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Abstract: The epitranscriptome encompasses all post-transcriptional modifications that occur on
RNAs. These modifications can alter the function and regulation of their RNA targets, which, if dys-
regulated, result in various diseases and cancers. As with other RNAs, miRNAs are highly modified
by epitranscriptomic modifications such as m6A methylation, 2′-O-methylation, m5C methylation,
m7G methylation, polyuridine, and A-to-I editing. miRNAs are a class of small non-coding RNAs
that regulates gene expression at the post-transcriptional level. miRNAs have gathered high clinical
interest due to their role in disease, development, and cancer progression. Epitranscriptomic modifica-
tions alter the targeting, regulation, and biogenesis of miRNAs, increasing the complexity of miRNA
regulation. In addition, emerging studies have revealed crosstalk between these modifications. In
this review, we will summarize the epitranscriptomic modifications—focusing on those relevant to
miRNAs—examine the recent crosstalk between these modifications, and give a perspective on how
this crosstalk expands the complexity of miRNA biology.

Keywords: miRNA; epitranscriptomics; cancer

1. Introduction

The central dogma depicts a straightforward transfer of genetic information from
DNA to RNA to proteins [1]. However, the cell represents a dynamic environment in which
these biological macromolecules can be modified through myriad processing events. The
epitranscriptome specifically encompasses the post-transcriptional modifications of coding
and non-coding RNAs such as piwi-interacting RNAs (piRNAs), transfer RNAs (tRNAs),
ribosomal RNA (rRNA), and microRNAs (miRNAs) [2].

Many RNA processing events have been characterized within cells, including N6-
methyladenosine (m6A), 2′-O-methyl, 5-methylcytidine (m5C), 7-Methylguanosine (m7G),
poly-uridine (poly-U), and adenosine-to-inosine (A-to-I) nucleotide substitutions [3]. These
post-transcriptional modifications display a fundamental impact on cell physiology, such
as the development of the nervous system [4], stem cell differentiation [5], circadian clock
regulation [6], and heat shock response [7].

Unclear for decades, part of the functional significance of these RNA modifications
has been recently uncovered. These modifications play a fundamental role in mRNA
decay, splicing, alternative polyadenylation, export, stabilization, and translation [8], and
perturbations to these finely-tuned events have even been associated with a wide range of
diseases, including the progression of human cancers [3].

Similar to other RNAs, miRNAs are modified with epitranscriptomic modifications that
can alter their functionality, regulation, and biogenesis [9]. miRNAs are short non-coding
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RNAs (sncRNAs) that are master regulators of gene expression at the post-transcriptional
level. Since their initial discovery, thousands of miRNAs have been identified throughout
eukaryotes, some with a high degree of sequence conservation [10]. miRNAs are first
transcribed by RNA polymerase II (pol II), which binds either to dedicated miRNA gene
loci or intronic regions of known protein-coding genes and transcribes a primary miRNA
(pri-miRNA) [11]. The pri-miRNA transcript is subsequently processed through a series of
cleavages to produce the mature miRNA [11,12]. While still in the nucleus, the long pri-
miRNA transcript is trimmed into an intermediate hairpin structure (precursor miRNA/pre-
miRNA) by the Microprocessor, a complex composed of the RNase III enzyme Drosha and
DiGeorge syndrome critical region 8 (DGCR8) binding protein [11,12]. The pre-miRNA
is exported from the nucleus, through the nuclear transport receptor exportin-5, to the
cytoplasm, where it is cleaved by the RNase III enzyme Dicer to generate the resultant
mature miRNA duplex [11,12]. This duplex is ~21–22 nucleotides long with short 3′

overhangs (~2 nucleotides) [11,12]. Shortly after that, a single “guide” strand of the
miRNA duplex is loaded into an effector complex alongside Argonaute (AGO) proteins
to form an RNA-induced silencing complex (RISC) [13]. The guide strand possesses a
seven-nucleotide-long “seed sequence” in its 5′ region that base-pairs with complementary
sequences within the 3′ untranslated regions (UTRs) of target mRNAs [11,14,15]. The
formed RNA duplexes invoke the degradation or translational repression of the target
mRNA, leading to eventual gene silencing [14]. A single miRNA can regulate the expression
of hundreds or thousands of targets by this mechanism of RNA interference (RNAi) [11].
Due to the wide range of gene targets, miRNAs are studied extensively in relation to
diseases such as cancer [15]. miRNAs are involved in many hallmarks of cancer, and their
expression is related to tumor development and progression [15]. Based on their function
and dysregulation in malignancies, miRNAs are classified as oncomiRNAs, which target
onco-suppressor genes, and tumor suppressor miRNAs, which target oncogenes, impeding
their downstream functions [16]. Epitranscriptomic modifications of these miRNAs lead to
alteration in their targeting [9]. Given that, the number of miRNA targets becomes much
more complex when considering epitranscriptomic modifications, as both the miRNA and
the targeted gene can be modified [9].

The most common epitranscriptomic modifications found in miRNAs are m6A, A-to-I
editing, 2′-O-methyl, and m5C, although other modifications have been reported including
m7G and poly-U [9]. Moreover, crosstalk between m6A and other epitranscriptomic modifi-
cations has recently been described throughout the literature [17]. This crosstalk aims to
regulate the effects of the epitranscriptomic modifications, adding a layer of complexity to
the post-transcriptional regulation of gene expression.

This review will briefly describe the role of epitranscriptomic modifications in RNA
biology and disease, focusing on those involved in miRNA biology and the most used
methods to detect them. We will also describe the recently reported crosstalk between these
modifications, highlighting their implications for miRNA biology.

2. The Epitranscriptome in RNA

To date, over 150 unique epitranscriptomic modifications have been identified in
RNAs [18]. These modifications play a key role in altering the function and regulation of
both coding and non-coding RNAs. m6A, A-to-I, m5C, m7G, poly-U, and 2′-O-methyl have
been reported in miRNAs. These modifications play a key role in miRNA processing and
downstream mRNA targeting, as shown in Figure 1. As such, the epitranscriptome wholly
represents an added layer of complexity in gene regulation.
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Figure 1. Epitranscriptomic modifications regulate the maturation and downstream targeting of
miRNAs. A-to-I editing interferes with Drosha processing, inhibiting the processing of pri-miRNAs to
pre-miRNAs (brown arrows). m7G (grey arrows) disrupts the formation of inhibitory G-quadruplexes
in the pri-miRNA and facilitates miRNA processing. A group of m7G-capped miRNAs undergo a non-
canonical biogenesis pathway, bypassing Drosha processing and being exported by exportin-1. m6A
enhances DCGR8 binding to pri-miRNAs to enhance miRNA processing (blue arrows). m5C impairs
mRNA/miRNA complex formation, affecting miRNA targeting (purple arrows). Poly-U blocks
Dicer cleavage and marks the pre-miRNA for degradation (pink arrows). Poly-U is added to the
miRNA-directed cleaved mRNA for 5′ degradation. 2′-O-methyl protects the 3′ end of miRNA from
degradation and enhances AGO2 binding, increasing target repression by miRNAs (green arrows).

2.1. N6-Methyladenosine (m6A)

m6A was initially characterized in the 1970s as a prevalent modification found in
mRNAs, accounting for approximately 50% of methylated ribonucleotides [19,20]. Research
interest in m6A skyrocketed in recent years due to high throughput sequencing techniques
coupled with m6A RNA immunoprecipitation that facilitated the identification of m6A
sites [21]. m6A is a dynamic and reversible modification enriched at the 3′UTR and near
the stop codons of mRNAs [22]. m6A has been detected in other sites of the mRNA such
as introns to promote alternative splicing [23], the CDS to affect translation elongation
rate [24], and the 5′UTR to promote cap-independent translation [25,26]. The m6A writers
METTL3/METTL14 [27], METTL5 [28], METTL16 [29,30], WTAP [31], VIRMA [32,33],
ZC3H13 [34], HAKAI [35], and RBM15 [36] methylate adenosines, as well as m6A can
be removed by the m6A erasers FTO [37] and ALKBH5 [38]. Recently, FTO has been
shown to predominantly demethylate N6,2′-O-dimethyladenosine (m6Am) over other
m6A sites [39]. m6Am is the combined methylation of m6A and 2′-O-methly that occurs
adjacent to the 5′ cap site of mRNAs. FTO can demethylate m6Am and render the mRNA
susceptible to decapping and degradation [39]. m6A readers (YTHDF 1/2/3, YTHDC1/2,
IGF2BP1/2/3, EIF3, PRRC2A, HNRNPA2B1, and HNRNPC/G) [40] bind to the m6A site
and can alter the stability of mRNAs, as well as promote protein translation, splicing, and
mRNA export [41]. m6A can target a wide range of mRNA targets, leading to the regulation
of various cellular processes. Dysregulation of m6A is associated with various diseases [42]
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such as neuronal disorders [43], osteoporosis [44], metabolic disease [45], and various
cancers [46]. METTL3 and METTL14 play important physiological roles in mammalians,
such as stem cell differentiation and reprogramming [47–49], or impacting the circadian
cycle [6]. Dorn et al. showed that m6A modification controls cardiac homeostasis, as it
is improved in response to hypertrophic stimuli and is required for the normal response
of cardiomyocytes [50]. m6A is also important in brain development; in fact, METTL3
silencing provokes severe movement disorders and brain dysplasia [51].

In cancer, m6A writers, erasers, and readers disrupt the regulation of oncogenes
and tumor suppressors, leading to an increase in cancer cell proliferation, tumor growth,
and migration [46]. Based on the type of tumor and its targets, the enzymes involved in
m6A modification can induce tumor-suppressive or oncogenic pathways with different
effects and have been proposed as a potential therapeutic target. For instance, METTL3
is upregulated in acute myeloid leukemia (AML) and is a necessary gene to preserve the
undifferentiated phenotype in AML [52]. In lung cancer, METTL3 promotes proliferation
by methylating Bcl-2 mRNA and increasing its translation [53].

m6A and miRNAs

In miRNAs, m6A is found in pri-miRNAs, where it enhances the recognition and
binding of DGCR8 to promote miRNA processing [54]. RNA immunoprecipitation with
an anti-m6A in HEK293 cells identified 239 enriched miRNAs; 20.9% of all miRNAs con-
tain the consensus METTL3 motif RRACH [55]. Knockdown of METTL3 led to a global
downregulation of mature miRNAs and an accumulation of unprocessed pri-miRNAs [54].
Likewise, METTL14 regulates the processing of miR-375 [56]. Overexpression of METTL14
in colorectal cancer suppresses cell growth via miR-375 targeting YAP1 [56]. Knockdown
of the m6A eraser FTO altered the steady-state levels of miRNAs [57]. A recent study
shows that METTL14 is decreased in hepatocellular carcinoma (HCC) and is associated
with metastasis in vivo and in vitro [58]. Moreover, METTL14 regulates the processing of
the tumor suppressor miR-126 in an m6A-dependent manner, and the downregulation of
METTL14 in HCC results in a reduction of miR-126 [58].

The m6A enzymes are also targets of miRNAs [59], which in turn have cancer-specific
expression. For example, miR-33a [60] and miR-4429 [61] target METTL3 mRNA, modulat-
ing global m6A levels in non-small-cell lung cancer (NSCLC) and gastric cancer, respectively.
miR-145 targets the m6A reader YTHDF2; their expression is inversely correlated in ovarian
cancer cells [62]. Furthermore, FTO is targeted by miR-1266; knockdown of miR-1266
promotes cell proliferation in colorectal cancer [63]. Taken together, m6A modifications
increase miRNA processing, while miRNAs themselves can target m6A enzymes.

2.2. 2′-O-Methyl

2′-O-methyl is a modification commonly found in rRNAs [64], animal piRNAs [65],
and mRNAs [66]. The 2′-O-methylation of RNAs does not alter Watson–Crick base pairing
but instead stabilizes the nucleotide conformation, restricting the rotational freedom of the
3′ phosphate [67]. These properties protect the RNA from hydrolytic cleavage [67]. In rRNA,
2′-O-methyl is a post-transcriptional modification added by a ribonucleoprotein complex
containing the C/D box of small nucleolar RNA (snoRNA) and the methyltransferase fibril-
larin [68]. The 2′-O-methylation of rRNA contributes to the structural stabilization of rRNA,
forming hydrophobic interactions between nucleotides [69]. Interestingly, knockdown
of fibrillarin decreases the translation efficiency of genes containing internal ribosome
entry sites (IRES), suggesting a subset of mRNAs that can be differentially regulated by
2′-O-methyl-containing ribosomes [70].

In mRNA, 2′-O-methyl can be found either internally within the gene body [71] or at
the first nucleotides as part of the 5′ cap structure [72]. The 5′ end of RNAs transcribed
by RNA pol II is modified by an m7-guanosine cap. The first and second nucleotide of
the 5′ end of pre-mRNAs can be further methylated with 2′-O-methyl, forming the cap1
and cap2 structures, respectively [72]. The cap1 structure is the predominant cap found
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in mammalian cells [73], where the 2′-O-methyl acts as a specific marker for self-made
mRNAs [74]. mRNAs that lack a 2′-O-methyl at the first nucleotide are recognized by RIG-I,
triggering an innate immune response [75].

Furthermore, 2′-O-methyl has been detected internally in mRNAs [71]; its biological
role was recently elucidated. Internal 2′-O-methyl increases the mRNA abundance of the
peroxidase PXDN while reducing its protein translation [66]. 2′-O-methyl sites occurring
in codons block interactions between rRNA and the codon-anticodon helix, hindering
translation elongation [76].

2′-O-Methyl in miRNAs

2′-O-methylation of miRNAs has been primarily reported in plant and drosophila
miRNAs [77,78]. In plants, HEN1 adds the 2′-O-methyl and is essential for the biogenesis
of miRNAs [77]. The 2′-O-methylation promotes the stabilization of plant miRNAs by
protecting the 3′ end of miRNAs from truncation and degradation [77]. Knockdown of
HEN1 resulted in heterogeneous 3′ ends and the addition of poly-U, a modification known
to destabilize RNAs (discussed later in this review) [79]. In Drosophila, 2′-O-methyl was
detected in specific isoforms of miRNAs [78]. 2′-O-methylation of miRNAs and their
loading with AGO2 increases with age. Mutations of HEN1 induced neurodegeneration
and decreased lifespan in Drosophila, suggesting miRNA 2′-O-methyl impacts aging in
Drosophila [78].

Recently, 2′-O-methylation of miRNAs was detected in NSCLC and paired distal non-
cancerous lung tissues, with a differential 2′-O-methyl status of miRNAs in both tissues [80].
HENMT1 was identified as the methyltransferase responsible for 2′-O-methylation in
human miRNAs [80]. 2′-O-methylation of miR-21-5p was found to be increased in NSCLC.
Collectively, this methylation enhanced the resistance of miR-21-5p to 3′ degradation by
PNPT1, enhanced the affinity of miR-21-5p to AGO2 loading, and enhanced the repression
of the miR-21-5p target gene, PDCD4 [80]. This study suggests that 2′-O-methylation of
miRNAs can increase the repressive activity of miRNAs by preventing their degradation
from enzymes such as PNTP1.

2.3. 5-Methylcytosine (m5C)

m5C was discovered almost 50 years ago [81], and yet its role has only recently been
uncovered. RNA m5C methylation is a dynamic and reversible process driven by several
factors, described as writers, readers, and erasers [82]. The RNA m5C methyltransferases
(RCMTs) are mainly represented by the NOL1/NOP2/SUN domain (NSUN) family and
DNA methyltransferase 2 (DNMT2), which transfer the methyl group from the donor
S-adenosylmethionine to the cytosine, forming m5C [83].

The NSUN family of proteins comprises seven members, named NSUN1 to NSUN7 [82].
While NSUN1, NSUN2, and NSUN5 are conserved throughout eukaryotes, the remaining
NSUN proteins are only present in higher eukaryotes [84]. NSUN1 and NSUN5 methylate
cytoplasmic rRNAs, NSUN2 and NSUN6 modify cytoplasmic tRNA, and NSUN3 and
NSUN4 methylate mitochondrial RNAs [84]. NSUN2 is a tRNA m5C methyltransferase
identified as a mediator of m5C in mRNA and non-coding RNA [85]. The mRNA export
adaptor protein ALYREF (Aly/REF export factor) recognizes m5C methylation in mRNA
through a methyl-specific RNA-binding motif and mediates the export of m5C-containing
RNA [86,87]. Additionally, NSUN2 modulates ALYREF’s nuclear–cytoplasmic shuttling.

DNA methyltransferase 2 (DNMT2) is a methyltransferase that catalyzes m5C in
the 38th cytosine of tRNAs [88]. DNMT2 methylates tRNAAsp

GUC and, depending on
the species, tRNAGly, tRNAVal, and tRNAGlu [89]. C38 methylation of tRNAAsp

GUC is
important for the amino acid charging of the tRNA [90]. Knockdown of DNMT2 in
mice reduced the amount of charged tRNAAsp

GUC and reduced the synthesis of proteins
containing poly-Asp [90].

Currently, the approaches used for detecting m5C modifications in RNA include
bisulfite sequencing, m5C-RIP-seq, Aza-IP-seq, and miCLIP-seq, which are discussed later
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in the review (reviewed in [82]). In 2012, Squires et al. combined bisulfite treatment with
next-generation sequencing of a cellular RNA library to map novel candidate m5C sites in
several types of cellular RNA [91]. The distribution of m5C methylation occurred in tRNA
and mRNA sites but also untranslated regions. In particular, an enrichment of m5C sites
was observed in the UTR of mRNAs and proximity of the AGO binding site, suggesting a
role in the post-transcriptional control of RNA functions.

m5C methylation affects mRNA transport, stability, and translation [82]. Additionally,
m5C methylation of tRNA prevents its degradation from oxidative stress [92]. The distri-
bution and abundance of m5C in several types of RNA are critical for the physiological
function of the cell, and its deregulation is related to pathological features [82]. Mutations in
the NSUN family of proteins are associated with autosomal-recessive intellectual disability
for NSUN2 [93], mitochondrial deficiency for NSUN3 [94], and sterility for NSUN7 [95].
NSUN2 has been associated with promoting cell progression, growth, and metastasis in
various cancers [96]. NSUN2 can target the 3′UTR of hepatoma-derived growth factor
(HGDF) mRNA and increase its stability, promoting urothelial carcinoma pathogenesis [97].

m5C in miRNAs

m5C methylation has been recently reported as present in microRNAs. Using a non-
targeted mass spectrometry sequencing technique, Konno et al. identified methylated
cytosines in mature sequences of miR-21-3p and miR-200c-3p in gastrointestinal cancer
cells [98].

The mechanisms involved in cytosine methylation have only recently been elucidated.
In a pivotal study, Cheray et al. demonstrated that the complex DNMT3A/AGO4 is
responsible for the cytosine methylation of miR-181a-5p [99]. m5C on miRNA inhibits the
formation of miRNA/mRNA duplexes, thus impairing the miRNA’s ability to bind to the
target mRNA. miR-181a-5p is frequently under-expressed in glioblastoma [100], and its
role as a tumor suppressor has only recently been discovered [101]. The removal of m5C
from miR-181a-5p abolishes its tumor-suppressive function [101].

Interestingly, the cytosine methylation of miR-181a-5p was also associated with a poor
prognosis of glioblastoma, which indicates the novel usefulness of cytosine-methylated
miRNAs as a prognostic biomarker for cancer [99]. A significant fraction of miRNAs was
identified as containing m5C [99]. However, further investigation is needed to identify the
regulatory mechanism of m5C in other miRNAs.

2.4. 7-Methylguanosine (m7G)

m7G is an abundant modification found in the 5′ guanosine cap of mRNAs, as well as
internally in mRNAs, tRNAs, rRNAs, and miRNAs [102]. m7G is critical for the complete
maturation of the 5′ guanosine cap found in all RNAs transcribed by RNA pol II [103]. In
the nucleus during RNA pol II transcription, the enzymes RNA Guanylyltransferase and
5′-Phosphatase (RNGTT), RNA Guanine-7 Methyltransferase (RNMT), and RNA Guanine-
7 Methyltransferase Activating Subunit (RAMAC) associate with the phosphorylated
C-terminal domain of RNA pol II. RNGTT guanylates the 5′ end of the RNA, and RNMT-
RAMAC adds m7G to the cap, forming the cap0 structure [103]. RNMT-RAMAC also
participates in the methylation of recapped mRNAs in the cytoplasm [104,105]. Proper
methylation of the cap is required for eIF4E binding for translation initiation and for the
stability of the mRNA. Improperly methylated capped mRNAs are targeted for degradation
by the cap surveillance enzymes DXO/Dom3Z [106].

The enzymatic activity of RNMT-RAMAC is regulated during embryonic stem cell
differentiation [107]. ERK1/2 phosphorylates RAMAC, targeting it for degradation and
modulating the cap methylation of pluripotency-associated genes [107]. Elevated protein
levels of RNMT and RNGTT have been observed in high-eIF4E acute myeloid leukemia
patients; elevated capping levels of MALAT, RNMT, and MYC were observed in these
patients [108]. Downregulation of RNMT selectively inhibits the proliferation of PIK3CA
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mutant breast cancer cell lines, suggesting that cap methylation is required for PIK3CA
mutated cancer cells [109].

METTL1 and WDR4 catalyze m7G in various RNAs. METTL1/WDR4 modifies m7G
at the G46 site of a tRNA variable loop, stabilizing the tertiary structure of tRNAs [110].
Disruption of G46 methylation in tRNAs is associated with microcephalic primordial
dwarfism [110]. m7G was recently detected internally in mRNAs. Internal m7G is catalyzed
by METTL1/WRD4 and is associated with increased translation efficiency [111]. In rRNA,
m7G is catalyzed by the WBSCR22/TRMT112 complex, where G1639 in 18S rRNA is
methylated. This methylation participates in the biogenesis of 18S rRNA [112,113].

7-m7G in miRNAs

The presence of m7G modification in the 5′ guanosine cap of mRNAs has been widely
studied, yet there are few papers researching this in miRNAs. In their effort, Xie et al.
developed a small RNA Cap-seq protocol to identify a group of m7G-capped pre-miRNAs,
including a subset whose 5′ ends coincide with the RNA pol II transcription start site
(TSS) [114,115]. These m7G-capped pre-miRNAs undergo a non-canonical biogenesis
pathway that bypasses Drosha and exportin-5 and instead goes through PHAX-dependent
exportin-1 [114,115]. The identified pre-miRNAs possess 5′-terminal extensions which do
not impede Dicer processing [115]. In fact, rather than being trimmed by Dicer to canonical
miRNAs, the generated 5p miRNAs retain the 5′ extension; still, it is the 3p miRNAs
that are preferentially loaded in AGO [114,115]. In light of this finding, the researchers
proposed a novel strategy in which an RNA pol II promoter could be positioned to result
in m7G-capping of shRNAs and the subsequent selection of a single 3p siRNA for targeted
silencing [114]. Intriguingly, Kaur et al. found that CD47 indirectly interacts with exportin-
1 via ubiquilin-1, its known cytoplasmic binding partner, and limits the intracellular
trafficking of m7G-capped miRNAs and mRNAs into extracellular vesicles [116].

Martinez et al. observed a subset of miRNAs whose expression was induced in
response to quiescence despite a marked reduction of exportin-5 [117]. The quiescence-
induced miRNAs were processed in an exportin-1-dependent manner, but instead of
being strictly m7G-capped, they have detectable trimethylguanosine (m2,2,7G/TMG) caps
that are added at the pri-miRNA stage [117]. A reduction in the levels of TMG-capped
pri-miRNAs was observed after a knockdown of TGS1, an enzyme that catalyzes the
hypermethylation of the 5′ cap [117]. Kamel and Akusjärvi reported that, after initiation
at the adenovirus major promoter, RNA pol II stalling/termination produces an m7G-
capped TSS small RNA (sRNA) transcript [118]. In human adenovirus-infected cells, this
m7G-capped TSS sRNA is enriched in AGO2-containing RISC, unlike the aforementioned
5′-extended 5p miRNAs, and is capable of repressing complementary pTP and Adpol
mRNAs, consequently suppressing viral DNA replication [118].

Kouzarides et al. used two complementary techniques, RNA immunoprecipitation
sequencing (RIP-seq) and borohydride reduction sequencing (BoRed-seq), to identify a
high-confidence group of mature miRNAs that contain the m7G modification at internal po-
sitions [119]. In a series of experiments, they demonstrate that METTL1 directly methylates
pri-let-7e, a tumor suppressor miRNA, and facilitates its processing by disrupting local
G-quadruplex structures [119]. In comparison, Vinther et al. implemented a different tech-
nique which they called m7G mutational profiling sequencing (m7G-MaP-seq) but could
not find evidence for the m7G modification in any human miRNAs, including let-7e [120].

2.5. 3′ Poly-Uridine (Poly-U)

Poly-U is an epitranscriptomic modification in which a short string of non-templated
uridines is added to the 3′ end of RNAs by Terminal Uridylyl Transferases (TUTases) [121].
Poly-U results in the degradation of the respective RNA or influences maturation of snRNAs
and, in some cases, miRNAs [121]. In mammals, TUT4, TUT7, and TUT1 are responsible
for the addition of 3′ poly-U to RNAs [122–124]. The nuclear TUT1 plays a role in the
maturation of U6 snRNA. After transcription of U6 snRNA, TUT1 adds 20 uridines to the
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3′ end. This long poly-U tail acts as a signal for further maturation of U6 by USB1 [125].
The cytoplasmic TUT4 and TUT7 add the poly-U tail to other RNAs. As part of the RNA
quality control mechanism, defective or improperly matured ncRNAs are tagged with
poly-U; the exonuclease DIS3L2 recognizes these poly-U ncRNAs for degradation [126].

In mRNAs, poly-U is added to mRNAs with a short (~25nt) poly-A tail and leads
to the degradation of the mRNA [122,127]. Knockdown of TUT4 and TUT7 increased
the half-life of various mRNA transcripts [122]. Histone mRNAs, which lack a poly-A
tail and instead are stabilized by a stem-loop, require poly-U for their proper turnover
during the cell cycle [128]. miRNA-directed cleavage of mRNAs is reported to add a stretch
of poly-U downstream of the cleavage site. This poly-U coordinates the decapping and
5′ degradation of the cleaved mRNA [128].

Poly-U in miRNAs

In select pre-miRNAs, poly-U blocks Dicer cleavage and marks the pre-miRNA for
degradation [129,130]. This mechanism is best characterized in the let-7 miRNA family.
Let-7 pre-miRNA is bound by Lin28, which recruits TUT4 to add a 3′ poly-U tail. The
poly-U tail is recognized by DIS3L2 to rapidly degrade the pre-let-7 miRNA [131]. Let-7
miRNA targets a wide range of oncogenes such as MYC, RAS, and HMGA2 [132]. As
such, Lin28 has been identified as an oncogene whose overexpression reduces levels of
let-7 and has been associated with cancer transformation, proliferation, and advanced
malignancies [129].

In addition, poly-U has been reported in mature miRNAs [121]. The 3′ end of miR-26
was shown to be uridylated by TUT4, inhibiting miR-26-mediated IL-6 mRNA degrada-
tion [133]. The uridylation was shown to be isomer-specific, with isomir miR-26a showing
extensive uridylation which was not present in miR-26b. Interestingly, uridylation of
miR-26b was reported in naïve CD8 T-cells, suggesting a cell-dependent uridylation of
isomirs [133].

2.6. A-to-I Editing

It has been several decades since researchers uncovered an RNA editing event in
which adenosine residues are converted to inosines, such as the mechanism behind the
double-stranded RNA (dsRNA) unwinding observed in Xenopus laevis oocytes [134,135].
An enzyme known as Adenosine Deaminase Acting on RNA (ADAR) was discovered
to catalyze this adenosine-to-inosine (A-to-I) nucleotide substitution [136]. The ADAR
family has three members: ADAR1, ADAR2, and ADAR3. While ADAR1 and ADAR2 are
constitutively expressed in the organism, ADAR3 is primarily expressed in the brain [137].
Each contains up to three dsRNA binding domains and a deaminase domain [138]. ADARs
catalyze hydrolytic deamination at the C6 position of adenosine, converting it into an
inosine residue which is interpreted by the host translational machinery as if it were
guanosine [139]. A-to-I editing changes the transcript sequence and influences alternative
splicing [140,141]. Additionally, A-to-I editing in the non-coding region can alter the base-
pairing properties of secondary structures, as well as regulate the stability and localization
of RNA [142].

A-to-I nucleotide conversions of mRNAs can alter the amino acid sequence, thus creat-
ing various protein isoforms [139,143]. From an evolutionary point of view, the production
of different proteins stimulates the organism’s adaptation to external stresses. An intriguing
case is the hydroxytryptamine subtype 2C receptor (5-HT2CR), a serotonin receptor whose
pre-mRNA includes five editing sites and can result in different isoforms [144]. In this case,
the editing decreases the affinity of the receptor for its G protein, regulating serotonergic
signal transduction [145]. The differential pattern of 5-HT2CR editing has been associated
with psychiatric disorders [144,146].

Aberrant regulation of ADAR-mediated editing results in many human diseases, such
as Aicardi–Goutières syndrome [147,148], neurological disorders [149], and cancer [138].
A-to-I editing is necessary for the correct functioning of the organism. For instance, the
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functionally critical decoding of glutamine to arginine of the AMPA receptor subunit
GluR-B is operated by ADAR2; the larger and positively charged arginine reduces the Ca2+

permeability of the AMPA receptor, and it is essential for producing a functional protein.
Consequently, deficiency in this single point of editing is lethal in mice [150]. It has been
reported that the GluA2 Q/R site is significantly under-edited in glioblastoma multiforme
(GBM) tissue samples [151], and Ca2+ signaling mediated by the AMPA receptor activates
Akt, thus inducing growth and motility in glioblastoma cells [152]. The levels of ADAR1
have been found to be upregulated in HCC tissue, and the pre-mRNA transcripts of the
AZIN1 gene, encoding the antizyme inhibitor 1, were found to be hyper-edited [153]. The
HCC cells exhibiting the highest percentage of editing increased proliferation.

A-to-I Editing of miRNAs

ADARs recognize and bind to dsRNA substrates, including all forms of miRNAs
(pri-miRNA, pre-miRNA, and mature miRNAs), with minimal sequence specificity [143].
Based on the MiREDiBase database, about 2900 putative and validated A-to-I editing events
in 571 human miRNA molecules have been described [153]. In the nucleus, ADARs can
compete with Drosha for pri-miRNAs, thereby suppressing Drosha-mediated cleavage of
pri-miRNAs to pre-miRNAs [143,154]. Yang et al. observed that editing of pri-miR-142
by ADAR1/2 interfered with Drosha processing, reducing mature miR-142 levels [155].
Heale et al. [156] similarly reported that ADARs can block the maturation of miR-376a-2,
independent of their enzymatic activity, by merely binding to its pri-miRNA. The pre-
dominant consequence of A-to-I editing events is the inhibition of miRNA biogenesis, as
observed with miR-142, miR-376a-2, miR-221, miR-222, and miR-21 [155,156].

These nucleotide substitutions can also alter miRNAs’ functions [139]. Specific A-to-I
edits within the seed sequences of miRNAs can induce a targetome shift [157,158]. For
example, Kawahara et al. [157] have demonstrated that editing within the seed regions of
miR-376 cluster members leads to new target genes (i.e., phosphoribosyl pyrophosphate
synthetase 1). A-to-I editing of miR-589-3p shifted its target from PCDH9, a tumor sup-
pressor, to ADAM12, a metalloproteinase involved in glioblastoma cell invasion [159]. In
melanoma cells, Velazquez-Torres et al. [160] have proposed that edited miR-378a-3p, but
not its wild-type counterpart, can target the PARVA oncogene and prevent the malignant
transformation of these cells. Xu et al. [161] have similarly found that edited miR-379-5p
specifically binds to CD97 and that its delivery in vivo leads to suppression in tumor growth
in their mouse model of breast cancer. Interestingly, editing events of the miRNA seed
region are observed in response to hypoxia, suggesting a rapid adaptation to environmental
stimuli [162].

As mentioned previously, the inosine residue is interpreted as guanosine by the host
translational machinery [139]. When Kume et al. evaluated the thermodynamic stability of
inosine:cytosine (I:C) and guanine:cytosine (G:C) base pairing between miRNAs and target
mRNAs, they found that the former was less stable, which may account for discrepancies in
the silencing efficiency of edited miRNAs [158]. Databases, such as miR-EdiTar, document
the predicted miRNA binding sites that are either affected by or emerging from editing
events [163].

In recent years, high-throughput sequencing technologies have uncovered the widespread
dysregulation of edited miRNAs across human malignancies, including neurological dis-
eases, infections, and cancer [163]. For example, in cases of moderate-to-severe asthma,
Magnaye et al. [164] found that reduced editing of miR-200b-3p may lead to overexpression
of its target SOCS1. In cancers, edited miRNAs are correlated with tumor histology, disease
stage, prognosis, and survival [165]. Based on sequencing data from The Cancer Genome
Atlas (TCGA), Pinto et al. [166] indicate that hypo-editing of miRNAs is observed globally
in most cancers. An exception is miR-200b, which is over-edited in thyroid tumors [167].
When Wang et al. [165] analyzed the TCGA data, they saw that editing hotspots were
either observed in nearly all cancers or cancer-specific. Consequently, edited miRNAs are
promising cancer biomarker candidates. Maemura et al. [168] have found shorter overall
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survival in lung adenocarcinoma cases with reduced levels of edited miR-99a-5p, which
they suggest as a potential biomarker of this disease. Nigita et al. [169] have also shown,
for the first time, that edited miR-411-5p is downregulated in both tissues and exosomes of
NSCLC patients.

3. Crosstalk between Epitranscriptomic Modifications

Each epitranscriptomic modification has its respective function in RNAs. They do not
occur in isolation; RNAs can have multiple epitranscriptomic modifications occurring simulta-
neously throughout the body of the RNA. These epitranscriptomic modifications can establish
crosstalk that is either cooperative (m6Am [39] and m6A/m5C [170]) or regulatory, where one
modification controls the expression of another (m6A and A-to-I editing) [171–173] Figure 2.
The crosstalks described in this review are centered on m6A interacting with other modifi-
cations, as these interactions have been the focus of recent studies.
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Figure 2. Crosstalk between epitranscriptomic modifications. (A) m6A regulation of ADAR1. The
mRNA of ADAR1 is methylated by METTL3/METTL14 near the stop codon. This m6A mark recruits
YTHDF1, which increases the protein translation of ADAR1. (B) m6Am modification at the first
nucleotide. If the first nucleotide of an mRNA is adenine, the adenine can be methylated by m6A
and 2′-O-methyl (m6Am). m6Am reduces the decapping activity of DCP2, thus rendering the mRNA
resistant to miRNA-mediated degradation. (C) Cooperative interaction between m6A and m5C.
m6A and m5C can cooperatively enhance the addition of each other to the 3′UTR of mRNAs. Both
modifications occur close to the miRNA and AGO binding site. Their role in miRNA binding is
speculative. Created with BioRender.com (accessed on 17 February 2022).

3.1. Crosstalk between m6A and A-to-I Editing

Crosstalk between m6A and A-to-I editing was suggested in [172], where the co-
occurrence of both modifications was negatively correlated. A-to-I editing was shown to
occur in m6A-negative transcripts preferentially. Of note is that suppression of the m6A
writers METTL3 and METTL14 increased global A-to-I editing levels in HEK293T cells.
ADAR1 is predicted to be a target of m6A methylation. This prediction was confirmed
in [173] and [171]. Contrary to [172], in both studies, ADAR1 mRNA was identified as a
target of METTL3, and its m6A site is recognized by the m6A reader YTHDF1 to upregulate
the protein expression of ADAR1. Knockdown of YTHDF1 in interferon-induced cells
decreases global editing of RNAs [173]. The difference in the response of ADAR1 to

BioRender.com
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METTL3 knockdown suggests a context-dependent crosstalk between m6A and A-to-I
editing. As described earlier, miRNAs undergo A-to-I editing, which raises the question
of whether METTL3 can modulate A-to-I editing in miRNAs, which could be studied in
future investigations.

3.2. N6,2′-O-Dimethyladenosine (m6Am)

m6Am is a combination of two methylation events, 2′-O-methyl and m6A. The first
nucleotide of a pre-mRNA in mammals contains a 2′-O-methyl in addition to the 5′ methyl-
guanosine cap [174]. If the first nucleotide is an adenosine, it can be further methylated at
the N6 position, forming an m6Am. m6Am is highly abundant in mRNAs initiating with
adenosine; 92% of mRNAs that begin with adenosine contain m6Am in HEK 293 cells [39].
This m6A event is generated by a specific methyltransferase, CAPAM, which interacts
with RNA pol II and is coordinated with mRNA capping [175,176]. mRNAs with m6Am
are resistant to mRNA decapping by DCP2 and are thus more stable. Because of the
resistance to decapping, m6Am mRNAs are also resistant to miRNA downregulation [39].
For instance, when miR-155 is transfected into HeLa cells, the target genes containing
m6Am are more resistant to miR-155-induced degradation than other mRNAs [39]. The
m6A modification in m6Am can be removed by FTO, acting as a possible on/off switch
for miRNA targeting and degradation [39]. Both miR-155 and FTO are dysregulated in
cancers [177,178], and the interplays between m6Am in miR-155 targets and FTO could be
a possible regulatory mechanism exploited in cancers.

3.3. Cooperative Interaction between m6A and m5C

m6A modification by METTL3/METTL14 was shown to facilitate the addition of m5C
by NSUN2 and vice versa, suggesting a cooperative addition of both modifications [170]. In
the case of p21 mRNA, m6A and m5C were shown to enhance its protein translation coop-
eratively [170]. Certain viruses, such as HIV and the murine leukemia virus, are enriched in
both m6A and m5C [179,180]. Viral infection with HIV was shown to increase the m6A and
m5C statuses of host cells, changing the methylation of host and viral RNAs [180]. m6A and
m5C are enriched at the 3′UTR of mRNAs, close to predicted miRNA binding sites [181].
m5C, in particular, is enriched at AGO binding sites [91]. Given the proximity of these
modifications to miRNA binding sites, they could interfere with miRNA binding. More
investigation is needed to determine this relationship and if these sites are dysregulated
in cancer.

4. Methods for Detecting Epitranscriptomic Modifications

Epitranscriptomic modifications were initially identified in the 1970s using two-
dimensional thin-layer chromatography to identify RNA methylations [81]. Although
thin-layer chromatography is still widely used, recent advances in RNA sequencing meth-
ods and mass spectrometry have allowed for the transcriptome-wide identification of
epitranscriptomic modifications. The techniques used to study epitranscriptomics are
described in Table 1.

Table 1. Techniques utilized for studying epitranscriptomic modifications.

Method Specificity Description Advantages and
Limitations

Suitability for
miRNAs References

Thin-layer
chromatography All modifications

Separates compounds in a mixture by their
chemical properties. Each component migrates
differentially based on affinity for the stationary
(adherent) phase vs. mobile (liquid) phase. In
2D-TLC, the RNA is digested to form a 5′ OH

prior to labeling with radioactive ATP. The
migration is compared to a synthetic RNA

standard, allowing for identification of specific
epitranscriptomic modifications.

Can identify RNA
modifications and

be utilized for
studying

enzymatic activity
and kinetics but
does not provide
the exact sites of

the modifications.

Yes [81,182–184]
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Table 1. Cont.

Method Specificity Description Advantages and
Limitations

Suitability for
miRNAs References

Liquid
chromatography–

mass spectrometry
(LC-MS)

All modifications

RNA samples are digested into nucleosides,
which are separated into nucleotides by liquid
chromatography, and the corresponding mass
is determined by mass spectrometry. Using a

ladder with known fragmentation patterns, the
RNA sequence can be determined.

Can detect and
quantify

epitranscriptomic
modifications with

high sensitivity.

Yes [185–188]

Methylated RNA
immunoprecipita-
tion coupled with
high-throughput

sequencing
(MeRIP-seq),

m5C-RIP-seq, and
m7G-MeRIP

m6A, m5C m7G

Purified mRNA is randomly fragmented
(~100–150 nucleotides) prior to

immunoprecipitation with an anti-m6A
antibody (MeRIP-seq), an anti-m5C

(m5C-RIP-seq) antibody, or an anti m7G
antibody (m7G-MeRIP). A library is

constructed and sequenced.

High specificity but
does not have

single-nucleotide
resolution and
cannot detect

methylation of
non-abundant

RNAs.

Yes [7,22,82,111,189,190]

m6A-individual
nucleotide
resolution

crosslinking and
immunoprecipita-

tion
(miCLIP-m6A)

m6A
Implements UV crosslinking at the

anti-m6A-bound site, which induces a mutation
that can be identified by sequencing

Can identify the
exact sites of m6A. Not tested [191]

m5C-individual
nucleotide
resolution

crosslinking and
immunoprecipita-

tion
(miCLIP-m5C)

m5C

A mutant of NSUN2 (C271A) is overexpressed
which forms a covalent bond with m5C. The
bond can be detected with an anti-NSUN2

antibody. This complex induces a stop position
during RT-PCR, interpreted as a truncation site.

Can identify the
exact sites of m5C. Yes [83,85,192]

Photo-crosslinking-
assisted m6A
sequencing

(PA-m6A-seq)

m6A

Incorporates 4-thiouridine into the RNA, which
induces a T-to-C mutation at crosslinked

anti-m6A-bound sites that can be identified
by sequencing.

Can identify the
exact sites of m6A. Not tested [193–195]

m6A-level and
isoform-

characterization
sequencing

(m6A-LAIC-seq)

m6A

An excess of anti-m6A antibody is utilized for
pulling down methylated RNA. A spike-in

internal standard is added to allow for relative
quantification of m6A RNAs

Permits evaluation
of methylation

status.
Not tested [194,196]

5-azacytidine-
mediated RNA

immunoprecipita-
tion

(Aza-IP-seq)

m5C

5-azaC, a cytidine analog, is randomly
incorporated into RNA. RCMT will form an

irreversible bond with its RNA targets, which
can be detected using an anti-RCMT antibody.

m5C sites are recognized as C-to-G conversions
due to a ring-opening of 5-azaC.

Can identify the
exact sites of m5C,

but only a short
treatment is

conducted due to
the high toxicity of

5-azaC, thereby
reducing its

incorporation into
RNA.

Not tested [192,194,197,198]

RNA bisulfite
sequencing
technology

(RNA-BisSeq)

Methylated
cytosines

such as m5C

Sodium bisulfite is added, which deaminates
unmethylated cytosines (at acidic pHs) or
uracil (at basic pHs), leaving methylated

cytosines intact.

Has
single-nucleotide

resolution and does
not use high

concentrations of
RNA. However, it
cannot react with

base-paired
cytosines and does

not distinguish
5-methylcytosine

from 5-
hydroxymethylcytosine

Yes [82,192,199–201]

2′-O-methyl
sequencing

(2′-O-Me-Seq)
2′-O-methyl

Reverse transcription halts once it reaches a
2′-O-methylated nucleotide, thereby truncating

the cDNA. These sites can be detected
by sequencing.

Can detect specific
2′-O-methyl sites. Not tested [202]

RiboMeth-seq 2′-O-methyl

RNA is treated at an alkaline pH and high
temperature to fragment the RNA into 20–40

nucleotides. The resulting fragments are
sequenced. Sites that contain 2′-O-methyl sites

are not fragmented and do not generate
read ends.

Can detect omitted
peak regions that

corresponds to
2′-O-methyl sites.

Not tested [203,204]
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Table 1. Cont.

Method Specificity Description Advantages and
Limitations

Suitability for
miRNAs References

RibOxi-Seq 2′-O-methyl

RNAs are fragmented with Benzonase and
oxidized to remove 3′ phosphates. 3′ ends that
contain 2′-O-methyl are resistant to oxidation

and are enriched with linker ligation.

Can detect
2′-O-methyl in

rRNAs but requires
microgram

amounts of input.

No [205,206]

Nm-seq 2′-O-methyl

Fragmented RNAs are treated with repeated
cycles of OED, removing 3′ nucleotides that are

not 2′-O-methylated. A final OE cycle is
implemented to dephosphorylate

non-2′-O-methylated 3′ ends, preventing
adapter ligation.

Provides single
nucleotide

detection of
2′-O-methylation.
Can be used for a

wide range
of RNAs.

Not tested [71]

TAIL-seq Poly-U

rRNA-depleted RNA samples are ligated in the
3′ end with a biotinylated adapter. RNA is

fragmented with RNAse T1, and 3′ ends are
recovered using streptavidin pulldown.

Provides
information on

poly-A tail length
and the addition of

poly-U at the
3′ end.

No [127]

Borohydride
Reduction

(BoRed-seq)
m7G

RNA is decapped and treated with NaBH4 at a
low pH. The abasic m7G site is treated with

biotin-coupled aldehyde-reactive probe. The
biotinylated RNA is recovered with

streptavidin pulldown

Detects m7G site in
RNAs without
cleavage of the

m7G sites. Suitable
for small RNAs

and low
abundant RNAs

Yes [119]

Inosine chemical
erasing sequencing

(ICE-seq)
A-to-I

Inosine is treated with acrylonitrile to form
N1-cyanoethylinosinem, which halts

retrotranscription and truncates the cDNA.
These sites can be detected by sequencing.

Can identify
A-to-I sites. Yes [207,208]

Bioinformatic
detection of A-to-I

editing from
RNAseq

A-to-I
A-to-I editing is detected directly from RNAseq

using bioinformatic tools to identify editing
sites from SNPs

Can detect editing
from RNAseq but

requires high
sequencing depth.

Yes [169,194,208–214]

Nanopore
sequencing All modifications

Utilizes nanopore proteins that are inserted into
the membrane. RNAs are translocated through
these proteins, which leads to a perturbation of

the nanopore current.

Has
single-nucleotide

resolution and does
not require the

processing of the
amplified RNA.

However, it has a
high

signal-to-noise
ratio and may not
distinguish similar

nucleotides.

Yes [83,215–219]

4.1. Thin-Layer Chromatography (TLC)

TLC is a technique that separates chemical compounds in mixtures based on chemical
properties such as polarity [182]. The sample is placed on a sheet (stationary phase), and
then the sheet is submerged in a light layer of a solvent (mobile phase). The solvent will
be absorbed onto the sheet through capillary action, and the sample will migrate with the
solvent. Each compound will migrate based on its affinity to the sheet. The separated
compounds can be visualized by UV or radioactive labeling of the sample prior to TLC.

A version of TLC that allows for two-dimensional separation (2D-TLC) was used to
initially identify RNA methylations present in cells [81]. Typically, the RNA is digested
to generate a 5′OH and is radiolabeled with radioactive ATP to visualize the migration
pattern of the sample [183]. The migration of the sample RNA is compared with the
migration patterns of synthetic RNA standards. By utilizing a standard for each RNA
modification, one can identify which epitranscriptomic modification is present in the
sample. Additionally, enzyme activity and kinetics can be studied [183]. TLC provides a
general overview of the RNA modifications present in the sample RNA. A caveat of TLC is
that it will not provide the sequence context or location of the modified nucleotide.
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4.2. Liquid Chromatography–Mass Spectrometry (LC-MS)

LC-MS is a powerful technique for detecting and quantifying epitranscriptomic modi-
fications in RNA [185]. It combines the sample separation of liquid chromatography (LC)
with the mass quantification of mass spectrometry (MS). Prior to analysis, the RNA sample
is cleaved into nucleosides and dephosphorylated. The resulting nucleosides are separated
into single nucleotides by LC, and their corresponding mass is determined through MS.
Each epitranscriptomic modification has its own corresponding mass and isotopic signa-
ture, allowing for the detection of known and unknown RNA modifications. LS-MC is
highly sensitive, detecting up to femtomole amounts of modified nucleotides [186].

Due to the fragmentation of the RNA sample prior to analysis, LC-MS cannot directly
determine the sequence context or identity of the modified nucleotide. To determine the
RNA sequence, a ladder with known fragmentation patterns is included in the LC-MS
analysis [187]. This limits the sequence analysis to known RNA sequences and modification
sites. Recently, new varieties of LC-MS, such as 2-dimensional hydrophobic end-labeling
strategy into traditional mass spectrometry-based sequencing (2D HELS MS Seq), have
allowed de novo sequencing of modified RNA samples [188].

4.3. RNA Sequencing

RNA sequencing combined with immunoprecipitation or chemical modification is
one of the most used approaches for profiling the methylation of nucleic acids. Several
methods have been developed during past years to detect epitranscriptomic modifications.

4.3.1. Methylated RNA Immunoprecipitation Coupled with High-Throughput Sequencing
(MeRIP-seq) and m5C-RIP-seq

A commonly used method for studying the epitranscriptome is methylated RNA
immunoprecipitation (RIP) coupled with high-throughput sequencing (MeRIP-seq). This
method was applied for the first time in 2012 to study the m6A distribution of RNA [22].
In this approach, the purified mRNA is fragmented into 100–150 nucleotides prior to
immunoprecipitation with a specific anti-m6A antibody which recognizes and enriches
RNA fragments carrying the modified nucleotide [22,189]. Subsequently, the RNA frag-
ments are subjected to library construction and deep sequencing. This method is easily
manageable and has been adapted for studying m5C RNA methylation (m5C-RIP-seq)
and m7G methylation (m7G-MeRIP) [111,190]. This transcriptome-wide protocol has high
specificity; however, it cannot detect modifications with single-nucleotide resolution and
cannot identify the methylation of non-abundant RNA [82].

4.3.2. RNA Crosslinking and Immunoprecipitation (CLIP) Methods

RNA-binding proteins can be covalently linked to RNA through treatment with UV ra-
diation and immunoprecipitated to identify the binding sites of their respective RNA targets.
RNA crosslinking and immunoprecipitation (CLIP)-based methods and their derivations
have been utilized to identify the sites of epitranscriptomic modifications [220]. The addi-
tion of a UV crosslinking step into the meRIP-seq has allowed for single-nucleotide resolu-
tion of the methylated nucleotide. The m6A-individual nucleotide resolution crosslinking
and immunoprecipitation (miCLIP-m6A) is an immunoprecipitation-based sequencing
method that includes UV crosslinking of the anti-m6A bound to the m6A site [191]. The
crosslinking reaction induces a mutation at the crosslinked m6A, allowing for the identi-
fication of the exact m6A site. An alternative method called photo-crosslinking-assisted
m6A sequencing (PA-m6A-seq) utilizes 4-thiouridine (4SU) that is incorporated into the
RNA [193]. The RNA is immunoprecipitated with an anti-m6A antibody and crosslinked
using UV. Subsequently, the RNA is digested into 25–30 nucleotide fragments and se-
quenced [194]. Given that 4SU induces a T-to-C mutation at the crosslinking site, T-to-C
modifications are identified when compared to the reference genome, allowing methylation
detection [195]. Crosslinking can also be used to detect m5C. The methylation-individual
nucleotide resolution crosslinking and immunoprecipitation (miCLIP) approach can be
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modified to use an NSUN2 antibody for detecting RNA fragments targeted by NSUN2 [88].
An overexpression of the mutant form of NSUN2 (C271A) will result in a covalently linked
RNA-protein complex without the need for UV crosslinking [85]. An overexpression of the
mutant form of NSUN2 (C271A) will result in a covalently linked RNA-protein complex
after UV crosslinking [83]. Immunoprecipitation is performed using an antibody against
NSUN2, and the pulled-down RNA is then used for library construction. Given that the
crosslinked covalent bond induces a stop position during RT-PCR, the m5C positions are
recognized as truncation sites along with the transcriptome [83,192].

4.3.3. m6A-Level and Isoform-Characterization Sequencing (m6A-LAIC-seq)

m6A-level and isoform-characterization sequencing (m6A-LAIC-seq) is a high-throughput
technique that permits the evaluation of methylation status in the whole transcriptome [194].
An excess of anti-m6A antibody is used to ensure the pull-down of methylated RNA, and
m6A-positive and m6A-negative spike-ins are added to quantify m6A pull-down efficiency.
After m6A enrichment, ERCC spike-ins are added to the input, supernatant, and eluent
RNA pools as an internal standard for library preparation. The levels of m6A are quantified
as the ratio of RNA abundance in eluent/(eluent + supernatant) [196].

4.3.4. 5-Azacytidine-Mediated RNA Immunoprecipitation (Aza-IP-seq)

Another antibody-based sequencing technology utilizes the cytidine analog 5-azacytidine
(5-azaC). Cells expressing RCMT or transfected with a tagged RCMT are incubated with
the modified nucleoside, which is randomly incorporated into RNA. Due to the nitrogen
substitution at the C5 position, when RCMT recognizes 5-azaC, it forms an irreversible
covalent bond at the C6 position of its RNA targets, and therefore it cannot be released
from the RNA [194]. IP is then performed using a specific antibody against RCMT or an
anti-tag if an epitope-tagged RCMT is expressed in the cells, and the pulled-down RNAs
are used for sequencing. The m5C sites are identified as C-to-G conversions, which results
from a ring-opening of 5-azaC during the protocol [192]. One limitation of this method
lies in the high toxicity of 5-azaC [197,198], permitting only a short treatment and thus
reducing the probability of it being incorporated into the RNA.

4.3.5. RNA Bisulfite Sequencing Technology (RNA-BisSeq)

RNA bisulfite sequencing technology (RNA-BisSeq) was initially used for detecting
methylated cytosines in DNA [82]. At an acidic pH, sodium bisulfite reacts with cytosines,
resulting in the deamination of unmethylated cytosines into uracil sulfonate; under a basic
pH, this is converted to uracil, with the methylated cytosines remaining unchanged [192].
Therefore, this induces a C-to-U conversion of unmethylated cytosines, which can be de-
tected by sequencing. RNA-BisSeq was not initially used for RNA methylation studies
because the harsh conditions can induce RNA degradation. However, in 2009, Shaefer et al.
detected methylated cytosines in tRNA and rRNA by lowering the denaturation tempera-
ture and extending the incubation time [199].

This approach has remarkable advantages that include single-nucleotide resolution
and not requiring high concentrations of RNA. However, it fails to react with base-
paired cytosines and cannot distinguish 5-methylcytosine from 5-hydroxymethylcytosine
(hm5C) [192]. Additionally, some RNA secondary structures can prevent the C-to-U con-
version, thus leading to incorrect identification of methylated cytosines [192,200,201].

4.3.6. 2′-O-Methyl Sequencing (2′-O-Me-Seq)

2′-O-methyl sequencing (2′-O-Me-Seq) is a method used to map 2′-O-methyl sites in
RNAs [202]. Under low dNTP concentrations, reverse transcription halts once it reaches a
2′-O-methylated nucleotide, thereby truncating the cDNA. The truncated cDNA is then
sequenced to map the locations of 2′-O-methyl sites across the RNA sample. By using
2′-O-Me-Seq, researchers have been able to identify annotated 2′-O-methyl sites in rRNA
and further identify 12 new sites [202].
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4.3.7. Ribose Methylation Sequencing (RiboMeth-Seq)

2′-O-methylated nucleotides can be detected with a sequencing method named RiboMeth-
seq. 2′-O-methylated nucleotides are less sensitive to alkaline degradation when compared
to unmethylated nucleotides [204]. RiboMeth-sequencing uses this property to detect
2′-O-methylations. The RNA is incubated at an alkaline pH and high temperature, allowing
for its partial hydrolysis into 20–40 nucleotides fragments. The fragments are then ligated
to adaptors using a tRNA ligase with no enzymatic activity, reverse transcribed, and
sequenced [203].

The sequence is mapped to the reference sequence, and the first and last nucleotides
of the library fragments sequence are recorded as 3′ and 5′. The nucleotides at the 3′ ends
depend on their 2′OH function, while the 5′ ends depend on the 2′OH function of the
neighbor fragment. The two reads are merged, and 5′ read ends are shifted one nucleotide
upstream; thus, the reads refer to the same phosphodiester bond. Given that the 2′-O-Me
nucleotide is resistant to degradation, it does not generate read ends, so the positions that
correspond to a methylated nucleotide will be underrepresented. This creates a “negative
image” that is converted to a peak diagram [203].

4.3.8. Ribose Oxidation Sequencing (RibOxi-Seq)

This method starts with RNA fragmentation by the endonuclease Benzonase, which
generates small RNA fragments; 2′-O-methylated nucleotides are resistant to fragmen-
tation [205]. Oxidation/β-elimination is performed to remove the 3′ phosphates of frag-
mented RNA. 2′-O-methylation at the 3′ end renders the fragment resistant to oxidation,
allowing the enrichment of 2′-O-methylation at the 3′ ends of fragmented RNAs by adap-
tor ligation [206]. The RNA fragments are further processed for sequencing. Finally, the
terminal nucleotide of every fragment is recorded, and the processed data are referenced to
a non-oxidized control [205]. The method requires microgram amounts of RNA, limiting
the detection of low-abundance RNAs.

4.3.9. Nm-Seq

Similar to RibOxi-seq, Nm sequencing is another method to detect 2′-O-methylation
with base precision. Unlike RibOxi-seq, which relies on the random occurrence of frag-
mented 3′-end 2′-O-methyl, Nm-seq uses oxidation–elimination–dephosphorylation (OED)
cycles to remove 3′-unmodified nucleotides and enrich RNA fragments with 3′ ends car-
rying 2′-O-methyl [71]. A final round of oxidation–elimination (OE) dephosphorylates
any remaining 3′ end that does not contain 2′-O-methyl. The fragments ending with 2′-O-
methyl undergo adapter ligation and then library construction for sequencing. Nm-seq can
detect 2′-O-methyl in rRNA, mRNA, and ncRNAs.

4.3.10. TAIL-Seq

TAIL-seq is a sequencing method that is designed for the sequencing of the 3′ poly-A
tail of mRNA, can identify dynamic changes in the poly-A tail length, and can detect
nucleotides added to the poly-A tail such as poly-U [127]. Prior to performing TAIL-seq,
the sample RNA is depleted of rRNAs and small RNAs. A biotinylated 3′ adaptor is ligated
to the RNA, and the RNA is partially fragmented with RNase T1. The 3′-end fragments
are recovered via streptavidin pulldown. The resulting 3′ RNA is sequenced. Paired-end
sequencing is used, where read 1 is used to identify the transcript, and read 2 is used
to determine the 3′ poly-A tail. A specific algorithm is implemented to detect the signal
intensity of long T stretches and other nucleotides at the 3′ end. TAIL-seq was the first
method to detect widespread poly-U in short (~25 nt) poly-A tails [127].

4.3.11. Borohydride Reduction (BoRed-Seq)

BoRed-seq is a method for detecting internal m7G which takes advantage of the
nucleoside hydrolysis of m7G when treated with NaBH4 [119]. Total RNA is decapped to
remove the 5′ m7G cap and treated with NaBH4 at a low pH to generate abasic sites at
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m7G nucleotides. The RNA is then treated with biotin-coupled aldehyde-reactive probe
which will tag biotin to the abasic site. Streptavadin pulldown is used to enrich biotinylated
RNA, which is sequenced. This method was used for the initial observation of m7G in
miRNAs [119].

4.3.12. Inosine Chemical Erasing Sequencing (ICE-seq)

Inosine chemical erasing sequencing (ICE-seq) is used to identify A-to-I editing sites
in RNA [207]. This method employs a chemical reaction in which inosine is treated
with acrylonitrile to form N1-cyanoethylinosine (ce1). Ce1 inhibits retrotranscription and
truncates the cDNA at the site of RNA editing. The resulting cDNA is sequenced to identify
sites of A-to-I editing. ICE-seq was initially used to identify A-to-I editing sites in human
brain tissues [207].

4.3.13. Detecting A-to-I Editing in RNAseq Data

Most epitranscriptomic modifications cannot be directly detected via RNAseq with-
out alterations to the RNAseq protocol, as described above. When the RNA is reverse-
transcribed into cDNA, the information of the modification site is lost [194]. A-to-I editing,
however, can be detected directly in RNAseq data, as inosine is interpreted as a G during
reverse transcription [209]. Detecting A-to-I editing requires specialized bioinformatics
tools and sequencing depth to filter out small-nucleotide polymorphisms, false positives,
and sequencing errors. Hoon et al. developed the first pipeline for detecting miRNA
editing [210] from small RNA sequencing (sRNAseq) data. Lately, Alon et al. built a
multi-step high-throughput sequencing strategy to systematically detect reliable canonical
and non-canonical editing events from sRNAseq samples [211,212]. Since then, the pipeline
has been refined to either allow the visualization of single mutations using MiRME [213] or
detect editing along with miRNA isoforms using miRge 2.0 [214]. The bioinformatics tools
are described in detail in Marceca et al. [208]. These tools were used to detect the A-to-I
editing of miRNAs in tissue and plasma samples of NSCLC, highlighting the potential of
edited miRNAs as a biomarker for lung cancer [169].

4.3.14. Nanopore Sequencing

This approach was first used on RNA in 2018 by Gerald et al. [215], and it has been applied
to the study of m6A, m5C, A-to-I editing, m7G, poly-U, and 2′-O-methyl [216–218,221–224]. It
measures the RNA strand translocation into a nanopore protein inserted into the membrane.
The estimation of the status of each nucleotide is based on the perturbation of the nanopore
current, which is recorded when the RNA is translocated through the nanopore [215,217].
This method permits single-nucleotide resolution, does not require PCR amplification, and
has the potential to detect a wide range of epitranscriptomic modifications. However, it
shows a high signal-to-noise ratio and can fail to distinguish between nucleotides with
similar structures [83]. Improvements to the base-calling algorithms and error corrections
are being implemented to address these caveats [225]. A deviation of nanopore sequencing,
nanopore-induced phase-shift sequencing (NIPSS), can be used to sequence small RNAs
such as miRNAs [219]. NIPSS can distinguish 3′-end miRNA isoforms and modifications.
Currently, NIPSS is limited to the first 14–15 nucleotides of the 3′ end of miRNAs and is
unable to distinguish the 5′ seed region of a miRNA.

5. Concluding Remarks

In the past decade, there have been substantial advancements in the epitranscriptomics
field due to the improvement of high-throughput methods for detecting and targeting
epitranscriptomic modifications. These modifications can alter the functionality, structure,
and regulation of their respective coding and non-coding RNAs, representing a novel,
intricate regulation of the gene expression. In particular, miRNA regulation can be fine-
tuned by epitranscriptomic modifications occurring on either the miRNA molecule or the
targeted gene transcript. Several miRNAs that are well characterized in cancers can be
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regulated by epitranscriptomic modifications, modulating the biogenesis of these miRNAs
or the efficiency of targets gene downregulation [9].

There is a wide range of regulatory networks under the control of epitranscriptomic
modifications, many of which are involved in human physiology and pathology. Several of
the enzymes involved in epitranscriptomics are suitable therapeutic targets, with m6A and
A-to-I editing being the most studied of these modifications. Current pharmacological stud-
ies have identified small molecular inhibitors for METTL3 [226], showing promising results
in inhibiting tumor progression and growth. ADAR1 is actively being studied as a potent
therapeutic target for immuno-oncology therapy [227]. Other epitranscriptomic writers
such as the NSUN family of proteins for m5C and HEN1 for 2′-O-methyl could be potential
therapeutic targets for cancer. The poly-U enzymes TUT-4 and TUT-7 are being explored as
potential therapeutic targets due to their role in let-7 miRNA maturation [228,229].

Another importance of these epitranscriptomic modifications in cancer lies in their
possible detection in circulation as potential new-generation biomarkers, evolving a new,
quick, inexpensive, and non-invasive method for cancer diagnosis. Recently, Ge et al.
reported a significant upregulation of m6A levels in peripheral blood RNA of gastric
cancer patients. Other studies have found elevated levels of m6A in the serum of cancer
patients [230–233]. Decreased levels of m5C have also been found in the urine of colorectal
cancer patients [166].

miR-17-5p shows increased methylation levels in cancer tissues compared to normal
tissues, and its methylation level in serum could distinguish early pancreatic cancer patients
from healthy patients [98]. Additionally, A-to-I editing in miRNAs has recently been
used as a possible biomarker for cancer detection. A reduction in edited miRNAs has
been reported in many human cancer tissues, resulting in an overexpression of their
targets [166]. In 2018, Nigita et al. detected for the first time the deregulation of miRNA
editing in circulating exosomes of lung cancer patients [169], laying the foundations for
epitranscriptomic modifications as a possible biomarker for cancer. Notably, differential
signatures in A-to-I miRNA editing have been described between White American and
African American lung cancer patients, providing new profiling of canonical and modified
miRNAs to study racial disparities in cancer [234]. The analysis of modified miRNAs
in cancer permits a more comprehensive understanding of the mechanisms that drive
the pathology and how these mechanisms are altered during cancer development and
progression in different races. Studying the epitranscriptomic modifications in cancer
biomarkers and their role in cancer pathogenesis may allow for a more tailored diagnosis
and refine targeted therapeutic plans.

To add to this complexity, m6A itself can regulate or cooperatively interact with other
epitranscriptomic modifications such as A-to-I editing, 2′-O-methylation, and m5C in RNAs.
The interaction between m6A and A-to-I editing poses a possible mechanism whereby RNA
editing can be fine-tuned by m6A regulation. The recently characterized METTL3 inhibitor
could affect RNA editing activity, contributing to its effect on tumor cells. m6Am at the first
nucleotide of an mRNA renders the mRNA resistant to miRNA downregulation. m6Am
has its writer, CAPAM, and can be removed by the m6A eraser FTO [235]. It would be
interesting to determine whether CAPAM is dysregulated in cancers and if oncogenes are
hypermethylated with m6Am and vice versa for tumor suppressors. Future studies will
need to consider these modifications to fully understand their scope in miRNA biology and
their potential in human diseases.
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