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ELMO proteins transduce G protein-coupled receptor signal to control
reorganization of actin cytoskeleton in chemotaxis of eukaryotic cells
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ABSTRACT
Chemotaxis, which is chemoattractant-guided directional cell migration, plays major roles in
recruitment of neutrophils, the metastasis of cancer cells, and the development of the model organism
Dictyostelium discoideum. These cells share remarkable similarities in the signaling pathways by which
they control chemotaxis. They all use a G protein-coupled receptor (GPCR)-mediated signal
transduction pathway to sense the chemotactic gradient to guide cell migration. Diverse chemokines
activate Rac through conserved GPCR signaling pathways. ELMO proteins are an evolutionarily
conserved, essential component of the ELMO/Dock complex, which functions as a guanine nucleotide
exchange factor (GEF) for small G protein Rac activation. The linkages between the GPCR-initiated
gradient sensing compass and the Rac-mediated migrating machinery have long been missing. Here,
we summarize recent findings on ELMO proteins that directly interact with G protein and transduce
GPCR signaling to control the reorganization of actin-based cytoskeleton through regulating Rac
activation during chemotaxis, first in D. discoideum and then in mammalian cancer cells. This
represents an evolutionarily conserved signaling shortcut from GPCR to the actin cytoskeleton.

KEYWORDS
chemotaxis; ELMO/Dock
complex; gradient sensing;
guanine nucleotide
exchange factor (GEF); G
protein coupled receptors
(GPCRs); heterotrimeric G
protein; small G protein

Introduction

Chemotaxis, which is directional cell migration guided
by chemoattractant gradients, plays major roles in the
recruitment of neutrophils, the metastasis of cancer cells,
and the development of the model organism Dictyoste-
lium discoideum.1,2,3 The molecular mechanisms of che-
motaxis in mammalian cells and in D. discoideum are
evolutionarily conserved, and D. discoideum provides a
powerful model system in which to identify new compo-
nents and to reveal their functions in chemotaxis. Neu-
trophils, cancer cells, and D. discoideum all utilize G
protein-coupled receptor (GPCR)-regulated signal trans-
duction pathways to sense chemotactic gradients and
control directional cell migration.4,5,6 Binding of chemo-
attractants to their receptors induces the activation of
heterotrimeric G-proteins.7,8,9 Active Ga and Gbg acti-
vate their downstream effectors, and this leads to the
activation of small GTPase Rac, a subclass of small
GTPase Rho that regulates many aspects of intracellular
actin dynamics.10 Active Rac then activates Wiskott-
Aldrich syndrome proteins, such as WASP, N-WASP,
WAVE, and SCAR.11 Activated WASP proteins interact

with the Arp2/3 complex, a 7-subunit protein complex
that includes actin-related proteins Arp2 and Arp3 and
controls nucleation of actin polymerization and branch-
ing of filaments, and increase its nucleating activity.12

Consequently, activation of GPCRs promotes actin poly-
merization. However, the linkages between the GPCR/G
protein-initiated gradient sensing apparatus and the
Rac-controlled migration machinery is just beginning to
be revealed.

Activation of Rac proteins promotes the growth of
actin filaments that drive cell migration. Rac proteins,
like any other small GTPases including Ras and Rho,
cycle between GDP- and GTP-bound states. They acti-
vate their effectors when they are in their GTP-bound
(active) state. Two large classes of regulatory proteins
control the activation state of small GTPases. The
GTPase-activating proteins (GAPs) bind to GTP-bound
Rac proteins to enhance their GTPase activity, thereby
converting them to the inactive GDP-bound state. Con-
versely, guanine exchange factors (GEFs) promote nucle-
otide exchange from GDP to GTP on small GTPases.
The GEFs for Rho/Rac GTPases are divided into the Dbl
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and Dock (Dictator of cytokinesis) families. The Dbl
family of GEFs is characterized by the presence of the
Dbl domain, which is critical for GDP/GTP exchange
activity.13 The Dock GEFs were discovered later and are
characterized by the presence of 2 evolutionarily con-
served domains: the lipid-binding Dock homology
region-1 (DHR-1) and the GEF DHR-2 modules.14,15,16

Because they lack a Dbl domain, Dock GEFs are often
referred to as “atypical GEFs.” Based on sequence simi-
larity and domain organization, the 11 Dock members
are classified into 4 subgroups: DockA (Dock1/2/5;
Dock1 is also called Dock180); DockB (Dock3/4; Dock3
is also called presenilin binding partner, PBP or Modifier
of Cell Adhesion, MOCA); DockC (Dock6/7/8); and
DockD (Dock9/10/11, also called Zizimin (Ziz)-related
proteins).16 A key feature of the Dock GEFs is their spec-
ificity toward Rac and/or Cdc42, in contrast to Dbl fam-
ily members, which can also act as GEFs for other
members of the Rho family including RhoA.15 Active
GTP-bound Rac proteins activate the activators of Arp2/
3 complexes, such as WASP, N-WASP, and WAVE, and
promote actin polymerization for cell migration.

ELMO proteins, identified as the binding partner of
Dock proteins, form an evolutionarily conserved and
ancient family that includes members in D. discoideum,
C. elegans, fungi, Drosophila, and higher vertebrates.17,18

The first member identified, Ced-12, was discovered in a
genetic screen to identify components required for
engulfment of dead cells during development of C. ele-
gans.19 The Ced-12 gene encodes a protein that is essen-
tial for engulfment and cell motility, and thus it was
named ELMO. Other members of the ELMO family
were later found in many organisms.14,17,18 Extensive
studies in C. elegans and in mammalian cells showed
that ELMO and Dock proteins form a complex that
serves as a GEF for Rac proteins.14,19 Although ELMO
proteins do not have Rac GEF activity, formation of the
complex of ELMO and DockA/B proteins is essential for
the GEF activity of Dock proteins and for Rac-induced
cell migration. It appears that ELMO and Dock often
form a complex, which exists in 2 different states: a
“closed” state that has little GEF activity for Rac proteins,
and an “open” state that enables the complex to function

as a Rac GEF [20] (Fig. 1). Activation of cell surface
receptors, such as GPCRs, stimulates the GEF activity of
ELMO/Dock complexes, which in turn activate Rac pro-
teins for cell migration. However, the mechanism by
which the GPCR/G-protein machinery regulates the
ELMO/Dock complex has not been fully understood.

In this review, we summarize the function of ELMO
proteins as a linkage that transduces GPCR signaling to
Rac activation, as discovered first in D. discoideum and
later in the mammalian system.21,22,23 These findings
present an evolutionarily conserved signaling pathway
that connects the GPCR-mediated gradient-sensing
compass and the moving machinery of eukaryotic cells
for directional cell migration.

GPCR-mediated functions of ELMO/Dock complexes
in the model organism D. discoideum

The signaling mechanisms linking the activation of
GPCR to the reorganization of actin cytoskeleton are
well-characterized in D. discoideum. Activation of cAR1,
the receptor for chemoattractant cAMP in D. discoi-
deum, leads to the dissociation of the G-proteins into
Ga2 and Gbg subunits,8 which in turn control several
pathways that regulate the actin-based movement appa-
ratus for chemotaxis. For example, the cAR1/G-protein
machinery activates Ras proteins that regulate 4 pivotal
effectors: PI3K, PLA2, TORC2 and sGC
(Fig. 2).24,25,26,27,28 Four of the effectors have been shown
to contribute to chemotaxis, while it is still not clear how
they regulate Rac activity. Active Rac stimulates Arp2/3
complex, which initiates the branching of actin filaments
from existing ones; this results in the growth of the den-
dritic actin-network pushing the membrane forward in
the leading front of the chemotaxing cells.10,29 Thus, it is
important to establish the linkage between chemoattrac-
tant GPCRs and the ELMO/Dock complex, which guides
the reorganization of actin-based migration machinery
during chemotaxis.

ELMO and Dock proteins are evolutionarily con-
served and present in a wide variety of eukaryotes,
including D. discoideum, C. elegans, fungi, Drosophila,
and higher vertebrates.14,18 D. discoideum encodes 8

Figure 1. ELMO/Dock complex in “closed” inactive and “open” active states.
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genes for Dock-like proteins.30 Among them, DdDockA–
D appear to belong to the subfamily of Dock1-related
proteins (DockA/B), and DdZizA–D belong to the sub-
family of DockC, zizimin-related proteins (Fig. 3A). As
noted, DdDock proteins do not possess the evolution-
arily conserved DHR-1 domain, which binds PIP3 and
plays a critical role in PIP3 membrane recruitment.16 D.
discoideum has 6 genes (ELMOA–F) with the ELMO
domain and distinct features17,31 (Fig. 3B). ELMOA and
ELMOB are similar to mammalian ELMOD1 and
ELMOD2.17 A <70 aa C-terminal domain in ELMOA is
conserved in human ELMO1-3. ELMOC has a coiled
coil domain in its N terminus. In ELMOD, 4 ankyrin
repeat regions are located toward its C-terminus. Both

ELMOE and ELMOF have internal repeats (IR), a feature
typically found in many D. discoideum proteins, and
their ELMO domains are most closely related to human
ELMO1-3.

ELMOE interacts directly with the Gb subunit and
transduces GPCR signal to the actin cytoskeleton by reg-
ulating RacB activation. ELMOE is the most closely
related to human ELMO1-3. Not surprisingly, we found
that ELMOE consistently associates with DdDockC and
DdZizA to form an ELMO/Dock complex that serves as
a GEF for RacB in D. discoideum.23 Activation of cAR1
results in ELMOE-mediated activation of RacB, which in
turn leads to actin-polymerization during chemotaxis. In
resting D. discoideum cells, ELMOE/DdDock complexes

Figure 3. ELMO and Dock proteins in Dictyostelium discoideum. (A) Six ELMO domain-containing proteins with distinct domain composi-
tion in D. discoideum. (B) Eight Dock domain-containing proteins in D. discoideum.

Figure 2. GPCR-mediated signaling network regulates actin cytoskeleton.
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reside in the cytoplasm. To define how they signal, it is
key to understand how they reach the membrane.
DdDock proteins do not have a PIP3-binding DHR-1
domain or a Ras binding domain (RBD).16,32 Consistent
with the above, cAMP-induced membrane translocation
of ELMOE is also observed in rasC¡:rasG¡ cells, in
which both rasC and rasG genes are disrupted and little
PIP3 is generated in response to cAMP stimulation.33

This result indicates that Ras and PIP3 play no role in
membrane recruitment of the ELMOE/Dock complex.
Importantly, the membrane recruitment of ELMOE
requires Gb.23 GPCR activation also promotes the asso-
ciation between Gb and ELMOE, providing the first
direct link between the ELMO/Dock complexes and
GPCR signaling. Lacking the N-terminal part, ELMOE
fails to associate with Gb or be recruited to the mem-
brane, but it still forms a complex with Dock1. This
result indicates that Gb might play an essential role in
membrane recruitment and subsequent activation of
ELMOE/DdDock GEF activity. It is possible that, as with
human ELMO1, the binding of Gb to ELMOE through
its N-terminal facilitates recruitment and relieves autoin-
hibition of the ELMOE/DdDock complex and properly
positions the complex for optimal Rac activation,20,32,34

although ELMOE lacks a clearly definable ELMO inhibi-
tory domain (EIM) in its N-terminal part.23 Future work
is required to understand the molecular mechanism of
Gb and ELMOE/DdDock interaction. In mammalian
cells, it was speculated and has been recently verified
that the G protein/ELMO/Dock complex is also con-
served and plays a crucial role in chemokine GPCR-con-
trolled directional cell migration and metastasis of breast
cancer.21,22

Of note, ELMOA, the other studied ELMO protein in
D. discoideum, functions unexpectedly as a negative reg-
ulator of actin polymerization during phagocytosis and
cell migration.31 Loss of elmoA (elmoA¡) results in an
overall increase in phagocytosis, which is dissimilar to
the defects in engulfment of dead cells exhibited by the
C. elegans ced-12 (ELMO) mutant. In addition, elmoA¡

cells have increased pseudopod formation and elevated
F-actin localization within the pseudopods. The mutant
is defective in maintaining cell polarity and in suppress-
ing the formation of lateral pseudopods, which are essen-
tial for effective chemotaxis. ELMOA associates with
cortical actin and myosin II heavy chain, which are
known to enhance cell cortical rigidity, thereby ensuring
cell polarity.31 ELMOA forms a strong clade with human
ELMOD1–D2,17 which are different from ELMOs func-
tioning as Rac GEF and which display GAP activity for
the small GTPases Arls and Arfs.35,36,37 While GAP
activity has not been analyzed, ELMOA negatively regu-
lates actin polymerization, a downstream target of Rac.

We speculate that ELMOA may function to inhibit local-
ized Dock-mediated GEF activity and/or may act as a
GAP, similar to the function of human ELMODs and
consistent with its evolutionary proximity to these
human proteins.

GPCR-mediated functions of ELMO/Dock complexes
in mammalian systems

The mammalian family of ELMO domain-containing
proteins is defined by the presence of the ELMO domain
and consists of 6 members. These 6 proteins, based on
protein size and domain architecture, have been divided
into 2 subgroups, ELMOs and ELMODs.35 ELMOs
(ELMO1-3) contain multiple domains (Fig. 4A). The N-
terminal Ras binding domain (RBD) and ERM binding
domain (ERM) bind to RhoG, IpgB1, and ERM pro-
teins.38,39,40 The middle ELMO domain has no assigned
function, but is conserved in the ELMO family. The C-
terminal PH domain mediates the association of ELMO
and Dock to form an ELMO/Dock complex. The pro-
rich C-terminus interacts with the SH3 domain of Dock
proteins and maintains autoinhibition of Dock GEF
activity.41 The RacGEF function of ELMO proteins was
mostly obtained from ELMO1 and ELMO2, and little is
known about ELMO3. The ELMODs (ELMOD1-3) con-
sist of little more than the ELMO domain. Not surpris-
ingly, then, the sequence homology between ELMOs and
ELMODs lies only within the ELMO domain. Identified
as the binding partner of Dock proteins, ELMOs are
required for ELMO/Dock complex formation and Dock
RhoGEF activity.16 Excellent reviews have summarized
the domain composition and function of Dock pro-
teins.14,15,16 Of the 4 subgroups, DockA/B have con-
served domain composition: an N-terminal SH3
domain, a middle phospholipid-binding DHR-1 domain
and RacGEF DHR-2 domain, and a C-terminal proline-
reach motif (Fig. 4B). DockA/B associate with ELMOs to
activate Rac and are involved in cell migration, adhesion,
and invasion and metastasis of cancer.22,42,43,44,45 The N-
terminal SH3 domain of DockA/B functions as an intra-
molecular inhibitor of the exchange factor; this inhibi-
tion can be relieved by various mechanisms, including
the binding of Dock and ELMO proteins.15,41 In contrast
to the ELMOs, which form complexes with Dock pro-
teins and function as Rho GEFs, ELMODs have GAP
activity toward Arls and Arfs.35,36,37

ELMO proteins regulate the activity and spatiotempo-
ral localization of Dock GEFs in GPCR-mediated chemo-
taxis.14,21,22,46 As was well-summarized in excellent
reviews,14,16 the activity of Dock GEFs is regulated
through a variety of mechanisms, including phosphory-
lation and association with membrane proteins and/or
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lipids. GPCR activation also recruits and activates Dock
GEFs to the membrane through their lipid binding.
Dock2 is a major Rac GEF that controls motility and
polarity during chemotaxis in neutrophils.47 Chemoat-
tractants activate PI3K and generate PIP3 on the inner
leaflet of the membrane; the PIP3 binds with the DHR1
domain of Dock2 and consequently recruits Dock2 from
the cytoplasm to the membrane. However, the later accu-
mulation of Dock2 in the leading edge and the subse-
quent local actin polymerization is through binding to
phosphatidic acid (PA).46 Dock1 has also been shown to
be recruited and to function as a Rac GEF in a PA-
dependent fashion.48 It is still not clear whether ELMO
proteins play any role in lipid-mediated membrane
recruitment of the Dock/ELMO complex. We and others
have shown that ELMO1 plays a critical role in recruiting
the ELMO1/Dock1 complex to the membrane and sub-
sequently activating GEF activity though its interaction
with G protein.21,22,23,49 In HL60, Hela, HEK293 and
breast cancer cells, ELMO1 consistently associates with
Dock1 and localizes predominantly in the cytoplasm.21,22

Various chemoattractants induce the membrane translo-
cation of ELMO1. Activation of GPCRs also promotes
the association of ELMO1 and Gai and/or Gb subunits
in these cells. The association of ELMO1 and G protein
subunits is required for chemotaxis and invasion during
metastasis of breast cancer cells in vivo. By determining
the domain requirement of ELMO1 for the association
capability with Gb, we found that the N-terminal region

of ELMO1, including a Ras binding domain (RBD) and
an ELMO inhibitory domain (EIM), is required for
ELMO1/Gbg association.22 Although the domain of
ELMO1 required for its interaction with Gai remains
unclear, the association between ELMO1 and G subunits
is required for the GEF activity of the ELMO1/Dock1
complex for Rac activation. This is consistent with the
findings that activated GTPases of the Rho and Arf fami-
lies, RhoG and Arl4a, use ELMO1 as effectors by binding
to the Ras-binding domain (RBD), and this contributes
to both relieving the autoinhibition of Dock1 and also
positioning the ELMO/Dock1 complex at the membrane
for optimal Rac activation.32,34 New questions are emerg-
ing from the above studies, such as, how does an ELMO
protein prioritize its interaction with G subunits? If they
coexist in the same cells, which interaction is more
important in the defined microenvironment? Future
work is required to reveal the molecular mechanism of
the association of Gai and ELMO proteins and of the
preference or conditions of the association of ELMO
protein with G protein subunits.

Recent studies indicate that ELMO2 also has a Rac
GEF function and is involved in polarity, adhesion, and
cell migration, while little is known about ELMO3. In
Madin-Darby canine kidney cells, ELMO2 recruits
Dock1 to initial cell-cell contact.50 In cell-cell contact,
both ELMO2 and Dock1 are essential for the rapid
recruitment and spreading of E-cadherin, actin reorgani-
zation, localized Rac and Rho GTPase activities, and the

Figure 4. ELMO proteins in mammals. (A) Six ELMO domain-containing proteins in mammals are divided into 2 subgroups: ELMOs
(ELMO1-3) and ELMODs (ELMOD1-3). Conserved domain structures are shared among ELMOs, while ELMODs have little more than an
ELMO domain. (B) The conserved domain structure of DockA/DockB: a N-terminal SH3 domain, a middle PIP3-binding DHR-1 domain
and RacGEF catalytic domain of DHR-2, and a C-terminal proline-rich motif (PxxP). (C) Various mechanisms of GPCR-mediated membrane
recruitment and activation of the ELMO/Dock complex.
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development of strong cell-cell adhesion. Sun et al. iden-
tified ELMO2 as the interacting protein of ClipR-59
using a yeast 2-hybrid screen, and found that interaction
of ClipR-59 with ELMO2 enhanced Rac1 activation.51

Recently, it has been shown that ELMO2 is required for
insulin-induced Rac1 GTP loading.52 It has been
reported that there is differential distribution of ELMO1
and ELMO2 in the developing mouse brain.53 Little is
known about GPCR-mediated ELMO2 function in these
processes.

ELMODs, in contrast to the ELMOs involved in
unconventional Rac GEF function, have GAP activity for
small GTPases Arls and Arfs. The Arf family consists of
at least 30 members in mammals, including 6 Arfs, 22
Arls (Arf-like proteins), and 2 Sar proteins.54 Arf and Sar
regulate membrane trafficking,55 while Arls are involved
in diverse cellular functions, including energy metabo-
lism, cytoskeleton dynamics, cytokinesis, lipid droplet
formation, cilia function, and recruitment of Golgins to
the Golgi.56,57,58 ELMOD2 was first purified based on its
GAP activity for Arl2 and is the first GAP identified that
shows activity toward 22 mammalian Arl proteins.35

Consistent with the above, ELMOD1 also shows GAP
activity toward Arl2. Surprisingly, ELMOD2 also exhibits
GAP activity toward Arf1 and Arf6, although it lacks the
unique canonical cysteine-rich zinc finger Arf GAP sig-
nature found in every other known Arf GAP protein.59,60

Recently, it was revealed that the Arf GAP activity of the
ELMOD family lies within the ELMO domain and that a
highly conserved arginine residue is critical for both the
biochemical and cellular GAP activity of ELMODs.36 It
has also been shown that ELMOD1-3 display wide varia-
tions in GAP activity toward 6 different Arf mem-
bers.35,37 The specific activities of ELMODs toward
multiple members of the Arf family might contribute to
their different roles in cellular functions. Neutrophils
express Arf1 and Arf3.61 Chemoattractant fMLP and leu-
kotriene B4 trigger the membrane recruitment of Arf1
and the activation of phospholipase D (PLD) in neutro-
phils.62,63 Activated PLD hydrolyzes to produce phos-
phatidic acid (PA), a key molecule that recruits the
ELMO/Dock2 complex.46 These results indicate potential
crosstalk between ELMOs and ELMODs in GPCR sig-
naling. Further work is required to uncover the functions
of ELMODs in GPCR-mediated Arf signaling and the
functions of ELMOs in GPCR-mediated chemotaxis.

From the model organism D. discoideum to mamma-
lian cells, cells utilize an evolutionarily conserved ELMO
protein as the mediator to transduce GPCR signal
through direct interaction with heterotrimeric G protein.
Because very little is known about how Ga and Gbg sub-
units interact and activate their effectors, future investi-
gation of the molecular mechanisms of ELMO/G protein

interactions, the preference of ELMO proteins for the
defined G protein subunits, and the unconventional
GAP activity of ELMO proteins will shed new light on
the mechanism by which ELMO protein transduces
GPCR/G protein signal.

Closing remarks

Eukaryotic cells often use GPCR-mediated signal trans-
duction pathways to sense chemotactic gradients and
guide directed cell migration. ELMO proteins are an evo-
lutionarily conserved, essential component of the
ELMO/Dock complex, which functions as a guanine
nucleotide exchange factor (GEF) for small G protein
Rac activation. The linkages between the GPCR/G pro-
tein-initiated gradient sensing machinery and the Rac-
mediated actin polymerization machinery are not fully
understood. Here, we summarize that eukaryotic cells
use the direct association of ELMO and G proteins to
transduce GPCR signal to effect dynamic remodeling of
actin cytoskeleton through regulating Rac activation dur-
ing chemotaxis as a general strategy in eukaryotic cells.
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