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The effect of feature image on 
sensitivity of the statistical analysis 
in the pipeline of a tractography 
atlas-based analysis
Junya Mu, Qing Xu, Jie Tian & Jixin Liu

Tractography atlas-based analysis (TABS) is a new diffusion tensor image (DTI) statistical analysis 
method for detecting and understanding voxel-wise white matter properties along a fiber tract. An 
important requisite for accurate and sensitive TABS is the availability of a deformation field that is 
able to register DTI in native space to standard space. Here, three different feature images including 
the fractional anisotropy (FA) image, T1 weighted image, and the maximum eigenvalue of the 
Hessian of the FA (hFA) image were used to calculate the deformation fields between individual space 
and population space. Our results showed that when the FA image was a feature image, the tensor 
template had the highest consistency with each subject for scalar and vector information. Additionally, 
to demonstrate the sensitivity and specificity of the TABS method with different feature images, we 
detected a gender difference along the corpus callosum. A significant difference between the male and 
female group in diffusion measurement appeared predominantly in the right corpus callosum only when 
FA was the feature image. Our results demonstrated that the FA image as a feature image was more 
accurate with respect to the underlying tensor information and had more accurate analysis results with 
the TABS method.

Clinical neuroimaging studies increasingly rely on diffusion tensor imaging (DTI), which is unique in providing 
rich information regarding the properties and structure of brain white matter (WM) in vivo1–4. With the pop-
ularity of DTI, clinical and neuroscience questions related to WM were often addressed by quantitative analy-
sis for regions of specific white matter tracts5. Reviewing the number of DTI analyses, the voxel-based analysis 
(VBA) method is highly sensitive to registration accuracy and tract-based spatial statistics (TBSS) method is 
limited to skeleton voxels with many WM regions being neglected6,7. To address the limitation above, tractog-
raphy atlas-based analysis (TABS), as an optimized white matter analysis which creates a voxel-wise statistical 
framework for detecting and understanding white matter differences along a fiber tract, has been used frequently 
in WM pathway studies8–10. In the pipeline of the TABS method, comparison of diffusion properties along a fiber 
tract requires a method for identifying corresponding anatomical regions11. Hence, accurate alignment of the 
brain anatomy between subjects may potentially affect the accuracy of voxel-wise statistics.

The TABS method contains two major steps, the construction of a diffusion tensor (DT) template and a sta-
tistical model for each voxel along the fiber tracts12,13. For the template construction, all tensor images in native 
space are aligned to the population space with a non-linear deformation field6,14–16. Integrating spatial and dif-
fusion tensor information in all subjects, a population template is constructed to provide spatial normalization 
for the analysis of diffusion values at corresponding locations along the fiber tracts17,18. In order to minimize the 
anatomical variability between studied brain structures, Goodlett et al.11 pointed out that the feature image is 
a sensitive detector of microstructure in the brain that has crucial importance during template construction11. 
For statistical model building, the fibers in the population space were first mapped into one common coordinate 
system with a parameterization method, and then the parameterized fibers were warped back into the individu-
al’s native space with an inverse deformation field to collect the diffusion measure11,13. Accordingly, the accuracy 
of the deformation field affected by the selection of the feature image has a significant impact for the matching 
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degree of the corresponding regions in the fibers between the population space and native space. Hence, the selec-
tion of the feature image as one of the key steps should be taken into account for the pipeline of the TABS method.

The basic role of a feature image, which should have ultra-sensitivity to identify the corresponding regions of 
white matter geometry, is transformed into standard space to obtain the deformation field6,19. An inappropriate 
feature image used in registration will lead to inaccurate spatial normalization and inconsistent tract positions20. 
The FA image, as an indirect measure of WM integrity, was first employed to transform individual diffusion 
weighted images to standard space and obtain the same anatomical structure6,21–23. To further improve the sensi-
tivity of the geometry of brain white matter, Goodlett, et al.11 defined a feature image by calculating the maximum 
eigenvalue of the Hessian of the FA image (hFA), which was suggested to be a good detector of major fiber bun-
dles with tubular or sheet-like structures11. Additionally, considering the high signal to noise ratio and anatomical 
structure, several researchers also suggested that T1 weighted images could be used to minimize local differences 
in brain white matter shape across subjects and attain superior results of tensor image alignment7,24,25. However, 
for the three widely used feature images, how or whether the effect of different feature images for spatial align-
ment between each subject influences the quantitative statistical analysis in the pipeline of the TABS method is 
still largely unclear.

In the current study, we assumed that the feature image will affect the sensitivity of the statistical analysis in 
the pipeline of the TABS method by affecting the spatial consistency between each subject. In order to verify the 
hypothesis, we attempted to construct three study-specific white matter diffusion tensor templates by using dif-
ferent feature images (T1 weighted image, FA image, and hFA image) based on simulation data and experimental 
data. Subsequently, numbers of similarity metrics were used to evaluate the accuracy and precision of the spatial 
consistency for all pairs of subjects. Finally, in order to validate the accuracy of the along-tract statistical analysis, 
we conducted experiments to compare the FA patterns between a male group and a female group of subjects. 
Based on the difference between the two groups, the receiver operating characteristic (ROC) curve was used to 
calculate the accuracy of gender classification.

Materials and Methods
Subjects. Sixty-six healthy age-, education-, and gender-matched, right-handed Chinese con-
trols were recruited (33 males, age 21–24 years (mean ± SD:22.5 ± 1.5 years); 33 females, age 20–25 years 
(mean ± SD:22.5 ± 2.5 years)). The exclusion criteria were: (1) macroscopic brain T2-visible lesions on MRI 
scans, (2) existence of a neurological disease, (3) physical deformities, (4) alcohol, nicotine or drug abuse, and/
or (5) claustrophobia. All research procedures were approved by the First Affiliated Hospital of Xi’an Jiao Tong 
University. Human Studies Subcommittee was conducted in accordance with the Helsinki Declaration. Each 
participant signed an informed consent respectively.

Data Acquisition. All subjects were scanned on a 3.0 Tesla GE Excite scanner using an eight channel coil 
(GE Medical Systems, Milwaukee, WI). DTI images were obtained with a single-shot echo-planar imaging 
sequence where the diffusion sensitizing gradients were applied along two repeats of 30 non-collinear directions 
(b = 1000 s/mm2) with five repeats of the b0 (no diffusion weighted image). The imaging parameters were 75 con-
tinuous axial slices with a slice thickness of 2 mm and no gap, field of view (FOV) = 256*256 mm2; TR = 9400 ms; 
TE = 84 ms; and matrix size = 128 × 128, resulting in 2 mm isotropic voxels.

For each subject, a high-resolution structural image was acquired by using a three-dimensional MRI sequence 
with a voxel size of 1 × 1 × 1 mm3 using an axial Fast Spoiled Gradient Recalled sequence (FSGPR) with the fol-
lowing parameters: repetition time (TR) = 1.900 ms; echo time (TE) = 2.26 ms; data matrix = 256 × 256; and field 
of view (FOV) = 256 × 256 mm2.

Data Pre-Processing. An average b0 image (mB0) was calculated from the five unweighted b0 volumes, 
while 30 average DWIs were calculated based on the two repeats. Those steps were performed by using MATLAB 
(MathWorks, Natick, MA, USA). For the DWI data, pre-processing was all performed by using Leemans’s 
ExploreDTI (www.exploredti.com)26. Firstly, image quality was checked qualitatively. Subsequently, subject 
motion and EPI distortions were corrected with B-matrix rotation and signal intensity was modulated26–30. Lastly, 
brain extraction, diffusion tensor and FA calculation were completed31. The hFA image was estimated by using 
MATLAB based on the introduction from Goodlett, et al.11 (see Supplementary Materials).

For the T1 weighted image, brain extraction was performed with the FMRIB Software Library (FSL) v5.0 
software (http://fsl.fmrib.ox.ac.uk/fsl)31.

Tractography atlas-based analysis (TABS) method. TABS is a method for group comparison of DTI 
combining spatial normalization of tensor images in the individual’s native space with a voxel-wise statistical 
framework for tract-oriented statistics12. By using this method, the location of the between-group differences was 
determined by the hypothesis test and could be investigated along a fiber pathway12,32. Three main steps of TABS 
are: individual tensor information integration and tractography atlas construction (Fig. 1A), predefined fiber tract 
property parameterization and inverse transformation (Fig. 1B), and diffusion measure collection in native space 
(Fig. 1C). Specifically:

 1. Individual tensor information integration and tractography atlas construction (Fig. 1A): In order to get a 
common anatomical position, a number of DTI images in individual native space were transformed to a 
population space to get a DTI template. The multi-component DT images of each subject from individual 
native space were transformed with deformation fields to the population space with tensor reorientation. 
Then, the DT template was obtained by averaging normalized DT images. Fiber tracking was performed in 
this DT template using a deterministic streamline fiber tracking approach with the minimal threshold FA 
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of 0.2 and a maximal threshold angle of 30°, which was based on the ExploreDTI software package33,34.
 2. Predefined fiber tract property parameterization and inverse transformation (Fig. 1B): Fiber clusters in 

the regions of interest (ROI) were first chosen from the whole-brain tractography maps. Tract masks were 
created in the global-brain tractography atlas using manually defined inclusion, AND, OR, and exclusion, 
NOT. Then, selection of ROIs was performed manually in DT template space based on expert neuro-
anatomical knowledge of known pathways derived from classical anatomical descriptions. Arc length 
parameterization and optimal point match method were applied to define parameterized fiber clusters 
with a common coordinate system in population space12. For each subject, to get the voxel-wise coordinate 
matched with ROI fibers in population space, parameterized ROI tracts were transformed back to native 
space with inverse deformation fields.

 3. Diffusion measure collection in native space (Fig. 1C): After the correspondence between individual native 
space and population space had been calculated, the diffusivity metrics of each voxel along the fiber path-
way of each subject were extracted.

For the pipeline of the tractography atlas-based analysis, accuracy of the deformation field calculation not 
merely affected the accuracy of the diffusion tensor template construction but also affected the accuracy of the 
inverse deformation fields which were used to confirm the white matter’s relevant position in native space. Hence, 
the choice of feature image will influence the results of the TABS method. In our current study, we applied differ-
ent feature images to research the influence on the statistical analysis in the pipeline of the TABS method.

The deformation field calculation. To provide spatial normalization for the analysis of diffusion values at 
corresponding locations in TABS, deformation fields between native space and population space should be calcu-
lated first. Van et al.16 introduced a population-based registration strategy where all subject data were iteratively 

Figure 1. The schematic overview of the tractography atlas-based analysis. Individual tensor information 
integration and tractography atlas construction is shown in (A). Predefined fiber tract property 
parameterization and inverse transformation are shown in (B). Diffusion measure collection in native space is 
displayed in (C).
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aligned to each other to obtain mean deformation fields of each subject image to all other images16. This strategy 
can obtain optimal spatial alignment results and has a higher accuracy and precision for transformation than the 
subject-based template method16. In the current study, we followed a similar registration strategy in Van et al.16 
study. The T1 weighted image was used as an example to expound on the procedure, and the framework is eluci-
dated in online Supplementary Fig. S1.

 1. The mB0 image of each subject was first linearly aligned to the T1 weighted image to match it spatially by 
using FMRIB’s Linear Image Registration Tool (FLIRT)14,35. Affine transformation measured with the 
FLIRT command was obtained and named w wN1 . N is the number of subjects. Subsequently, the T1 
weighted images of each subject were transformed to the MNI152-T1-2mm template by using FMRIB’s 
FLIRT and Non-Linear Registration Tools (FNIRT)36. Spline coefficients ϕ ϕ N1  were obtained between 
T1 images and the MNI152-T1-2mm template (Fig. S1A).

 2. T1 images in MNI space were iteratively non-linearly aligned to every other one to obtain the deformation 
fields of each subject image to all other images. The mean transformation to all other images was defined as 
φ φ N1  (Fig. S1B).

 3. Consecutive application of transformations ϕ φο οwi i i (i = 1…N) was constructed based on the convertwarp 
command, which is an FSL tool for combining multiple transforms into one. The composite transforma-
tion ϕ φο οwi i i was defined as the final deformation field in the following analysis (Fig. S1C).

For the other two feature images (FA image and hFA image), the deformation field was calculated following 
similar steps except for lack of linear alignment with the mB0 image. We used the ICBM_Mori_DTI_2mm_FA 
template for initializing warping of the FA image. The framework is elucidated in online Supplementary Fig. S2.

Evaluation of Inter-subject spatial normalization in simulated data sets. In order to assess accu-
racy and precision of tensor matching between standardized subjects, a series of simulated data sets was produced 
by using ground truth methodology previously presented by Van et al.16. Specifically, a random single subject 
DTI data set was selected as the ground truth image (GT). Then, 10 sinusoidal deformation fields were defined 
with different frequencies, amplitude, and direction. Another 10 sinusoidal deformation fields were the inverse 
of the 10 deformation fields defined before and total vector sum over all of the deformation fields equal to 0 for 
each voxel37,38. Twenty simulated data sets were deformed from the ground truth image with predefined defor-
mation fields. Then, 20 simulated images were normalized by using different feature images. Normalized images 

Figure 2. The results of the absolute value of the FA difference. (A,B and C) are the accuracy of the FA difference 
between the ground truth image and the normalized image which were obtained by using the FA image, T1 
weighed image and hFA image as the feature image respectively. (E,F and G) are the precision values of the FA 
difference between the ground truth image and the normalized image, which was obtained by using the FA 
image, T1 weighed image and hFA image as the feature image respectively. In (D) and (H), histograms of the 
relative number of brain voxels corresponding to FA’s different accuracies and precisions are displayed.

http://S1
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were named T1i,normalized, FAi,normalized, and hFAi,normalized respectively (i = 1…20). Normalized images more closely 
resembled the ground truth image indicating that they had more consistency in space alignment16.

Two similarity metrics were calculated to evaluate the difference in tensor matching between normalized 
images and the ground truth image respectively. The definitions are briefly described as follows.

Difference in FA is a value reflecting the similarity of 2 FA images that is defined as the accuracy and precision 
in the FA difference and standard deviation between the normalized image and ground truth image11:

∑= −
=
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N

FA FA
(1)i 1

N
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(2)i 1
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where N is the number of subjects, and IMAGEi,normalized is the normalized image which performed well with the 
T1 image, FA image, or hFA image. FA IMAGE

i,normalized and FAGT are the FA values that were derived from the nor-
malized subject image and ground truth image in each voxel.

The overlap of eigenvalue-eigenvector pairs (OVL) represents the rate of orientational information preservation 
during image normalization, which is calculated by using39:
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Figure 3. The results of the overlap of eigenvalue–eigenvector pairs. (A,B and C) are the accuracies of the OVL 
difference between the ground truth image and normalized image which were obtained by using the FA image, 
T1 weighed image and hFA image as the feature image respectively. (E,F and G) are the precisions of the OVL 
difference between the ground truth image and normalized image, which were obtained by using the FA image, 
T1 weighed image and hFA image as the feature image respectively. In (D) and (H), histograms of the relative 
number of brain voxels corresponding to different values of the OVL accuracy and precision are displayed.
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where εj, λ j, and j
⁎ε , ⁎λ j  are the eigenvalue-eigenvector pairs that were derived from 2 DT images39. N is the num-

ber of subjects. mean (IMAGEi,normalized) indicates the average of all normalized images.
To replicate and validate significant findings, we randomly selected another subject as a replication data set 

and repeated the above analysis.

Evaluation of Inter-subject spatial normalization in actually measured data sets. In order to 
corroborate the results in simulated data sets, T1normalized, FAnormalized, and hFAnormalized were performed on 66 
healthy controls to compare the difference of inter-subject spatial normalization with different feature images. A 
number of similarity metrics was also calculated including: difference in overlap of eigenvalue–eigenvector pairs 
(OVL)39, Euclidean distance of tensors (DTED)40, Euclidean distance of deviatoric tensors (DVED)40, angle of 
primary eigenvectors (AI)15, coherence of primary eigenvectors (COH)41, and cross-correlation of FA (corrFA)15. 
The definitions of these similarity metrics are described in the Supplementary Materials section.

In order to localize the sensitivity and specificity of inter-subject spatial normalization which were performed 
with different feature images, a series of regions of interest (ROIs) was selected as follows: anterior limb of the 
internal capsule (ALIC), cingulum (CG), external capsule (EC), fornix, genu of the corpus callosum (GCC), 
posterior limb of the internal capsule (PLIC), splenium of the corpus callosum (SCC), corticospinal tract (CST), 
superior longitudinal fascicle (SLF) and inferior fronto-occipital fasiculus (IFOF). A comparison of the DTED, 
DVED, OVL, COH, AI and corrFA was performed in selected ROIs.

Visualization of fiber tracking. In order to access the accuracy of fiber orientation information in an intu-
itive way, fiber tracking visualization was performed on three diffusion tensor templates which were constructed 
by simulated data sets and actually measured the data sets respectively. Diffusion tensor template was constructed 
by averaging these normalized diffusion tensors. Three final templates were named T1template, FAtemplate, and hFAtem-

plate. Seed points were defined as the selected ROIs above. Deterministic streamline fiber tracking was initiated in 
each voxel with the minimal threshold FA of 0.2 and a maximal threshold angle of 30°34,42.

Statistical analysis. To test the effect of different feature images for spatial alignment between each subject, 
ANOVA was performed for the evaluation value of inter-subject spatial normalization in simulated data sets and 
actually measured data sets. The threshold for statistical significance was p < 0.001(corrected by Bonferroni cor-
rection). Then, a Wilcoxon matched pairs signed rank test was used to investigate the difference of the underlying 
tensor information of spatial alignment between each subject.

Two-sample t-test was employed to detect the group difference of the anisotropy value along fibers between 
the two groups. Threshold-free cluster enhancement was used to obtain continuous space differences, and 
family-wise error (FWE) rate was applied for correcting the multiple comparisons along the fibers24,43.

Sensitivity and specificity along a fiber tract. Gender difference in the corpus callosum has been 
repeatedly reported in previous research44–46. To calculate the sensitivity of the TABS method with different 
feature images, the tract-averaged estimate method was first used to confirm former achievements on gender 

Brain 
Region

FAnormalized T1normalized hFAnormalized

F P P1 P2 P3mean STD mean STD mean STD

ALIC 0.985 0.002 0.982 0.008 0.974 0.002 143.681 <10−10 <10−10 <10−10 <10−10

CG 0.961 0.007 0.919 0.022 0.899 0.004 287.254 <10−10 <10−10 <10−10 <10−10

EC 0.982 0.002 0.976 0.009 0.965 0.023 99.574 <10−10 <10−10 <10−10 <10−10

fornix 0.963 0.015 0.951 0.015 0.940 0.019 62.199 <10−10 <10−10 <10−10 <10−10

GCC 0.965 0.002 0.963 0.010 0.963 0.017 91.733 <10−10 <10−10 <10−10 <10−10

PLIC 0.995 0.001 0.994 0.005 0.988 0.001 101.240 <10−10 <10−10 <10−10 <10−10

SCC 0.979 0.003 0.972 0.018 0.952 0.015 85.627 <10−10 <10−10 <10−10 <10−10

CST 0.988 0.001 0.981 0.004 0.975 0.002 48.548 <10−10 <10−10 <10−10 <10−10

SLF 0.963 0.005 0.961 0.008 0.942 0.007 215.958 <10−10 <10−10 <10−10 <10−10

IFOF 0.985 0.004 0.977 0.007 0.974 0.006 40.357 <10−10 <10−10 0.021 <10−10

Table 1. Average corrFA of tensors over all pairs of datasets used in T1normalized, FAnormalized, and hFAnormalized. 
ALIC: anterior limb of the internal capsule, CG: cingulum, EC: external capsule, fornix, GCC: genu of the 
corpus callosum, PLIC: posterior limb of the internal capsule, SCC: splenium of the corpus callosum, CST: 
corticospinal tract, SLF: superior longitudinal fascicle, IFOF: inferior fronto-occipital fasiculus. corrFA: cross-
correlation of FA. ANOVA was used to compare the difference between the three diffusion tensor templates. P1: 
Statistically significant differences between FAnormalized and T1normalized (after correction for multiple comparisons 
with the Bonferroni approach). P2: Statistically significant differences between T1normalized and hFAnormalized (after 
correction for multiple comparisons with the Bonferroni approach). P3: Statistically significant differences 
between FAnormalized and hFAnormalized (after correction for multiple comparisons with the Bonferroni approach).
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difference47. Subsequently, a tractography atlas-based analysis was used to detect the locations which have signif-
icant differences in FA values.

In order to demonstrate the specificity of the gender difference in white matter of the corpus callosum, gender 
classification can be calculated with the ROC curve which is a widely used tool for comprehensive description 
of diagnostic accuracy48,49. The area under the curve (AUC) indicates the diagnostic accuracy of a classification 
feature between the differences of the 2 groups49. In the current study, local FA values had a significant difference 
between the male and female group in the corpus callosum fibers that were extracted as a classification feature.

Results
Inter-subject spatial normalization in simulated data sets. To investigate which feature image was 
more accurate with respect to the underlying tensor information, the FA difference between normalized images 

Figure 4. Histograms of the relative number of brain voxels corresponding to different values of the cross-
correlation of FA (corrFA) (A), the angle of primary eigenvectors (AI) (B), the Euclidean distance of tensors 
(DTED) (C), the Euclidean distance of the deviatoric tensors (DVED) (D), the coherence of primary 
eigenvectors (COH) (E), and overlap of eigenvalue–eigenvector pairs (OVL) (F) for FAnormalized (red curve), 
hFAnormalized (green curve), and T1normalized (blue curve).
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and ground truth image was calculated for each voxel. As can be seen from Fig. 2, the accuracy of the FA differ-
ence was lowest in FAnormalized (Fig. 2A), intermediate in T1normalized (Fig. 2B), and highest in hFAnormalized (Fig. 2C); 
the precision of FA differences also revealed ordered differences such that FAnormalized < T1normalized < hFAnormalized 
(Fig. 2E–G). Histograms further confirmed these results, which were statistically significant (Fig. 2D,H, one-way 
ANOVA, p < 10−10).

In addition, to investigate which feature image was more sensitive with respect to orientation information 
of the tensor image, OVL difference between the 3 templates and ground truth image was also calculated for 
each voxel. As can be seen from Fig. 3, the accuracy of OVL was highest in FAnormalized (Fig. 3A), intermediate in 
T1normalized (Fig. 3B), and lowest in hFAnormalized (Fig. 3C); the precision of OVL also revealed ordered differences 
such that FAnormalized > T1normalized > hFAnormalized (Fig. 3E–G). Histograms further confirmed these results, which 
were statistically significant (Fig. 3D,H, one-way ANOVA, p < 10−10).

An independent replication data set was included to replicate and validate significant findings. In our study, 
calculation of the FA difference and OVL for an independent replication data set had similar results.

Brain 
Region

FAnormalized T1normalized hFAnormalized

F P P1 P2 P3mean STD mean STD mean STD

ALIC 0.955 0.157 0.917 0.063 0.897 0.109 198.688 <10−10 <10−10 <10−10 <10−10

CG 0.782 0.054 0.688 0.135 0.604 0.101 400.174 <10−10 <10−10 <10−10 <10−10

EC 0.850 0.052 0.849 0.090 0.830 0.147 85.812 <10−10 <10−10 <10−10 <10−10

fornix 0.875 0.097 0.814 0.070 0.800 0.108 88.842 <10−10 <10−10 <10−10 <10−10

GCC 0.820 0.104 0.796 0.150 0.774 0.145 151.287 <10−10 <10−10 <10−10 <10−10

PLIC 0.945 0.105 0.925 0.056 0.899 0.063 75.634 <10−10 <10−10 <10−10 <10−10

SCC 0.847 0.120 0.842 0.119 0.839 0.124 33.732 <10−10 0.061 <10−10 <10−10

CST 0.852 0.056 0.839 0.099 0.798 0.175 173.483 <10−10 <10−10 <10−10 <10−10

SLF 0.710 0.162 0.703 0.132 0.605 0.166 167.277 <10−10 0.030 <10−10 <10−10

IFOF 0.854 0.045 0.851 0.096 0.812 0.098 5.554 0.015 0.059 <10−10 <10−10

Table 2. Average OVL of tensors over all pairs of datasets used in T1normalized, FAnormalized, and hFAnormalized. 
ALIC: anterior limb of the internal capsule, CG: cingulum, EC: external capsule, fornix, GCC: genu of the 
corpus callosum, PLIC: posterior limb of the internal capsule, SCC: splenium of the corpus callosum, CST: 
corticospinal tract, SLF: superior longitudinal fascicle, IFOF: inferior fronto-occipital fasiculus. OVL: overlap 
of eigenvalue–eigenvector pairs. ANOVA was used to compare the difference between the three diffusion 
tensor templates. P1: Statistically significant differences between FAnormalized and T1normalized (after correction for 
multiple comparisons with the Bonferroni approach). P2: Statistically significant differences between T1normalized 
and hFAnormalized (after correction for multiple comparisons with the Bonferroni approach). P3: Statistically 
significant differences between FAnormalized and hFAnormalized (after correction for multiple comparisons with the 
Bonferroni approach).

Brain 
Region

FAnormalized T1normalized hFAnormalized

F P P1 P2 P3mean STD mean STD mean STD

ALIC 0.890 0.047 0.879 0.049 0.834 0.105 180.431 <10−10 <10−10 <10−10 <10−10

CG 0.749 0.126 0.660 0.156 0.659 0.147 179.477 <10−10 <10−10 <10−10 <10−10

EC 0.853 0.092 0.833 0.085 0.810 0.099 105.047 <10−10 <10−10 <10−10 <10−10

fornix 0.864 0.052 0.847 0.081 0.765 0.196 99.418 <10−10 0.087 <10−10 <10−10

GCC 0.848 0.097 0.782 0.137 0.722 0.162 216.864 <10−10 <10−10 <10−10 <10−10

PLIC 0.912 0.030 0.890 0.049 0.876 0.174 57.977 <10−10 <10−10 <10−10 <10−10

SCC 0.844 0.126 0.814 0.109 0.800 0.193 332.911 <10−10 <10−10 <10−10 <10−10

CST 0.823 0.107 0.798 0.101 0.732 0.103 166.223 <10−10 <10−10 <10−10 <10−10

SLF 0.701 0.150 0.671 0.140 0.595 0.167 155.456 <10−10 0.007 <10−10 <10−10

IFOF 0.839 0.116 0.833 0.081 0.799 0.155 6.764 0.031 0.603 0.0005 <10−10

Table 3. Average COH of tensors over all pairs of datasets used in T1normalized, FAnormalized, and hFAnormalized. 
ALIC: anterior limb of the internal capsule, CG: cingulum, EC: external capsule, fornix, GCC: genu of the 
corpus callosum, PLIC: posterior limb of the internal capsule, SCC: splenium of the corpus callosum, CST: 
corticospinal tract, SLF: superior longitudinal fascicle, IFOF: inferior fronto-occipital fasiculus. COH: 
coherence of primary eigenvectors. ANOVA was used to compare the difference between the three diffusion 
tensor templates. P1: Statistically significant differences between FAnormalized and T1normalized (after correction for 
multiple comparisons with the Bonferroni approach). P2: Statistically significant differences between T1normalized 
and hFAnormalized (after correction for multiple comparisons with the Bonferroni approach). P3: Statistically 
significant differences between FAnormalized and hFAnormalized (after correction for multiple comparisons with the 
Bonferroni approach).
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Inter-subject spatial normalization in actually measured data sets. As can be seen from Fig. 4(A), 
a greater mean corrFA value was present in FAnormalized than in T1normalized and a lesser mean corrFA value was 
present in hFAnormalized. In the pairwise comparison of the 3 templates, FAnormalized demonstrated the largest per-
centage of voxels with low AI (Fig. 4B), low DTED (Fig. 4C), low DVED (Fig. 4D), high COH (Fig. 4E), and high 
OVL (Fig. 4F) values, and a minimum percentage of voxels with high AI (Fig. 4B), high DTED (Fig. 4C), high 
DVED (Fig. 4D), low COH (Fig. 4E), and low OVL (Fig. 4F) values. Meanwhile, the histogram of T1normalized and 
hFAnormalized revealed the transition T1normalized > hFAnormalized (Fig. 4A–F) (one-way ANOVA, p < 10−10).

As can be seen from Tables 1–6, mean corrFA (Table 1), OVL (Table 2) and COH (Table 3) in white matter 
ROIs for the 3 templates revealed the transition FAnormalized > T1normalized > hFAnormalized (p < 10−10). On the con-
trary, mean DTED (Table 4), DVED (Table 5) and AI (Table 6) in white matter ROIs for the 3 templates revealed 
the transition FAnormalized < T1normalized < hFAnormalized (one-way ANOVA, p < 10−10). These were more similar to 
the results of the evaluation in the actually measured data sets.

Brain 
Region

FAnormalized × 10−4 T1normalized × 10−4 hFAnormalized × 10−4

F P P1 P2 P3mean STD mean STD mean STD

ALIC 2.147 0.418 2.532 0.401 2.614 0.413 59.417 <10−10 <10−10 <10−10 <10−10

CG 2.041 0.359 3.338 0.437 3.813 0.570 98.674 <10−10 <10−10 <10−10 <10−10

EC 1.998 0.334 2.446 0.416 2.562 0.820 385.748 <10−10 <10−10 0.013 <10−10

fornix 7.355 0.975 7.453 1.450 8.042 0.292 43.742 <10−10 0.0003 0.004 <10−10

GCC 4.419 2.447 4.432 1.352 4.504 2.468 2.174 0.227 — — —

PLIC 2.365 0.287 2.719 0.280 2.922 0.597 162.217 <10−10 <10−10 <10−10 <10−1010−10

SCC 3.376 1.811 4.539 0.954 4.983 3.075 278.081 <10−10 0.187 <10−10 <10−10

CST 2.477 0.735 2.830 0.434 3.101 0.743 546.853 <10−10 <10−10 <10−10 <10−10

SLF 3.494 0.797 3.567 0.645 3.813 0.519 54.659 <10−10 <10−10 <10−10 <10−10

IFOF 2.057 0.642 2.627 0.322 2.909 0.742 100.459 <10−10 <10−10 <10−10 <10−10

Table 4. Average DTED of tensors over all pairs of datasets used in T1normalized, FAnormalized, and hFAnormalized. 
ALIC: anterior limb of the internal capsule, CG: cingulum, EC: external capsule, fornix, GCC: genu of the 
corpus callosum, PLIC: posterior limb of the internal capsule, SCC: splenium of the corpus callosum, CST: 
corticospinal tract, SLF: superior longitudinal fascicle, IFOF: inferior fronto-occipital fasiculus. DTED: 
Euclidean distance of tensors. ANOVA was used to compare the difference between the three diffusion tensor 
templates. P1: Statistically significant differences between FAnormalized and T1normalized (after correction for 
multiple comparisons with the Bonferroni approach). P2: Statistically significant differences between T1normalized 
and hFAnormalized (after correction for multiple comparisons with the Bonferroni approach). P3: Statistically 
significant differences between FAnormalized and hFAnormalized (after correction for multiple comparisons with the 
Bonferroni approach).

Brain 
Region

FAnormalized × 10−4 T1normalized × 10−4 hFAnormalized × 10−4

F P P1 P2 P3mean STD mean STD mean STD

ALIC 2.233 0.475 2.248 0.609 2.579 0.288 55.768 <10−10 <10−10 <10−10 <10−10

CG 2.485 0.282 2.903 0.466 3.001 0.357 187.456 <10−10 <10−10 0.457 <10−10

EC 2.080 0.378 2.169 0.420 2.476 0.366 162.751 <10−10 <10−10 0.003 <10−10

fornix 3.002 0.468 3.517 0.648 3.898 0.301 220.635 <10−10 <10−10 <10−10 <10−10

GCC 2.593 0.739 2.983 0.652 3.722 0.511 512.471 <10−10 <10−10 <10−10 <10−10

PLIC 2.506 0.317 2.545 0.645 2.922 0.238 102.876 <10−10 <10−10 <10−10 <10−10

SCC 2.999 0.384 3.173 0.714 3.992 0.693 664.578 <10−10 0.0002 <10−10 <10−10

CST 2.579 0.379 2.676 0.735 3.247 0.835 323.854 <10−10 <10−10 <10−10 <10−10

SLF 2.874 0.274 3.066 0.775 3.454 0.398 164.599 <10−10 <10−10 <10−10 <10−10

IFOF 2.001 0.462 2.121 0.239 2.777 0.778 311.526 <10−10 <10−10 <10−10 <10−10

Table 5. Average DVED of tensors over all pairs of datasets used in T1normalized, hFAnormalized, and hFAnormalized. 
ALIC: anterior limb of the internal capsule, CG: cingulum, EC: external capsule, fornix, GCC: genu of the 
corpus callosum, PLIC: posterior limb of the internal capsule, SCC: splenium of the corpus callosum, CST: 
corticospinal tract, SLF: superior longitudinal fascicle, IFOF: inferior fronto-occipital fasiculus. DVED: 
Euclidean distance of the deviatoric tensors. ANOVA was used to compare the difference between the three 
diffusion tensor templates. P1: Statistically significant differences between FAnormalized and T1normalized (after 
correction for multiple comparisons with the Bonferroni approach). P2: Statistically significant differences 
between T1normalized and hFAnormalized (after correction for multiple comparisons with the Bonferroni approach). 
P3: Statistically significant differences between FAnormalized and hFAnormalized (after correction for multiple 
comparisons with the Bonferroni approach).
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Visualization of fiber tracking. Fiber tracking results in ALIC, EC, fornix, GCC, PLIC, SCC, CST, SLF, 
and IFOF were similar in fiber length and sparsity. Figure 5 shows examples of fiber tracking at seed points for 
CST and IFOF. The fiber bundle which was reconstructed from FAtemplate (Figs 5A, 6A), T1template (Figs 5B and 6B) 
and hFAtemplate (Figs 5C and 6C) was quite similar visually. However, for the simulated data sets, FAtemplate had the 
most dense white matter pathways (Fig. 7A) than T1template (Fig. 7B) and hFAtemplate (Fig. 7C) in the tractography 
results of CG. hFAtemplate (Fig. 7C) had the most sparse white matter pathways. On the other hand, the tractogra-
phy results for CG of different templates in the actually measured data sets further confirmed these results, which 
are displayed in Fig. 8.

Sensitivity and specificity along a fiber tract. For the between group comparison of the mean FA value 
of the corpus callosum fibers, there was no significant difference in the FA value between the male group and 
female group using the T1 image or hFA image as a feature image. While the FA image was used as a feature 
image, gender difference in the FA value could be found in the corpus callosum (p = 0.043) (Fig. 9A). Meanwhile, 
ROC for discriminating between the male group and female group was 0.56 for the hFA image, 0.61 for the T1 
image and 0.7 for the FA image (Fig. 9B).

For the voxel-wise comparison, no significant results were found in the T1 and hFA image. Moreover, WM 
morphology difference in the FA value could be found in the right corpus callosum with the TABS method when 
using FA as a feature image (p < 0.05, FWE correction, Fig. 9C). Local FA values which have a significant differ-
ence in the corpus callosum fibers were extracted as a classification feature, and the ROC curve showed good 
diagnostic performance as shown in Fig. 9 (AUC = 0.83).

Discussion
In this work, we tested the effect of different feature images on the sensitivity of the statistical analysis in the 
pipeline of the TABS method. A ground truth methodology and a series of evaluation parameters were used to 
investigate which feature image was more accurate with respect to the underlying tensor information for the 
TABS method. The results of simulated data sets showed that FAnormalized had the minimum difference in FA and 
highest consistency in orientational information than T1normalized and hFAnormalized. Simultaneously, the results of 
actually measured data sets revealed that FAnormalized also exhibited highest similarity and accuracy for scalar and 
vector information. For the results of the tract analysis, only when the FA image was applied to the TABS pipeline 
to be a feature image, the WM morphology difference in the FA value could be detected in the right corpus callo-
sum. Our results reflected that selection of feature images would influence the quantitative statistical analysis in 
the pipeline of the TABS method.

Prior DTI analysis was mainly focused on scalar indices in a common coordinate system overlooking com-
prehensive direction information, which is a key factor in deducing brain connectivity15,50,51. The TABS method, 
as an optimized white matter analysis which creates a voxel-wise statistical framework for detecting and under-
standing white matter differences along a fiber tract, is advantageous in terms of detecting a WM morphology 
difference12. The 2 key procedures of the TABS method are diffusion tensor template construction and statistical 
model building12–14,52,53. The accuracy of the 2 steps has great influence in the quantitative analysis along the fiber 
tract. However, the feature image as one of the key steps which affects the accuracy of the 2 key procedures of the 
TABS method was often overlooked. Hence, precise comparison of the effect of different feature images for the 
accuracy of the statistical analysis in the pipeline of the TABS method is necessary for DTI analysis.

Brain 
Region

FAnormalized T1normalized hFAnormalized

F P P1 P2 P3mean STD mean STD mean STD

ALIC 0.687 0.355 0.733 0.459 0.774 0.264 34.240 <10−10 0.042 <10−10 <10−10

CG 0.993 0.344 1.110 0.298 1.145 0.763 96.273 <10−10 <10−10 <10−10 <10−10

EC 1.001 0.414 1.081 0.341 1.342 0.783 100.863 <10−10 <10−10 <10−10 <10−10

fornix 0.869 0.874 0.960 0.288 1.356 0.234 176.524 <10−10 0.029 <10−10 <10−10

GCC 1.082 0.267 1.110 0.357 1.225 0.675 2.987 0.078 — — —

PLIC 1.002 0.743 1.079 0.366 1.385 0.273 20.739 <10−10 0.001 0.004 <10−10

SCC 1.040 0.566 1.056 0.325 1.198 0.637 78.724 <10−10 0.199 <10−10 <10−10

CST 0.996 0.757 1.180 0.301 1.302 0.845 34.572 <10−10 0.038 <10−10 <10−10

SLF 0.809 0.265 0.883 0.496 0.893 0.261 1.547 0.221 — — —

IFOF 1.044 0.684 1.118 0.331 1.188 0.632 2.889 0.095 — — —

Table 6. Average AI of tensors over all pairs of datasets used in T1normalized, FAnormalized, and hFAnormalized. 
ALIC: anterior limb of the internal capsule, CG: cingulum, EC: external capsule, fornix, GCC: genu of the 
corpus callosum, PLIC: posterior limb of the internal capsule, SCC: splenium of the corpus callosum, CST: 
corticospinal tract, SLF: superior longitudinal fascicle, IFOF: inferior fronto-occipital fasiculus. AI: angle 
of primary eigenvectors. ANOVA was used to compare the difference between the three diffusion tensor 
templates. P1: Statistically significant differences between hFAtemplate and T1normalized (after correction for 
multiple comparisons with the Bonferroni approach). P2: Statistically significant differences between T1normalized 
and hFAnormalized (after correction for multiple comparisons with the Bonferroni approach). P3: Statistically 
significant differences between FAnormalized and hFAnormalized (after correction for multiple comparisons with the 
Bonferroni approac.
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For the results of all of the similarity metrics, we noticed that FAnormalized showed the lowest DTED, lowest 
DVED, lowest AI, highest OVL, highest COH, and highest corrFA than T1normalized and hFAnormalized. DTED and 
DVED were used to evaluate the space distance of the 2 tensors at each voxel15,40. Alexander et al.40 and Zhang 
et al.15 used them to assess the accuracy of tensor matching during image spatial normalization15,40. As the lower 
values were related to a shorter Euclidean distance in each voxel for the 2 tensors, our findings indicated that DTI 
datasets that were registered through the FA image could achieve a more similar spatial location at each voxel 
than the hFA image and T1 image. OVL, COH, and AI were parameters used to assess directions and angles of 
the diffusion tensor in each voxel, and several studies used them to evaluate accuracy of the coherence of tensor 
orientation15,16. Higher OVL and COH, and lower AI expressed more orientational information preservation of 
the 2 tensors during image normalization15,16,39,41. Our findings indicated that the transformation which was esti-
mated from the FA image could obtain a higher coherence of direction in the diffusion tensor than the T1 image 
and hFA image. Meanwhile, corrFA is a parameter used to assess the correlation of each normalized image for 
the FA value. Higher values signify a higher mutual correlation of FA values between the FA image in individual 
datasets and the FA image derived from the normalized image15. The higher value observed in FAnormalized means 

Figure 5. The results of fiber tracking at seed points of IFOF for FAtemplate (above), hFAtemplate (below), and 
T1template (middle) visualized in (A,B).

Figure 6. The result of fiber tracking at seed points of CST for FAtemplate (above), hFAtemplate (below), and 
T1template (middle) visualized in (A,B).
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that the FA image could better represent features of individuals in scalar terms than the T1 image and hFA image. 
According to the above information, the selection of the feature image can largely impact the quality of image 
normalization. Compared to the T1 image and hFA image, we found that the FA image had strong robustness to 
recognize white matter passageways and the microstructure could obtain the most accurate scalar information 
and most consistent vector information.

According to many studies, in order to register individual diffusion weighted images to a standard template, 
the FA image was a widely used feature image to obtain the transformation6,14,15. For example, Kohannim et al.23 
registered the FA image to ICBM space with the FSL package to ensure spatial consistency to obtain an accurate 
statistical comparison23. To develop accuracy of the DTI analysis, Zhang et al.15 transformed subject images to 
standard space by means of an FA image15. In addition, Liu et al.54 also showed that the FA feature image is the 
best scalar feature for spatial normalization compared with all other scalar measurements54. Previous research 
results were broadly in line with our hypothesis that the FA image has ultra-sensitivity for identifying correspond-
ing regions of white matter geometry and could obtain a more accurate statistical analysis with the TABS method 
when used as a feature image. On the other hand, structural information of the T1 image is homogeneous in white 
matter regions, so the sensitivity of identifying white matter geometry is smaller than the FA image55. Hence, 
compared with the FA image, the T1 image is inadequate to achieve sufficient WM alignment when registering 
to MNI space. Moreover, Peng et al.14 stated that DTI images were not appropriate for using transformations 
which were estimated based on T1 images due to the mismatch between image contrasts and resolution14. Saad 
et al.56 suggested that registration with DTI and T1 image could not produce satisfactory results, because of the 

Figure 7. The result of fiber tracking at seed points of CG for FAtemplate (above), hFAtemplate (below), and T1template 
(middle) which was constructed by simulated data sets and visualized in (A–C).

Figure 8. The result of fiber tracking at seed points of CG for FAtemplate (left), hFAtemplate (right), and T1template 
(middle) which was constructed by actually measured data sets and are visualized in (A–C).
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mismatch between volumes56. These viewpoints are also broadly in line with our results that the T1 image could 
not get a more accurate space alignment than the FA image.

To demonstrate the sensitivity and specificity of white matter with a different feature image, a tract-averaged 
estimate method and the TABS method were used to detect the gender difference with the FA value in the corpus 
callosum10,12. Only when the FA image was used as a feature image, the tract-averaged estimate method could 
confirm the former achievements on gender difference. Furthermore, WM morphology difference in the right 
corpus callosum was detected by using the TABS method with the FA image as a feature image. In addition, 
the local FA extracted from the right corpus callosum could obtain good classification accuracy as a feature to 
formulate gender classification. Our results indicated that the FA image has ultra-sensitivity for identifying corre-
sponding regions of white matter geometry than the T1 image and hFA image. Hence, in the pipeline of the TABS 
method, the FA image could obtain more accurate space alignment and more consistent vector information dur-
ing diffusion tensor construction. On the other hand, a more sensitive feature image could improve cross-subject 
point-wise alignment during point correspondence along a fiber tract. Due to more accurate tensor matching, the 
FA image as a feature image could obtain a more accurate statistical model in the pipeline of the TABS method.

Figure 9. The results of gender difference and classification. In (A), the boxplot of the mean FA which was 
calculated by using the tract-averaged estimate method is displayed. ROC curve and AUC for evaluating the 
diagnosis of the gender difference with the tract-averaged estimate method is shown in (B). In (C), the local 
fiber tract which reflects the gender difference is visualized by using the along-tract group analysis. ROC curve 
and AUC for evaluating the diagnosis of gender difference with the along-tract group analysis is shown in (D).
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There are some limitations that should be noticed in our studies. The DTI scan was applied along 30 
non-collinear directions with 5 acquisitions without diffusion weighting in our study. The limitation of DTI is 
the delineation of crossing and touching fibers due to insufficient anisotropy and angular separation57. In recent 
years, diffusion spectrum imaging (DSI) was increasingly applied and explored in neuroimaging studies with a 
higher angular resolution and more diffusion weighted directions than DTI58–61. In further research, the use of 
DSI could be a means of image scanning to get a more accurate tract analysis. In our results, it is particularly note-
worthy that all of the comparisons between the feature images were based on the same image modality, which was 
comprised of 30 diffusion weighted images and 5 b0 images. The results in our study were independent of the type 
of image scanning. Besides that, application of the registration algorithm in our study was B-spline based registra-
tion within the FSL package31. A better registration algorithm can get more consistent matching of the local tensor 
orientation in each voxel. An improved DTI registration algorithm, Advanced Normalization Tools (ANTs), has 
been proven to have a slightly higher performance than the registration algorithm within the FSL package62. In 
the future, we can apply this improved DTI registration algorithm to our study to obtain a more accurate statisti-
cal analysis62. However, in our study, the TABS method was based on B-spline based registration within the FSL 
package and the only difference was the feature image. Hence, the results in our study could show the effects of the 
feature image in the pipeline of the TABS method independent of the use of the registration algorithm.

In summary, we confirmed that the feature image will affect the sensitivity of the statistical analysis in the 
pipeline of the TABS method by affecting the spatial consistency between each subject. Our results represented 
image normalization performed by using the FA image as the feature image that had higher coherence of direc-
tion and more accurate analysis results with the TABS method.
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