The single guide RNA can be customised
to target the DNA at any location by changing the 20 nucleotides “spacer”. This spacer is
designed to complement the “protospacer” region in the DNA, at which the Cas9 nuclease
would create a double-stranded break [4]. A 3-nucleotide protospacer adjacent motif
(PAM) is a prerequisite for probing and cleaving the target DNA by this two-component
protein–RNA system [1]. The PAM site is generally of the form of NGG (where N is any
nucleotide) for the Streptococcus pyogenes-derived Cas9 (SpCas9) protein [5,6]. The SpCas9
is a multidomain protein consisting of (i) three recognition domains that bind to the RNA
and DNA strands, (ii) two nuclease domains to cleave each of the DNA strands, (iii) a PAM
interaction domain, and (iv) an arginine-rich helix which acts as a linker [7]. Although this
system is a facile and flexible genome editing tool, there are two critical design problems
associated with this system: (i) designing a guide RNA with good activity at the intended
target region and (ii) ensuring that the selected guide does not show activity at similar
unintended sites, or in other words, has low off-target activity [8,9]. The presence of the
Cas9 off-target activity has hindered clinical applications of Cas9, which is a significant
area of focus for CRISPR/Cas9 study.

Great strides have been taken to understand the mechanism of action and, conse-
quently, develop design rules to aid experimentalists in optimising guides for the intended
applications. The field has benefited greatly over the past decade, majorly because of the
development of multiple methods to detect Cas9 off-target activity in vitro and in situ
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within the cell [10–15]. Off-target detection techniques have enabled the identification of
empirical rules that seem to drive off-target identification and activity by allowing analyses
of various off-targets generated for multiple guides under different conditions [16–19].

The availability of an experimentally derived structure and sequence of target and
off-target data has allowed computational studies to understand Cas9 activity. Many
prediction algorithms have been proposed to achieve each of the tasks mentioned above,
qualitative algorithms and scoring schemes to rank guides by on-target efficiency and
off-target predictions [20,21]. Most algorithms are based on sequence features—number
and position of mismatches (PAM proximal ends are less likely to tolerate mismatches,
while the distal ends report more tolerance for mismatches) [17]. Many machine learning
models have been built to predict the performance of guides and the prediction of their
respective off-targets based on rules depending on the system’s various sequence and
structural features [17,22–25], yet there is a gap between the predictions and experimentally
observed results. Popular machine learning models are based on features such as the
sequence at the cut-site, the number of mismatches, experimentally validated efficiency and
off-target activity of the guides. Recently, deep learning models have been reported, which
are trained on large-scale datasets, and some have included novel features for validation;
for example, DeepCRISPR, one of the earlier attempts at building a deep learning-based tool
for prediction, introduced four epigenetic features apart from the sequence features [26].
DeepCpf1 is a convolution neural net (CNN) model, and CRISPcut is a rule-based model,
both of which include chromatin accessibility as an additional feature to improve the
prediction confidence [27,28]. CRISPcut and AttnToCrispr are prediction algorithms that
also have included the cell-line information as features while predicting off-targets and
on-target efficiency, respectively [28,29]. The addition of new and important features has,
in each case, improved the model performance and confidence in the predictions. Recent
studies have reported that DNA enthalpy (a proxy for the stability of the DNA duplex)
and DNA-RNA duplex energy parameters play an essential role in predicting on-target
efficiency and off-target activity [24,30]. This study presents two new features that prove to
be important in future prediction algorithm designs: MMGBSA-based binding energy for
(i) DNA and guide RNA, and (ii) Cas9 protein–nucleic acid recognition domain and the
DNA-RNA hybrid.

2. Materials and Methods
2.1. Data Assembly

The data used for model training and validation were obtained from published meth-
ods of CRISPR/Cas9 off-target site prediction (CRISPcut) [28] and detection (CIRCLE-
seq) [11,28] (SRA identifier SRP103697). The predictions obtained from CRISPcut, run with
default parameters, for the 11 guide RNAs used in CIRCLE-seq were used to obtain a
comprehensive list of potential off-target sites in the genome for the corresponding cell
lines used in the CIRCLE-seq experiment. The experimentally validated off-target sites
were called the positive dataset, while the predictions not validated experimentally were
referred to as the negative dataset. All predictions obtained from CRISPcut were analysed
for chromatin accessibility; only accessible sequences were selected since earlier studies
have established the importance of this feature [31–33]. The data assembly and selection
are summarised in Table S3. The cleavage efficiency obtained from the CIRCLE-seq dataset
for all reported off-targets was normalised to fit a uniform scale. The features used for
model training are detailed in Table S4.

2.2. Predictive Features

Multiple predictive features were calculated for each of the sequences—mismatch
position, number of mismatches, mismatch in PAM, type of mismatch (transition, transver-
sion or indel), cell line information, percentage GC for the protospacer, percentage GC in
the seed region, chromosome number, DNA strand information and the two new proposed
binding energy features. Two MMGBSA-based binding energy features were considered—
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dG(REC3:hybrid) and dG(DNA:RNA). The dG(REC3:hybrid) was calculated between the
REC3 domain of SpCas9 and the 20-nucleotide DNA-RNA hybrid. The binding energy of
the 20-nucleotide RNA and target DNA strands was calculated as dG(DNA:RNA). The
MMGBSA calculations were carried out using the Schrödinger Maestro suite’s Prime utility
after pre-processing and the restrained minimisation of the complexes [34,35].

2.3. MMGBSA Binding Energy Calculation

The structure used as a template was obtained from RCSB PDB (ID: 4UN3). The
REC3 domain was selected (residues 447–718) along with the 20 nucleotides of the target
DNA and the 20 nucleotides of the guide RNA. The PyMOL nucleic acid mutagenesis tool
was used to create all target and off-target systems from the template [36]. The structures
were imported in the Schrödinger Maestro suite and preprocessed, hydrogen bonds were
optimised, and restrained minimisation was carried out before performing MMGBSA
calculation using the Prime utility [34,37]. The energies of molecular mechanics when
combined with the generalized Born and surface area continuum solvation (MMGBSA) is a
popular approach to estimate the binding free energy between biomolecules. MMGBSA
is an intermediate in both computational costs and accuracy, widely applied for various
systems [38–40]. The free energy is calculated and summed over solvation energy, gas-
phase energy and entropic contributions. The REC3 domain was chosen as the receptor
and the DNA-RNA hybrid was used as the ligand for the dG(REC3:hybrid) feature; DNA
was selected as the receptor for the dG(DNA:RNA) feature.

2.4. Mann–Whitney U Test

The Mann–Whitney U test, also called the Mann–Whitney–Wilcoxon test, is a non-
parametric test to compare differences of a variable between two groups when the variable
in question is not normally distributed. The test was performed on the dataset for both dG
features, the values of which served as input for the test enabled by the Pingouin Python
package (0.5.2) [41]. The common language effect size was calculated using a Python script.
The output is a U statistic and p-value, which indicates whether the groups show stochastic
equality or not. The test is also robust to outliers. The U test was used to determine if the
dG values for the experimentally validated off-targets (positive) and the non-validated
predictions (negative) were statistically different.

2.5. Machine Learning Model Implementation

Two machine learning models were implemented:

(1) A random forest regression model on a small fraction of the CIRCLE-seq dataset with
the dependant variable as normalised cleavage frequencies following their normalisation;

(2) A random forest classification model on a fraction of the CIRCLE-seq and CRISPcut
derived datasets with the dependant variable being whether the sequence is cleaved
experimentally or not.

The regression model was to determine whether the binding energy features sig-
nificantly impact the cleavage frequency of the off-target sequences. The classification
model would help determine if the energy features play a role in differentiating experi-
mentally unlikely predictions from experimentally validated off-target sequences. Since
the dG values calculation was computationally intensive and time consuming, the dataset
consisted of 186 positive examples and 126 negative examples. However, the sequences
were collected manually to ensure sufficient diversity in cleavage frequency, the number
of mismatches, and other sequence features that were previously reported as significant.
The classification model was implemented to understand if the features were sufficient to
differentiate between experimentally likely predictions and those that are not.

Multiple machine learning models were tested with varying parameters; the best
performing models were reported. All models evaluated were implemented using the
scikit-learn package in Python [42].
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2.6. Sampling Data for Training

Initial training was performed on a 75% train set, and assessment of the model per-
formance was measured on the 25% held-out test dataset. The best performing model
architecture was selected. For analysis of feature importance, since the dataset was limited,
training was carried out again with 5-fold cross validation to ensure that the unbalanced
dataset was not a limiting factor for model performance. The 5-fold cross-validation was
repeated to ensure the absence of bias for both models.

2.7. Assessing Model Performance

The regression model’s performance was evaluated by comparing the mean squared
error (MSE), mean absolute error (MAE) and the R-squared values, and the better per-
forming model was selected for feature importance determination and feature ranking.
The MAE and MSE measure the difference between the model predictions and actual
observations; hence, the ideal score is 0. The R-squared value is a correlation coefficient
measuring a linear correlation between two continuous variables. The variance weighted
measure is an explanation of the variance in the model output, the best score being 1.

The classification model was assessed using its confusion matrix:

M =

[
TP FN
FP TN

]
where TP stands for true positive, FP for false positive, FN for false negative and TN for
true negative. The accuracy of a model is defined as

Accuracy =
TP + TN

TP + TN + FP + FN

The recall is the measure of how many actual positives the model can capture, while the
precision is how many of the predicted positives are correct. The precision–recall curve, a
standard evaluation criterion for a classification model, is based on the following definitions:

Recall =
TP

TP + FN

Precision =
TP

TP + FP
The F1 score, or F-measure, is the harmonic mean of the precision and recall, conveying

a balance between the two. It is defined as

F1 score =
2 ∗ Recall ∗ Precision

Recall + Precision

2.8. Identifying Feature Importance

Interpreting the features that impact a machine learning model’s outcome is important
for enabling the predictions’ validation. In the regression and classification models used,
the feature set is small, and so is the dataset; hence, each feature’s influence must be
understood. Hence, Shapley additive explanations (SHAP) values were implemented using
the shap library in Python [43]; the TreeExplainer utility was used to analyse the random
forest regressor output and to describe the model output of the random forest classifier [44].
The shap method employs an explanatory model with feature weights to explain relative
feature importance and is adapted from game theory. It is to be noted that shap values do
not indicate causality.
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3. Results
3.1. Data Assembly and Processing

The guide RNAs and their respective off-targets were obtained from the CIRCLE-
seq data [11]. The data obtained from the prediction algorithm CRISPcut were checked
for the number of sites predicted for each guide RNA input [28]. The number of sites
predicted hold little correlation with the experimental sites (Figure S1a). However, when the
chromatin accessible sites were selected and compared, a sufficient correlation was obtained
between the number of sites predicted and the number of sites confirmed experimentally
(Figure S1b). Moreover, since chromatin accessibility has been shown in earlier studies to
be an important feature, sequences selected for the model were only from the accessible
sequences’ subset [31,45].

The sequences selected from the CIRCLE-seq (positive dataset) and CRISPcut pre-
dictions, but not found in the experimentally validated datasets (negative dataset), were
selected manually to ensure that the other features, such as the number of mismatches,
cleavage frequencies and cell lines, were sufficiently represented. The features included
for the model prediction were calculated using Python scripts, except the binding energy
features, which were calculated using the method described. The resulting dataset had
40 features and 312 data points.

To determine if the features were correlated with each other, correlation analysis was
carried out, and the results are shown in Figure S2. No significant correlation between
the features was observed. The correlation islands observed were between the cell lines
that were one-hot encoded and are hence mutually exclusive. A high correlation was
expected for the total mismatches and protospacer mismatches (referred to as number of
mismatches, #mm); the same can be stated for total PAM mismatches and types of PAM
mismatches—transversion or transition type. Hence, the features selected were unique and
not redundant.

3.2. Statistical Analysis of the Binding Energy Features

To determine if the values of the binding energies, by themselves, could be used to
differentiate between the positive and negative datasets, the Mann–Whitney U test was
carried out to compare the values between the two sets (Supplementary Table S1). The
Mann–Whitney U test is a non-parametric test to check if a feature’s values are larger for
one of the two populations being compared; it is the non-parametric equivalent of the
unpaired t test.

The values of the two binding energy features were compared for the positive and
negative datasets, where the H0 hypothesis was that the values for the two groups are
equal. Hence, the H0 hypothesis’s rejection indicated that the difference between randomly
selected values of the features from both populations is big enough to be statistically
significant (Table S1). The rank–biserial correlation coefficient indicated the difference
between total amount of favourable and unfavourable evidence. The common language
effect size is the probability that a random value from Group 1 is greater than a random
value from Group 2.

The Mann–Whitney U (MWU) test indicated that the values of the two binding energy
features—dG(REC3:hybrid) and dG(DNA:RNA)—have differing values for the positive
and negative datasets (Table S1). Moreover, it is evident from the MWU test that a random
value from the negative dataset is likely to be higher than a random value from the positive
dataset. However, since the effect size values are low, the features cannot solely be used as
a distinguishing factor for the negative and positive datasets. The difference in population
means the calculation was not enough to reliably call these features distinguishing.

3.3. Regression Model Selection and Performance Assessment

Linear, quadratic, cubic, multi-layer perceptrons and random forest regressors were
implemented with varying parameters and random states to determine the best performing
model. The dependent variable was the cleavage frequency for the off-target sequences
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obtained from the CIRCLE-seq dataset. The performance measured in the R-squared value,
mean absolute error, mean squared error and variance-weighted measure is summarised in
Table 1. The random forest regressor was chosen based on its superior performance on the
dataset, compared to the other models tested. The random forest algorithm is known for
its ability to predict well on tabular data, as is the case here. The perceptron was also tested
for multiple nodes in one and two hidden layers trained till convergence; however, it failed
to outperform the random forest regressor.

Table 1. Summary of model performances. All values shown are for the test dataset.

Metrics
Regressor

Linear Quadratic Cubic Decision Tree SVR MLP XGBoost Random Forest

Mean Absolute Error 0.19 1.23 0.51 0.21 0.19 0.19 0.17 0.06
Mean Squared Error 0.07 3.49 0.54 0.09 0.08 0.07 0.06 0.01

Root MSE 0.26 1.87 0.73 0.29 0.28 0.26 0.24 0.08
R-squared value 0.37 −32.26 −4.15 0.18 0.27 0.42 0.47 0.94

Variance weighted 0.38 −31.82 −4.13 0.24 0.27 0.47 0.55 0.94

The various model metrics listed in the first column are given for the regression models tested. For the random
forest regressor, the metrics are comparatively much better than the other three. It was selected for feature
importance analysis. SVR stands for support vector regressor. MSE stands for mean squared error. The values
reported for each regressor is after the optimisation of individual models.

The best performing regression model, the random forest regressor, was initialized on
various random states and number of trees (as shown in Figure S3). The model with the
maximum R-squared and minimum mean absolute error (MAE) was selected for further
analysis, following which 5-fold cross-validation was performed. The resulting mean
squared error (MSE) remained at 0.05, standard deviation (STD) was 0.01, and the R2 score
was 0.92, indicating that the chosen model was robust.

3.4. Explaining Feature Importance for the Random Forest Regressor

The importance and magnitude of the impact of the features on the model output
were explored in detail since the aim of the study was to establish the importance of the
two features proposed, namely the energy of binding of the REC3 domain of Cas9 to the
20 nucleotide hybrid of the target DNA and guide RNA-dG(REC3:hybrid), and the binding
energy of the 20 nucleotide DNA to the guide RNA strand-dG(DNA:RNA). The variable
importance plot (Figure 1a) generated by implementing SHAP [43,44,46] lists the most
important features in descending order. The ones on top contributed the most to the model
output and hence, have high predictive capability.

The SHAP values also help determine the relationship of the features to the output.
The SHAP variable importance plot (Figure 1b) ranked variables in descending order of im-
portance, and the horizontal spread indicated the effect of the value and the corresponding
higher or lower prediction. Each dot is a value for an instance in the data, and the colour
indicates a higher or lower value for that instance. While distance (total mismatches in
the sequence) and #mm (mismatches in the protospacer region) were redundant features
and showed a similar impact on output, Figure 1 shows that the low binding energy of
the DNA-RNA hybrid, dG(DNA:RNA), had a high impact on model output; while the
binding energy of the Cas9 REC3 domain to the DNA-RNA hybrid, dG(REC3:hybrid) was
negatively correlated with the model output. Figure 1 also indicates that the presence of
mismatch at the 6th position played an important role in determining the model output.

The SHAP variable importance plot (Figure 2) takes three values: a base value, SHAP
values, and the matrix of feature values. The base value was the average or expected
model output, and the SHAP value of a feature and the value of the feature at that instance
determined in which direction the features “push” the model output. The output value
highlighted is the model output for this instance. The features in red direct the output
higher, while those in blue push the predictions lower. The SHAP plot for three instances
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are shown; since each feature plays a different role for each instance, it is essential to
consider the local as well as global relevance of the feature.
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The SHAP dependence plot (Figure 3) describes partial dependence between a feature
selected, and the reference feature was chosen automatically by the script with which the
chosen feature interacts the most. The dots mark each instance of the chosen variable,
and the colour of the dots indicate the value of the reference feature for that instance. In
Figure 3a,b, there is no clear trend between the two features; however, in Figure 3a the
absence of a mismatch at position 4 and the lower values of dG(DNA:RNA) have a higher
impact on the model output. Figure 3b shows that the partial dependence between the two
features is not significant and no trend can be observed. The spread of the plot indicates the
relationship between the two features. As in Figure 3c, the vertical dispersion at a particular
value shows the interaction effect between the two features. Moreover, an approximately
negative correlation exists between the variables, and a smaller Hamming distance (total
mismatches in the off-target) would have more influence on the model output; it also
corresponds with lower values of dG(DNA:RNA).
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indicate a correlation with dG(DNA:RNA) values, and the plot also shows a negative correlation of
the values of the distance with the output variable.

3.5. Classifier Model Selection and Performance Assessment

The classifier models were built to study the contribution of the binding energy features
to machine learning models that can distinguish between positive (sequences that are off-
target sites in experiments) and negative datasets (sequences predicted to be off-targets but
were not found in experiments). Various classification models were trained on the dataset,
optimised for each type of model (the best performing model’s accuracy summarised in
Table S2). Since the random forest classifier performed well on the 25–75 test-train split, the
model was evaluated after 5-fold cross validation. The classifier yielded good accuracy and
was implemented for further analysis. The model metrics for the random forest classifier
model are summarised in Table 2.

Table 2. Model performance of the random forest classifier, measured on test dataset.

Model Metrics Score on Test Data Overall Score

Accuracy 0.86 0.97
Precision 0.88 0.98

Recall 0.94 0.96
F1 score 0.91 0.97

The accuracy, precision, recall and F1 scores are calculated as mentioned in the Methods section. The accuracy
reported is after 5-fold cross validation. The overall score is for combined test and train datasets.
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The performance of the random forest classifier was tested using various parameters
as shown in Figure 4. The model predicted the correct classes for each label reliably. The
precision–recall curve and receiver operating characteristic (ROC) cover over 95% area
under the curve, indicating a robust classification model. The next best performing model
(support vector machine classifier) did not perform better, even on 5-fold cross validation,
and hence was not evaluated further. Since the study aimed not to build an off-target
determination model, but rather discern the importance of energy features, more complex
models were not tested.
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Figure 4. (a) Confusion matrix for the random forest classifier, vertical axis is for predicted labels and
the horizontal axis states the true labels. The values are ratios of the number of instances predicted to
the total instances in the class. (b) Precision–recall curve, shown in orange which has an area under
the curve of 0.98 for the whole dataset, (c) receiver operating characteristic (ROC) also shown in
orange for the test dataset, which plots the true positive rate against the false positive rate. The area
under the curve (AUC) is 0.96. The dashed blue line across the diagonal shows 50% accuracy.

3.6. Explaining Feature Importance for the Classifier

The importance of the features in a well-performing classification model that can learn
the difference between the positive and negative datasets will determine if the binding
energy features play a significant role in determining the model output. The SHAP value
plots for each instance are not shown for lack of space, but three examples are shown in
Figure 5. The base value, determined as the average from the training dataset, is influenced
by the features listed in order of magnitude of impact. Features in blue lower the output,
while features in red increase the output. In all instances, energy features play an important
role. However, since feature importance for each datapoint varies, it is important to see
each feature’s global impact, which is shown in Figure 6.

This SHAP value plot ranks the features in decreasing order of importance, while the
spread across the horizontal determines the impact on the model for higher values (in red)
and lower values (in blue). As is shown in Figure 6, the energy features are ranked high.
Lower values of both binding energies are characteristic of the positive dataset. Hence,
lower values of the binding energy tend to result in a positive impact on the model output;
here, it is the classification in the positive dataset.
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4. Discussion

The accurate prediction of CRISPR/Cas9 activity is crucial to not only designing
experiments for various applications but also understanding the mechanism of Cas9 activity
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in vivo. Computational methods for predicting activity, off-targets and guide design
have advanced significantly in recent times, yet there remains room for improvement
regarding precision and accuracy. Prediction models would also benefit from improved and
more sensitive Cas9 off-target detection methods to better distinguish between sequences
likely to be acted upon by Cas9 (here, the positive dataset). This study reported that the
incorporation of novel features allows for creating reliable prediction models. Moreover,
the identification of novel features also sheds light on the factors influencing Cas9 activity
in vivo.

The two major binding events responsible for Cas9 activity are (1) the binding of the
Cas9 protein to the guide RNA, allowing DNA interrogation for complementary sequences,
(2) followed by binding to the complementary sequence, which allows nuclease activa-
tion and a subsequent DNA double-stranded break [47]. Significantly accelerated by the
availability of X-ray and cryo-EM structures, computational methods, such as QM/MM
and molecular dynamics (MD), have elucidated the pre-catalytic and catalytic structures
of Cas9 [48,49]. Enhanced MD simulations have shed light on the concerted mechanisms
of HNH and RuvC domain activities [50–52]. The HNH domain via an Mg2+ ion cuts the
target strand, while the RuvC domain houses two metal ions coordinated by conserved
residues, which mediate a break in the non-target strand [52]. The varying tolerance of the
mismatches across the guide-target heteroduplex has also been investigated [18,53,54]. The
REC3 domain is known to interact with the guide RNA-target DNA complex, investigate
the complementarity between the two, and tolerate mismatches [55,56]. Mismatches were
seen to be tolerated towards the centre of the guide–target hybrid [53]. In contrast, mis-
matches towards the end of the hybrid induced an extended opening of the heteroduplex
and leading to a conformational lock with the “L2” loop region [54]. Hence, the interactions
of the guide RNA with target DNA and the heteroduplex with the REC3 domain of Cas9
protein have been shown to play a decisive role in nuclease activation, leading to Cas9
activity. The introduction of mismatches alters the interactions, leading to altered Cas9
activity. Understanding the factors that govern the RNA:DNA interactions is critical to
elucidating biological function that it is involved in [57–60]. Hence, to quantify the interac-
tions, DNA-RNA hybrid binding energy and Cas9-hybrid binding energy were estimated
and analysed. The scores were then included as features alongside sequence features, and
machine learning models were built for Cas9 activity prediction. Well-performing models
were selected to analyse the importance of the new energy-based features, if any.

The random forest algorithm outperformed the others tested on both classification
and regression tasks. The improved performance could be attributed to the limited number
of features on each split. When compared to individual decision trees, which have a
higher bias, random forests tend to perform better because of the variance reduction due to
bagging. The features used, as the results describe, have minimum redundancy. The energy
features prove vital in driving model output in both regression and classification tasks.
This feature importance was also observed in the second-best performing classification
model: a support vector-based machine classifier (a second regressor was not evaluated
due to the performance being subpar, not reliable enough to study feature importance). The
importance of the number of mismatches in the seed region has already been established in
multiple studies [61,62]. Interestingly, a higher number of transversions was shown not to
be tolerated in the experimental dataset, indicating a preference in the sequences (Figure 6a).
However, a bigger dataset is required to be tested to establish this. The “distance” feature’s
trend may also be inferred intuitively since lower values of total mismatches are likely to be
observed in the positive dataset. The energy features’ contribution was novel and ranked
high consistently in multiple results, enough to be considered important. The performance
of the reported random forest classifier was also compared against existing methods for
off-target prediction and was found to perform better (Figure S4).
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5. Conclusions

In this study, the binding energy of the Cas9 REC3 domain and the 20-nucleotide
DNA-RNA hybrid, and the binding energy of the 20 nucleotides of target DNA to guide
RNA were novel features and proposed to be important for Cas9 activity. In the regression
model, which predicts Cas9 cleavage frequency, and the classification model, which predicts
Cas9 activity, both these features were shown to be important in driving model output.
The same importance of the features was observed in the classification model, which can
reliably distinguish between experimentally likely and unlikely off-target sequences. The
other features used in the model were standard features used in most studies: the number
and position of mismatches and type of mismatch, among others. The binding energy
features were not redundant and did not show correlation with the other features, and
hence they can be implemented in future algorithms for improved off-target prediction and
guide-RNA design algorithms.

Supplementary Materials: The following supporting information [23,24,28,63–65] can be down-
loaded at: https://www.mdpi.com/article/10.3390/biom12081123/s1, Figure S1: Features of the
predicted dataset. On the vertical axis is the number of predicted sequences and on the horizontal
axis is the number of experimentally validated sequences. (a) The number of CRISPcut predictions
vs. CIRCLE-seq off-targets which shows poor correlation as can be determined by the low R2 value of
0.22. Each dot represents a unique target sequence for which the number of experimentally validated
off-targets, plotted on the X-axis are compared against the number of predicted off-targets using the
CRISPcut tool, as plotted on the Y-axis (b) Shows only the number of accessible predictions plotted
against number of CIRCLE-seq off-target sites for a guide, high correlation denoted by an R2 value of
0.84 can be observed here; Figure S2: Correlation plot of the features used for model training. The
dark blue diagonal indicates self-correlation. There is a poor correlation between most feature pairs,
but a few high correlation islands in dark blue and yellow colour can be seen. Since cell lines are
mutually exclusive, the correlation between the cell lines will be negative. The dark blue islands are
between PAM mismatches, PAM transitions and PAM mismatch positions, which can be expected;
Figure S3: The mean absolute error (MAE) multiplied by 10, and R2 value plotted for each model
tested, various models were tested with increasing n_estimators and random states. The dashed grey
line marks the maximum R2 and minimum error instance, which corresponds to n_estimators of
18 and a random state of 6; Figure S4: The best-performing random forest classifier was compared
with the existing off-target prediction models for predicting the off-targets of a randomly selected
EMX1 locus. The precision was calculated against experimentally validated sequences obtained
from CIRCLE-seq. The off-targets were obtained from the CRISPOR [1,2], CRISTA [3], Elevation [4],
ge-CRISPR [5] and CRISPcut [6] webservers (accessed on 13 June 2021); Table S1: Results of the
two sample Mann–Whitney U test; Table S2: Random forest classification model performance sum-
mary; Table S3: Details of negative dataset; Table S4: Complete set of features used in the model
learning process.
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