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Abstract: The aim of this study were characterize acellular collagen matrices derived from porcine
pericardium (PP) and to evaluate their properties after sterilization by ethylene oxide and gamma
ray. PP matrices were subjected to alkaline hydrolysis (AH), and samples were characterized for
biological stability, membrane thickness measurements, differential scanning calorimetry (DSC)
and scanning electron microscopy (SEM). Subsequently, the matrices were frozen, lyophilized and
sterilized by ethylene oxide or gamma radiation. For in vitro assays, CHO-K1 cell culture was used
and evaluated for cytotoxicity, clonogenic survival assay, genotoxicity and mutagenicity. Analysis
of variance (ANOVA) was used, followed by Dunnett’s post-test, with a significance level of 5%.
After AH, there was no significant change in matrix thickness. The relative biodegradability of the
material after implantation was observed. Morphology and dimensions had small changes after AH.
As for cell viability, none of the tested matrices showed a statistically significant difference (p > 0.05;
Dunnett) regardless of the sterilization method. Furthermore, it was found that PP matrices did not
interfere with the proliferation capacity of CHO-K1 cells (p > 0.05; Dunnett). As for genotoxicity,
when sterilized with ethylene oxide (NP, P12 and P24), it showed genotoxic potential, but it was
not genotoxic when sterilized by gamma radiation. No mutagenic effects were observed in either
group. PP-derived collagen matrices hydrolyzed at different times were not cytotoxic. It is concluded
that the best method of sterilization is through gamma radiation, since no significant changes were
observed in the properties of the PP matrices.

Keywords: porcine pericardium; tissue regeneration; collagen matrices

1. Introduction

Collagen of animal origin is recognized as one of the most useful biomaterials available
and is widely used in tissue engineering, cosmetic surgeries and drug delivery systems [1].
Due to the properties of repair, biodegradability and biocompatibility, the collagen matrices
are materials of great utility, mainly for the medical and dental area. In dentistry, collagen-
based matrices can be used in periodontal reconstruction in a process known as guided
tissue regeneration. In these cases, it is interesting that the materials are resorbable to
eliminate a second surgery [2].
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Resorbable collagen matrices can be obtained from a variety of materials, such as
porcine pericardium [2]. The pericardium is one of the three tunics that cover the heart:
the innermost tunic is called the endocardium, the middle is the myocardium, and the
outermost is the pericardium. One of the great advantages of using PP in the development
of biomaterials is the high content of type I collagen, with approximately 47% in these
tissues. Collagen has a large amount of reactive groups, such as amines (NH2), carboxylic
acids (COOH) and alcoholic hydroxyls (OH), which enable chemical changes in the tissue,
mainly through crosslinking reactions [3–8]. Plepis et al. [9] performed the preparation
of acellular matrices of type I collagen by alkaline hydrolysis of porcine pericardium at
different times and verified that the collagen fibers were preserved and the cells were
removed after alkaline hydrolysis, showing that the matrix became acellular. In this way,
the use of these matrices becomes quite interesting, since besides the possibility of chemical
modifications, they have advantages such as low cost, great availability and being easy
to obtain.

Before using these matrices, the sterilization of these materials must be carried out to
avoid contamination of the region where the biomaterial is implanted. However, common
methods of sterilization (autoclaving, irradiation, ethylene oxide) may induce changes
that may affect mechanical resistance or performance [10], and it is necessary to find
ways to minimize these effects. Ethylene oxide is a colorless and flammable gas which is
widely used for the sterilization of medical equipment, but there are reports of negative
effects on some materials, such as the production of a toxic chemical residue, ethylene
chlorohydrin, requiring a period for aeration of the material for its elimination [11–13]. The
same response, however, is less frequent in groups sterilized by gamma radiation, since it
is free of residues and it is a more advantageous method [11].

Depending on the type of biomaterial, it is necessary to carry out several standardized
tests before its use (ISO 10993-12) [14]. Chemical, physical and biological products can
interact with genetic material, resulting in mutations that are associated with genomic
instability and cancer [15]. In vitro methods have a shorter runtime, provide meaningful
data more easily [16] and provide important tools to improve extrapolation in human
in vivo assays [17].

As porcine pericardium matrices can be used for biological grafts and stay in contact
with the patient for a period longer than fifteen days, cytotoxicity and genotoxicity tests
are required. Furthermore, as the sterilization method may also interfere in these matrices,
it is important to evaluate if it has an effect. Based on that, the aim of this study was
to characterize acellular collagen matrices derived from porcine pericardium (without
and with 8, 12 and 24 h of alkaline hydrolysis) and to evaluate cytotoxic, genotoxic and
mutagenic effects after sterilization by ethylene oxide.

2. Materials and Methods
2.1. Preparation of Porcine Pericardium Matrices

Porcine pericardium (PP) was obtained from Braile Biomedica S/A, São José do
Rio Preto-SP, Brazil, and it was subjected to alkaline hydrolysis (AH). For AH, PP was
immersed for 8 (P8), 12 (P12) and 24 h (P24) at 25 ◦C in an alkaline solution containing
salts of K+, Na+ and Ca++ for 6 h. Excess salts were removed by rinses in 3% (w/w) boric
acid solution, deionized water, followed by 0.3% (w/w) EDTA solution, pH 11 and finally
equilibrated in 0.13 mol L−1 phosphate buffer, pH 7.4 [9]. The pericardium matrices were
frozen, lyophilized and sterilized by ethylene oxide or by gamma radiation (20 kGy).

2.2. PP Matrices Characterization

The characterization was made by biological stability (collagenase), measurements
of membrane thickness, differential scanning calorimetry (DSC) and scanning electron
microscopy (SEM).

After the samples were frozen and lyophilized to constant weight, 3 discs of 1 cm
diameter for each sample were obtained. Collagenase solution (10 U mg−1 collagen) in
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Tris-HCl buffer pH 7.4 with an activity of 30 U mL−1 was added to the samples and then
incubated at a temperature of 37 ◦C for 2 h. After this period, the samples were washed
with deionized water, frozen, lyophilized to constant weight and weighed.

The percentage of degraded collagen mass (% degradation) was determined from the
difference of mass before collagen (initial M) and after the enzymatic degradation (final M)
and calculated as % degradation = (initial M − final M) × 100/initial M, with the results
being an average of three independent determinations.

The denaturation temperature (dT) of the matrices was determined using a Differ-
ential Scanning Calorimeter (DSC equipment model, TA Instruments, New Castle, DE,
USA), calibrated with an indium standard. The samples were equilibrated for 24 h with
phosphate buffer and a pH of 7.4, and measurements were performed in a hermetically
sealed atmosphere of synthetic air (80 mL min−1) at a heating rate of 10 ◦C min−1 and a
temperature range of 5 to 120 ◦C. The masses of the samples were approximately 10 mg,
and dT values were obtained from the inflection point of the DSC curve.

The SEM analyses were performed on LEO 440 equipment (LEO Electron Microscopy
Ltd., Waltham, MA, USA) operating at 20 keV beam electrons. The samples were coated
with 20 nm palladium-gold alloy in a metallizer Balsers SDS 050.

2.3. Cell Culture Experiments

CHO-K1 cells were cultured in 1:1 Ham-F10 + D-MEM medium (Sigma-Aldrich, San
Luis, MO, USA) supplemented with 10% fetal bovine serum (Cultilab, Campinas, Brazil)
and antibiotics solution (penicillin/streptomycin/kanamycin/ciprofloxacin) in 25 cm2

culture flasks at 37 ◦C, 5% CO2. Cells were used between the third and eighth passages.

2.4. Cytotoxic Assays
2.4.1. XTT Assay

CHO-K1 cells (2 × 104) were seeded in 24-well plates and exposed for 24 h to native
pericardium (NP), P8, P12 and P24 sterilized by ethylene oxide (in duplicate). Negative
controls (NC) were wells without any matrix (untreated controls), while positive controls
(PC) were treated with 0.001 M hydrogen peroxide (Merck, Darmstadt, Germany) during
10 min in the dark room. After 24 h of incubation, the cultures were washed with PBS
solution, and 500 µL of DMEM without phenol red (Sigma) were immediately added,
followed by the addition of 60 µL of the XTT/electron solution (50:1) (Kit-XTT, Roche
Molecular Biochemicals, Mannhein, Germany); this was incubated for 2 h. Next, the
supernatant was transferred to a 96-well plate and a colorimetric reading was taken in a
spectrophotometer (Ultrospec™ 2100 pro UV/Visible Spectrophotometer, Fisher Scientific
International, Hampton, VA, USA). The result of the absorbance measured at 492 and
690 nm is directly proportional to the number of viable cells in each treatment after 24 h
of exposure.

2.4.2. Clonogenic Survival Assay

Procedures were followed as previously described [18]. Briefly, CHO-K1 cells (5 × 104)
were exposed for 24 h to NP, P8, P12 and P24 sterilized by ethylene oxide in 24-well
plates; negative controls (NC) were wells without matrices, while positive controls (PC)
were treated with doxorubicin (0.3 µg·mL−1) for 4 h (all experiments were carried out in
duplicate). After exposure, the cultures were washed with PBS, and fresh medium was
added. Exponentially growing cells were seeded at a number of 150 cells per 25 cm2 flask,
in duplicate for each treatment. The flasks were incubated at 37 ◦C, 5% CO2 for 7 days
without culture medium change. The colonies that formed were fixed with methanol:acetic
acid:water (1:1:8 v/v/v) and stained with 5% Giemsa. The colonies were counted, and the
cell-surviving fraction was calculated as the percent of colonies in treated flasks relative to
untreated controls (NC).
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2.5. Genotoxic Assay
Comet Assay

For detection of DNA strand breaks, the single cell gel electrophoresis or comet assay
was used in the alkaline version, based on the method of Singh et al. [19]. The treatments
and cell culture were executed similarly to the clonogenic survival assay. After exposure to
NP, P8, P12 and P24 previously sterilized by ethylene oxide or by gamma radiation, the
cells were washed with PBS and released by trypsin. The cell suspension was centrifuged at
500 rpm for 5 min at 4 ◦C. The pellet was resuspended in 200 µL of 0.5% (w/v) low melting
point agarose (Sigma-Aldrich) and the mixture was spread onto two microscope slides
(Waldemar Knittel Glasbearbeitungs GmbH, Wildhagen, Germany) pre-coated with 1.5%
(w/v) normal melting point agarose (Gibco, Dun Laoghaire, Ireland). Cover slides were
placed over the gel. When the gels had solidified, the cover slides were gently removed
and the slides were immersed in cold (4 ◦C) lysis solution (1% Triton X-100, 10% DMSO,
2.5 mmol·L−1 NaCl, 100 mmol·L−1 Na2EDTA, 100 mmol·L−1 Tris, pH = 10) for 24 h. Im-
mediately after this step, slides were placed in a horizontal electrophoresis unit containing
freshly prepared electrophoresis buffer (1 mmol·L−1 Na2EDTA, 300 mmol·L−1 NaOH,
pH > 13). The DNA was allowed to unwind for 20 min, and subsequently, electrophoresis
was performed at 25 V, 300 mA for 20 min. Afterwards, the slides were gently immersed
in neutralization buffer (0.4 mol·L−1 Tris–HCl, pH = 7.5) for 15 min and then fixed with
ethanol. Duplicate slides were prepared and stained with SYBR Green 2X (Invitrogen,
Eugene, OR, USA), and 50 cells were screened per sample with a fluorescent microscope
(ZEISS®, Jena, Thuringia, Germany) equipped with an excitation filter of 515–560 nm, a
barrier filter of 590 nm and a 40× objective. The level of DNA damage was assessed by
an image analysis system (TriTek CometScore® 1.5, 2006, Sumerduck, VA, USA), and the
DNA percent in the tail was obtained for each treatment.

2.6. Mutagenic Assay
Cytokinesis-Blocked Micronucleus (CBMN) Assay

The CBMN assay was performed according to Fenech [20,21]. CHO-K1 cells were
seeded in 24-well plates at a density 5 × 104 cells/well. After 24 h of seeding, cells were
exposed for 24 h to the NP, P8, P12 and P24 matrices previously sterilized by ethylene
oxide or by gamma radiation; negative controls (NC) were wells without any matrices, and
positive controls (PC) were treated with doxorubicin (0.3 µg·mL−1) for 4 h (all experiments
were carried out in duplicate). Cytochalasin-B (CytB) (Sigma) was added to the CHO-K1
cultures at a final concentration of 5 µg·mL−1 and left for 20 h. After the treatments, the
cultures were washed with PBS, trypsinized and centrifuged for 7 min at 1500 rpm. The
pellet was then resuspended in cold hypotonic solution (0.3% KCl w/v) for 3 min. The
cells were fixed with methanol:glacial acetic acid (3:1, v/v) and formaldehyde. The cell
suspensions were dripped on a slide with a film of distilled water at 4 ◦C. The slides
were stained with 5% Giemsa solution diluted in phosphate buffer for 7 min, washed
with distilled water, air dried and examined by light microscopy (400× magnification).
One thousand (1000) cells were scored to evaluate the percentage of mono-, bi-, tri- and
tetra-nucleated cells. The nuclear division index (NDI) was calculated according to the
formula: [NDI = M1 + 2(M2) + 3(M3) + 4 (M4)/N], where M1–M4 represents the number
of cells with 1–4 nuclei, respectively, and N is the total number of scored cells. Micronuclei
(MNi) and Nucleoplasmic Bridges (NPBi) were scored in 1000 binucleated cells. MNi
and NPBi are a biomarker of DNA damage and instability. The criteria for identifying
micronucleus (MN) were based on Fenech [21].

2.7. Statistical Analysis

At least three independent experiments were conducted for each parameter analyzed.
The experimental results are expressed as mean and standard error. The Shapiro−Wilk test
was utilized to assess the normality of the data, and for homogeneity, the Levene test was
utilized. In view of the results, parametric tests were utilized. The results were subjected
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to ANOVA (assuming p < 0.05) followed by Dunnett’s post-test for comparison with the
negative control. The BioEstat statistical package (Version 5, UFPA, Guamá, Pará, Brazil)
was used to perform the tests.

3. Results

All matrices were equilibrated in phosphate buffer (PB) and lyophilized. In all cases,
they presented white coloration, heterogeneous texture and fine thickness. The thickness
values are described in Table 1, showing that after the alkaline hydrolysis, there was no
significant change in the thickness of the matrices.

Table 1. Thickness as a function of the alkaline hydrolysis time, enzymatic degradation percentages
and denaturation temperature (dT) obtained by DSC of pericardium matrices.

Matrix Thickness (mm) % Degradation * dT (◦C)

NP 0.19 ± 0.07 22.1 ± 1.1 71.2
P8 0.18 ± 0.07 32.5 ± 0.9 64.0

P12 0.21 ± 0.07 41.4 ± 0.8 63.5
P24 0.23 ± 0.11 69.7 ± 1.2 58.5

* mean values of 3 determinations.

Biological stability assays by collagenase were performed as a relative indication of
the biodegradability of the material after implantation. The percentages of enzymatic
degradation are described in Table 1.

These results show that after HA, there was an increase in enzyme degradation, which
was greater with increasing hydrolysis time. This is because alkaline hydrolysis makes
matrices more susceptible to enzymatic degradation.

In the DSC analysis, the denaturation temperature of the collagen present in the
matrices was determined. This transition is related to the collagen→ gelatin transition,
showing that collagen was not denatured during alkaline hydrolysis, since gelatin does not
present a thermal transition in the studied temperature range.

Comparing the dT values with the percentage of enzymatic degradation values, it
appears that the lower the dT, the greater the enzymatic degradation percentage. These
results occur because alkaline hydrolysis generates an increase in the number of negative
charges on the collagen molecule as a function of the hydrolysis time, changing the charge
distribution of the collagen molecules causing an electrostatic repulsion between them,
making the matrix more susceptible to enzymatic degradation and denaturation.

Pericardium has a fibrous surface (outer surface) and a smooth surface (internal
surface), and SEM was performed on the fibrous surface of the matrix (Figure 1). Figure 1A
shows the fibrous surface structure of the NP matrix with the collagen fibers in a random
orientation with interstices of varying sizes and shapes. The morphology and dimensions
had small changes after alkaline hydrolysis (Figure 1B–D), showing that the hydrolysis
time had little effect on the morphology of the fibrous surface of the matrices.

In the present study, the cytotoxicity analysis was performed by the XTT assay. The
mean and standard error of cell viability obtained by the XTT assay can be seen in Figure 2.

Considering the cell viability obtained from the NC as a reference (Dunnett’s), none of
the tested matrices presented a statistically significant difference (p > 0.05, Dunnett’s).

Figure 3 shows the survival fraction obtained by the clonogenic survival assay. It was
verified that the porcine pericardium matrices did not interfere in the proliferation capacity
of the CHO-K1 cells, since no significant difference was observed between them and NC
(p > 0.05, Dunnett’s).

The comet assay was carried out with the objective of ascertaining the genotoxic
profile of the porcine pericardium matrices and comparing its effect depending on the type
of sterilization method. These data are observed in Figure 4.
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Figure 4. Comet assay in CHO-K1. NC: negative control; PC: positive control. Columns = mean of
percentage of DNA in tail; bars = standard error. * = p < 0.01 compared to NC, Dunnett’s test.

The analysis of variance (ANOVA) showed a statistically significant difference between
the PC and the NC as well as in relation to all the treatments of the matrices sterilized
with ethylene oxide. NP, P12, P24 and PC showed a statistically significant difference
when compared to the NC (p < 0.01, Dunnett’s), indicating a genotoxic response. Only the
treatment with the P8 group showed no significant difference when compared to the NC.

For the group of the matrices sterilized by gamma radiation, only PC and P8 presented
a statistically significant difference compared to NC (p < 0.05, Dunnett’s); possibly, there
was no difference due to the shorter time used for sterilization.

The micronucleus test is a widely used test for the evaluation of the mutagenic
potential. The frequency of micronuclei (MNi) and nucleoplasmic bridges (NPBi) in
binucleate cells were evaluated, which demonstrate additional chromosomal damage
information for sterilized matrices by ethylene oxide and gamma ray radiation (Table 2).

Table 2. CBMN assay in CHO-K1. Mean and standard error of nuclear division index (NDI), frequency of micronuclei (MN)
and frequency of nucleoplasmic bridges (NB) of collagen membranes sterilized by ethylene oxide (EO) and gamma ray
(GR). * = p < 0.05 (Tukey and Dunnett’s).

Treatment NDI (EO) NDI (GR) MN (EO) MN (GR) NPBi (EO) NPBi (GR)

NC 1.802 ± 0.2 1.801 ± 0.0 3.0 ± 1.0 1.0 ± 1.7 1.3 ± 1.5 0.0 ± 0.6
PC 1.882 ± 0.1 1.684 ± 0.0 353.7 ± 67.4 * 32.0 ± 12.5 * 12.0 ± 3.6 * 8.0 ± 1.5 *
NP 1.855 ± 0.1 1.849 ± 0.1 9.3 ± 2.9 2.0 ± 2.8 3.0 ± 1.0 2.0 ± 2.1
P8 1.817 ± 0.1 1.831± 0.1 7.0 ± 1.7 5.0 ± 2.5 2.0 ± 1.0 1.0 ± 1.7

P12 1.882 ± 0.1 1.858 ± 0.1 8.0 ± 2.6 5.0 ± 3.6 2.0 ± 1.0 1.0 ± 0.6
P24 1.834 ± 0.1 1.871 ± 0.1 10.0 ± 2.0 6.0 ± 4.0 4.0 ± 1.7 2.0 ± 0.6

For both groups of matrices sterilized with ethylene oxide and gamma radiation, a
high number of micronuclei and nucleoplasmic bridges were observed only in the PC,
which was also expected and which was statistically different from NC (p < 0.05, Dunnett’s).
No significant differences were observed between the different treatments (NP, P8, P12 and
P24) and in relation to NC.

4. Discussion

Porcine pericardial tissue is widely used as a biomaterial for tissue repair [4–8]. These
types of xenografts, when acellular, are suitable for transplant purposes as they preserve
the extracellular matrix, allowing the restoration of tissue viability and function through
recellularization [5].

In the present study, we observed that after alkaline hydrolysis, there was an increase
in enzymatic degradation, which was greater with increasing hydrolysis time (Table 1). A
viable explanation is that alkaline hydrolysis makes matrices more susceptible to enzymatic
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degradation [22]. Through DSC analysis, the denaturation temperature of the collagen
present in the matrices was determined. This transition is related to the collagen→ gelatin
transition, showing that collagen was not denatured during alkaline hydrolysis, since
gelatin does not present a thermal transition in the studied temperature range [23].

Comparing the values of denaturation temperature (dT) with the percentage values
of enzymatic degradation, it appears that the lower the dT, the greater the percentage
of enzymatic degradation. These results occur because alkaline hydrolysis generates an
increase in the number of negative charges on the collagen molecule as a function of the
hydrolysis time [3], changing the charge distribution of the collagen molecules causing an
electrostatic repulsion between them, making the matrix more susceptible to enzymatic
degradation and denaturation.

Sterilization is necessary before the implantation of any biomedical device [24,25]. The
ideal sterilization method should avoid significant changes in device properties [26]. Some
sterilization methodologies range from the use of heat and pressure, ionizing radiation (ul-
traviolet (UV), X-ray, gamma irradiation and E-beam), chemical sterilants (ethylene oxide,
hydrogen peroxide and peracetic acid) and, recently, the use of supercritical carbon dioxide
and ionized gas plasma [24]. However, these sterilization procedures induce damage, altering
their biomechanical and physiological properties and cell attachment [5,24,27].

Ethylene oxide is very useful as a sterilizing agent, which proceeds through the direct
alkylation of the cellular constituents of the organisms, leading to denaturation. This
method has advantages such as effectiveness at low temperatures, high penetration and
compatibility with a wide range of materials. However, it is flammable and explosive, can
produce toxic residues and reacts with functional groups such as amines [28].

Horakova et al. (2018) used a polyester biomaterial and observed that the fibroblast
proliferation rate in samples sterilized with ethylene oxide was slower than in samples
treated with ethanol; however, it did not show cytotoxicity to the cells.

It was possible to observe that the hydrolyzed porcine pericardium-derived collagen
matrices at different times were not cytotoxic (Figure 2). Results that corroborate the study
by Plepis et al. [9], when using porcine pericardium matrices, observed that they were
not cytotoxic in an in vitro study and after implantation in subcutaneous Wistar rats, the
matrices presented good biocompatibility and low inflammatory response; however, the
sterilization method was not mentioned in this study.

Another method of sterilization is by gamma-ray irradiation, which can easily and
uniformly reach all parts of the object to be sterilized; sterilization can be carried out
with different doses for various materials in various physical states. However, irradiation
with high-energy gamma rays can cause several changes in material properties, such as
crosslinking and degradation [29].

When evaluating the genotoxicity of the matrices, we observed that the ethylene
oxide sterilization method increased the percentage of DNA in the nucleoid tail (Table 2).
Correlating the genotoxicity results found by comet assay, matrices irradiated with gamma
rays showed low genotoxic potential. From the evaluations carried out, it was also verified
that the matrices sterilized by ethylene oxide showed greater induction of DNA damage,
showing genotoxic behavior. Thus, sterilization by gamma radiation and ethylene oxide
are possible methods of sterilizing biomaterials made from type I collagen, but sterilization
by gamma rays is preferable from a genotoxic point of view.

According to the results obtained, the swine pericardium matrices were not muta-
genic, regardless of the sterilization method. Cândido-Bacani et al. [30] demonstrated that
mutagenic effects may be related to the dose and time of exposure to the agent under
investigation. A tendency towards an increase in the frequency of micronuclei could be
verified with the increase in the hydrolysis time performed in porcine pericardium matrices.
This result demonstrates that matrices treated with a shorter hydrolysis time may have
lower mutagenicity.

As the induction of DNA damage must respect the dosage and exposure time of the
material or substance tested, it was found that even at different times of hydrolysis and in
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different repetitions of the experiment, the porcine pericardium collagen matrices did not
show mutagenic potential in both sterilization methods. Therefore, it can be inferred that
the genotoxic response observed by the comet assay did not form mutations, according to
the micronucleus assay. Thus, both sterilizations are possible to be carried out safely from
a mutagenic point of view.

5. Conclusions

With the results obtained in this work, it can be concluded that collagen matrices
derived from porcine pericardium hydrolyzed at different times were not cytotoxic in
CHO-K1 cells by Clone Survival and XTT assays. It can also be concluded from the analysis
of the genotoxicity results that the same matrices sterilized with ethylene oxide (NP, P12
and P24) presented genotoxic potential evaluated by the comet assay, while the group
of membranes sterilized by gamma radiation did not demonstrate this effect at the same
hydrolysis times (NP, P12 and P24). No mutagenic effects, however, were observed in
either group. Thus, these matrices are a viable procedure for use in the production of
biomaterials for tissue engineering.
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