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ABSTRACT: Ovarian cancer (OC) is the deadliest gynecological malignancy in the world, and immunotherapy is emerging as a
promising treatment. Immunophenoscore (IPS) is a robust biomarker distinguishing sensitive responders from immunotherapy. In
this study, we aimed to construct a prognostic model for predicting overall survival (OS) and identifying patients who would benefit
from immunotherapy. First, we combined The Cancer Genome Atlas (TCGA) and The Cancer Immune Atlas (TCIA) data sets and
incorporated 229 OC samples into a training cohort. The validation cohort included 240 OC samples from the Gene Expression
Omnibus (GEO) cohort. The training cohort was divided into high- and low-IPS subgroups to obtain differentially expressed genes
(DEGs). DEGs with OS were identified by Univariate Cox regression analysis. The least absolute shrinkage and selection operator
(LASSO) Cox regression was used to construct the prognostic model. Then, immune and mutation analyses were performed to
explore the relationship between the model and the tumor microenvironment (TME) and tumor mutation burden (TMB). Eighty-
three DEGs were obtained between the high-and low-IPS subgroups, where 17 DEGs were associated with OS. The five essential
genes were selected to establish the prognostic model, which showed high accuracy for predicting OS and could be an independent
survival indicator. OC samples that were divided by risk scores showed distinguished immune status, TME, TMB, immunotherapy
response, and chemotherapy sensitivity. Similar results were validated in the GEO cohort. We developed an immunophenoscore-
related signature associated with the TME to predict OS and response to immunotherapy in OC.

■ INTRODUCTION
Ovarian cancer (OC) is one of the most common
gynecological malignancies and has the highest mortality.1

Traditional treatment options for OC include surgical
resection, chemotherapy based on platinum, and targeted
therapy containing vascular endothelial growth factor (VEGF)
inhibitors.2 Olaparib targeted for breast cancer gene (BRCA)
mutation has widely been used in the population and achieves
satisfactory effects.3 Although combining previous treatments
could improve overall survival (OS) in OC, the 5-year survival
rate remains low at 40%.4 There are no better strategies for
treating advanced and recurrent OC; therefore, further
research on this matter is urgently needed.
OC is an immunogenic tumor infiltrated with intratumoral T

cells.5 Immunotherapy has recently gained significant attention
among populations, improving survival outcomes, as validated
by some large-scale clinical trials.6−12 In contrast to traditional
therapies, immunotherapy exerts antitumor effects by enhanc-
ing self-immunity, including immune checkpoint inhibitors,
adoptive T-cell therapy, and cancer vaccines.13 Unfortunately,
not all patients respond well to immunotherapy, so exploring a
new prognostic marker for evaluating survival value and

making immunotherapy more rational in OC patients is
urgent.
The Cancer Immune Atlas (TCIA) showed determinants of

immunogenicity and developed an immunophenoscore (IPS)
for solid tumors based on machine learning.14 IPS is a robust
predictor for response to immunotherapy with cytotoxic T
lymphocyte antigen-4 (CTLA-4) and programmed cell death
protein 1 (PD-1) blockers, verified in two cohorts treated with
anti-CTLA-4 and anti-PD-1 in melanoma,15,16 which com-
prises four classes: effector cells, suppressive cells, major
histocompatibility complex (MHC) molecules, and immuno-
modulators. However, the IPS is an excellent biomarker for
identifying responders to immunotherapy and is not a good
survival predictor for OC patients. Therefore, we constructed a
prognostic model based on the IPS that reflects the sensitive
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response to immunotherapy and predicts survival outcomes in
OC patients.

■ RESULTS
Identification of IPS-Related Genes. Figure 1 presents

the workflow. First, we integrated the OC samples from the
Cancer Genome Atlas (TCGA) OC cohort and TCIA data set
and obtained 229 OC samples. IPS is a crucial predictor of
immunotherapy response, so we divided TCGA OC samples
into two subgroups based on the median IPS: the IPS-high and
IPS-low groups. Eighty-three differentially expressed genes
(DEGs) with adj. p < 0.05 and |log 2foldchange|>0.5 were
identified when we compared samples with a better response
with those with a worse response to immunotherapy in the
TCGA OC cohort (Figure 2A). Among them, 63 genes were
upregulated in the high-IPS subgroup, while 20 genes were
downregulated. Univariate Cox regression analysis was
performed to identify DEGs associated with OS in OC. We
found that 17 DEGs were related to OS (p < 0.05), where 2
DEGs were harmful to OS with a hazard ratio (HR) > 1, while
15 DEGs were beneficial for OS with HR < 1(Figure 2B).
Venn diagram, network correlation, and heatmap showed the
overlapping genes with different expression levels and OS-
related prognostic values (Figure 2C−E). The least absolute
shrinkage and selection operator (LASSO) Cox regression was
performed to determine the most representative genes for

reflecting OS, and five genes were obtained (Figure 2F−G),
which consisted of the prognostic model (Table S2). Based on
the coefficient and expression of these genes, the risk scores
were calculated as follows: risk score = (0.016 ×
GLIS2expression) + (−0.065 × ISG20expression) + (−0.140 ×
HLA−DOBexpression) + (−0.208 × KRTCAP3expression) +
(−0.005 × OCIAD2expression).
Prognostic Value of the 5-Gene Signature. To estimate

the generality of the prognostic model constructed from the
TCGA OC cohort, we adopted a validation cohort merged by
GSE53963 and GSE26193. The risk score of the two cohorts
was calculated using the former formula. We considered the
median risk score of the TCGA cohort as the cutoff, dividing
OC samples into low- and high-risk subgroups. Principal
component analysis (PCA) showed that two subgroups were
two distinctive clusters (Figure 3A,B). A receiver operating
characteristic (ROC) curve was generated to evaluate the
sensitivity and specificity of the prognostic model, and the area
under the curve (AUC) was 0.68 for one year, 0.69 for three
years, and 0.67 for five years in the TCGA cohort (Figure 3C).
Moreover, the AUC was 0.62 for one year, 0.62 for three

years, and 0.63 for five years in the GEO cohort (Figure 3D).
The distribution of risk scores and survival status validated that
the high-risk group had worse survival outcomes and shorter
survival times in both cohorts (Figure 3E,F). Kaplan−Meier

Figure 1. Workflow of this research.
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analysis also demonstrated that lower risk scores contributed to
better OS in both cohorts (Figure 3G,H).
Correlation between Prognostic Model and Clinical

Features. We explored the relationship between the
prognostic model and clinical features, including age, grade,
and clinical stage. Patients over 60 years old were recognized as
elderly. The elderly population showed a higher risk score.
However, no significant differences in risk scores were found in
grade and clinical stages (Figure 4A−C). The GEO cohort
showed a higher risk score in late clinical stages III-IV (Figure
S1A,B). Additionally, univariate and multivariate Cox
regression analyses demonstrated that the risk score was an
independent survival factor for OS (Figure 4D,E, hazard ratio
(HR) = 5.432, 95% confidence interval (CI) = 2.704−10.909,
p < 0.001). Similarly, the GEO cohort validated that the risk

score served as an independent survival element (Figure
S1C,D, HR = 2.013, 95% CI = 1.134−3.571, p = 0.017).
Nomogram for Predicting Survival. According to the

clinicopathological features and risk scores, we constructed a
nomogram to predict the possibility of OS more accurately for
both cohorts (Figure 5A,B). High points indicate worse
survival outcomes in the nomogram. Subsequently, the time-
dependent ROC curve was conducted to demonstrate a highly
accurate nomogram for predicting survival, showing that the
AUC was 0.713 for one year, 0.641 for three years, and 0.620
for five years in the TCGA cohort (Figure 5C). In the GEO
cohort, AUC was 0.621 for one year, 0.658 for three years, and
0.710 for five years (Figure 5D). The calibration curve also
showed that the OS calculated by the nomogram was generally
in accordance with the actual OS (Figure 5E,F).

Figure 2. Identifying prognostic DEGs between the high- and low-IPS subgroups. (A) The downregulated and upregulated DEGs are shown in the
volcano plot; red dots represent upregulated DEGs, and blue dots represent downregulated DEGs. (B) Univariate Cox regression analysis identified
17 prognostic DEGs. (C) The overlapping genes are shown in the Venn diagram. (D, E) The association and expression of these genes are
displayed in the network and heatmap. (F) LASSO coefficient profiles of the genes. (G) Coefficients profile plot with the log(λ) sequence for
selecting the best λ. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance.
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Functional Enrichment Analysis. To understand how
the prognostic model influenced OC progression and led to
longer OS, we explored gene function and pathway differences
between the high- and low-risk subgroups via Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses. The GO analysis suggested
that DEGs mainly participated in the plasma membrane
signaling receptor complex, regulation of T-cell activation, and

antigen binding (Figure 6A−C). In addition, KEGG analysis
showed that DEGs were enriched in cell adhesion molecules
and antigen processing and presentation (Figure 6D).
Moreover, gene set enrichment analysis (GSEA) revealed the
molecular mechanism, where the immunoreactive pathways,
such as antigen processing and presentation pathways, were
primarily enriched in the low-risk subgroup. However, the
high-risk subgroup exhibited activation of the mitogen-

Figure 3. Construction of a 5-gene signature for prognosis. (A, B) The PCA score plot shows the distribution of samples divided into high- and
low-risk subgroups in the TCGA cohort and Gene Expression Omnibus (GEO) cohort. (C, D) ROC curve of the prognostic model in the TCGA
cohort and GEO cohort. (E, F) The distribution of survival status in the TCGA cohort and GEO cohort. (G, H) Survival analysis between the
high- and low-risk subgroups in the TCGA cohort and GEO cohort.
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activated protein kinase (MAPK) and focal adhesion signaling
pathways (Figure 6E). Similar results were obtained in the
GEO cohort (Figure S2A−E). The immune-related pathways
were mainly enriched in the low-risk subgroup to influence
tumor progression.
Immune Landscape of Prognostic Model. The TME,

including stromal and immune cells, is crucial in tumor
progression, therapeutic effects, and survival outcomes.17 We
explored whether the prognostic model could shape the TME
to influence tumor clearing.
The heatmap shows the differences in the immunological

landscape between the high- and low-risk subgroups (Figure
7A). The estimation of stromal and immune cells in malignant
tumor tissues using the expression data (ESTIMATE)
algorithm was used to calculate the immune score, ESTIMATE
score, tumor purity, and stromal score. As shown in Figure 7B,
the low-risk subgroup exhibited significantly higher ESTI-
MATE and immune scores and lower tumor purity scores.
Moreover, immunological activities and immune cells scored
higher in the low-risk subgroup (Figure 7C,D). We also
analyzed the tumor immune landscape of the GEO cohort, and
similar results were obtained. Low-risk subgroup exhibited
higher immune scores and immunological activities (Figure
S3A−G).
An antitumor response consists of several vital steps. We

further explored the relationship between the risk score and
antitumor response based on the Tracking Tumor Immuno-
phenotype (TIP) meta-server. We found that most steps

scored higher in the low-risk subgroup (Figure 7E),
demonstrating that the low-risk subgroup might exert a more
robust immune response.
Association with Tumor Mutation Burden. Tumor

mutation burden (TMB) is associated with immunotherapy
response and produces new tumor antigens to attract tumor-
specific T cells,18 so we calculated the TMB of each OC
sample. Low-risk subgroup showed higher TMB (Figure
8A,B), and high TMB contributed to better OS in the
TCGA OC cohort (Figure 8C). Combining TMB and risk
score, patients with high TMB and low risk showed the longest
survival time (Figure 8D). Then, the mutation landscapes of
the high- and low-risk subgroups were distinguished in
waterfall plots (Figure 8E). The top 15 mutated genes in
OC were tumor protein 53 (TP53), titin (TTN), mucin 16
(MUC16), sushi multiple domains 3 (CSMD3), neuro-
fibromatosis type 1 (NF1), topoisomerase IIα (TOP2A),
usherin (USH2A), hemicentin-1 (HMCN1), FAT atypical
cadherin 3 (FAT3), ryanodine receptor 2 (RYR2), mucin 17
(MUC17), filaggrin (FLG), microtubule actin crosslinking
factor 1 (MACF1), apolipoprotein B (APOB), and breast
cancer-associated gene 1 (BRCA1). A missense mutation was
the most common somatic mutation type. The mutation
frequency was higher in the low-risk subgroup (96.34%) than
in the high-risk subgroup (91.03%). Samples with low risk
exhibited a higher mutation frequency of TTN and lower
mutation frequency of TP53 than the high-risk subgroup.

Figure 4. Association between clinical features and the prognostic model. (A−C) Relationship between the prognostic model and different clinical
elements, including age, grade, and clinical stages. (D, E) Univariate and multivariate Cox regression analyses for the prognostic model and other
clinical features in the TCGA cohort.
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Therapeutic Response of the Prognostic Model. High
TMB contributed to a better response to immunotherapy.19,20

Previous studies implied that the low-risk subgroup exhibited

higher TMB with better survival. Therefore, we explored the
expression of immune checkpoints between the high- and low-
risk subgroups. We found that the expression of immune

Figure 5. Construction and evaluation of the nomogram. (A, B) The nomogram for predicting the survival probability of OC patients combines
clinical features and risk scores in the TCGA and GEO cohorts. (C, D) The ROC curve and (E, F) calibration plots of the nomogram for
predicting OS for one year, three years, and five years in the TCGA cohort and GEO cohort.
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Figure 6. Functional analysis of DEGs between the high- and low-risk subgroups. GO annotation terms of DEGs between the low-and high-risk
subgroups for (A) cellular components, (B) biological process, and (C) molecular functions. (D) KEGG enrichment analysis for DEGs between
the low-and high-risk subgroups. (E) GSEA findings.
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checkpoints was upregulated in the low-risk subgroup,
consistent with pleasing immune treatment effects in the

low-risk subgroup (Figure 9A−D), which was validated in the
GEO cohort (Figure S4).

Figure 7. Landscapes of the TME between the high- and low-risk subgroups. (A) Heatmap indicates the difference in the TME between the low-
and high-risk subgroups. (B) The diversities of the immune score, stromal score, ESTIMATE score, and tumor purity between the low-and high-
risk subgroups. (C) The differences in the proportions of 13 immune-related pathways between the low- and high-risk subgroups. (D) The
differences in the proportions of 16 immune cells between the low- and high-risk subgroups. (E) The variability of the antitumor steps between the
high- and low-risk subgroups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance.
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We further explored the relationship between the prognostic
model and nine common chemical drugs for OC patients,
including cisplatin, methotrexate, rapamycin, doxorubicin,
bleomycin, erlotinib, gemcitabine, docetaxel, and cytarabine,

via the pRRophetic algorithm. The half-maximal inhibitory
concentration (IC50) of these agents was compared between
the high- and low-risk subgroups. We observed that the low-
risk subgroup showed stronger sensitivity to bleomycin and

Figure 8. Characteristics of TMB in the high- and low-risk subgroups. (A) The differences in TMB between the low- and high-risk subgroups. (B)
The association of TMB with a risk score. (C) Kaplan−Meier survival analysis of TMB. (D) Effects of the risk score combined with TMB on OS.
(E) Top 15 mutated genes in different subgroups.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c04856
ACS Omega 2023, 8, 33017−33031

33025

https://pubs.acs.org/doi/10.1021/acsomega.3c04856?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04856?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04856?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04856?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c04856?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


cisplatin. In contrast, the high-risk subgroup showed stronger
responses to methotrexate, rapamycin, and erlotinib in the
TCGA cohort (Figure 10A−I), which were also analyzed in
the GEO cohort (Figure S5A−I).

■ DISCUSSION
OC is an immunogenic tumor recognized by host immunity,
and intratumoral T cells are positively associated with survival
in OC.21 Harnessing antitumor immunity is a superior option
for killing tumor cells, consisting of three key steps, including
breaking the immune-suppressive network, identifying tumor
antigens, and expanding antigen-specific T cells. IPS is an
optimal biomarker to predict patients suitable for immuno-
therapy, and a higher IPS indicates a more robust
immunotherapy response. Therefore, the IPS-related prognos-
tic model could better predict OS and reflect a better response
to immunotherapy in OC.
Five genes were used to build the prognostic model,

including GLIS2, ISG20, HLA−DOB, KRTCAP3, and

OCIAD2. GLIS family zinc finger 2 (GLIS2) is a TP53-
repressing transcription factor that inhibits enhancer activation
and promotes colorectal cancer progression.22 Moreover,
overexpression of GLIS2 could cause chemoresistance and
poor prognosis of gastric cancer.23 Interferon-stimulated gene
20 protein (ISG20) is an antiviral protein that inhibits the
majority of viruses and its downregulated expression in
isocitrate dehydrogenase (IDH2)-mutant glioma is associated
with enhanced infiltration of monocyte-derived macrophages
and neutrophils, as well as suppression of the adaptive immune
response.24,25 Human leukocyte antigen-DOB (HLA−DOB) is
a nonclassical class II molecule that influences the effectiveness
of class II-restricted antigen presentation and is involved in
macrophage infiltration to influence high-grade serous ovarian
carcinoma (HGSOC)’ survival.26,27 The DNA methylation
profile of keratinocyte-associated protein 3 (KRTCAP3)
showed that epigenetic variability influenced the response to
the environment in the human population.28 Ovarian
carcinoma immunoreactive antigen-like protein 2 (OCIAD2)

Figure 9. Immunotherapeutic responses of the IPS-related signature. (A) Differences in the expressions of immune checkpoints between the low-
and high-risk subgroups. (B−D) Comparison of IPS scores in response to immune checkpoint blockers between the low- and high-risk subgroups.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance.
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has been reported to show high immunoreactivity in ovarian
tumors and is thought to be a marker for evaluating the
malignancy of ovarian mucinous tumors, suppressing tumor
proliferation and invasion via the serine/threonine kinase
(AKT) pathway in hepatocellular carcinoma.29,30 In con-
clusion, these genes all are involved in tumor progression and
immunological activities.
Adequate evidence shows the importance of TME in

regulating cancer progression and influencing the therapeutic
response. Tumor cells can influence the TME to escape host
immunity by recruiting immunosuppressive cells and inhibiting
the infiltration of immunoreactive cells.31 Our study
demonstrated that the prognostic model was associated with
reprogramming the TME, recruiting immune cells, and
regulating immunological activities, where antitumor immune
cells were mainly enriched in low-risk subgroups, which was
beneficial for improving OS.
TMB represents the mutation frequency of cancer, where

mutations can produce neoantigens, recognized by effector T
cells, harnessing the immune system.32 To determine whether
risk scores regulate the TMB to influence the response to
immunotherapy, we compared the gene mutations between the

high- and low-risk subgroups. In the low-risk subgroup, the
gene mutation frequency was approximately 96%. Among
these genes, TP53 had the highest frequency in the high-risk
subgroup, while TTN had the highest frequency in the low-risk
subgroup. TTN mutations are correlated with cardiomyopathy
and responsiveness to immune checkpoint blockades in solid
tumors.33,34 The satisfactory prognosis of the low-risk
subgroup could be due to the higher frequency of TTN
mutation.
The immune-suppressive environment is the primary barrier

for cancer immunotherapy in OC, even though many tumor-
specific CD8+ T cells accumulate,35 and the inhibition of
immune checkpoint receptors is one of the mechanisms in T-
cell function suppression. These receptors negatively modulate
T-cell function, including PD-1, CTLA-4, lymphocyte
activation gene 3 (LAG-3), T-cell immunoglobulin and
mucin domain containing-3 (TIM-3), and T-cell immunor-
eceptor with immunoglobulin and immunoreceptor tyrosine-
based inhibitory motif domains (TIGIT).36−40 We found that
the expression of immune checkpoints was upregulated in the
low-risk subgroup, where the low-risk subgroup showed a
positive response to immunotherapy in OC. Moreover,

Figure 10. Evaluation of the therapeutic response of the IPS-related signature. Sensitivity analysis for (A) cisplatin, (B) methotrexate, (C)
rapamycin, (D) doxorubicin, (E) bleomycin, (F) erlotinib, (G) docetaxel, (H) cytarabine, and (I) gemcitabine in OC between the high- and low-
risk subgroups.
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patients with different risk scores showed various sensitivities
to agents. The high-risk subgroup exhibited more sensitivity to
rapamycin and methotrexate, while bleomycin responded well
in the low-risk subgroup.
Although promising results have been achieved, our study

still has some limitations. First, the findings were all based on
retrospective public cohorts. A prospective study is required to
validate the prognostic value of the 5-gene prognostic model.
Second, comprehensive experiments are essential to detect the
function of the 5 genes in OC and understand the mechanism
of the prognostic model.

■ CONCLUSIONS
In summary, we constructed a new prognostic model based on
the IPS to evaluate the population suitable for immunotherapy
and forecast the survival possibility in OC. TME and TMB
analyses were performed to explore the potential factors
affecting the response to immunotherapy. This model could
aid in more rational decision-making regarding immunother-
apy.

■ METHODS
Data Collecting and Processing. The RNA expression

and clinical information of OC samples in the TCGA cohort
were downloaded from the UCSC Xena database (https://gdc.
xenahubs.net, ID: TCGA-OV.htseq_fpkm, TCGA-OV.GDC_-
phenotype, TCGA-OV.survival), and the corresponding
mutation information of OC samples was obtained from The
Cancer Genome Atlas (TCGA; https://www.cancer.gov/tcga).
Moreover, The Cancer Immune Atlas (TCIA; https://tcia.at/
), including genomic immune landscapes of human cancers,
supplied the IPS and immunotherapy response of every TCGA
OC sample. Combining TCGA and TCIA data sets, 229 OC
samples were recruited in this study as a training cohort. The
selection criteria and processing of the 229 OC samples
included in the TCGA cohort have been previously
described.41

Furthermore, the GEO cohort was set as a validation cohort,
including 240 OC samples. We downloaded data, including
gene expression and clinical information, from GSE53963 and
GSE26193 via the “GEO query” package.42 The selection
criteria and processing of OC samples in GSE53963 and
GSE26193 were described in a previous study.43−47 The
“limma” package48 eliminated the variability among samples in
each GEO data set. Then, we used “sva” package49 to remove
the batch effect from the two GEO data sets and merged the
expression data. The complete clinicopathological character-
istics of the OC samples included in this study are presented in
Table S1.
Process of DEGs. Immunophenoscore (IPS) was a

superior predictor of response to immune checkpoint block-
ades. OC samples were divided into high- and low-IPS
subgroups based on the median IPS. The “limma” package48

was used to explore the differentially expressed genes (DEGs)
between the high- and low-IPS subgroups with the thresholds
of |log 2(foldchange)|>0.5 and adj. p value < 0.05. A univariate
Cox regression analysis was performed to identify DEGs with
OS (p < 0.05), in preparation for constructing the prognostic
model.
Construction and Evaluation of the Prognostic

Model. The least absolute shrinkage and selection operator
(LASSO) Cox regression(iteration = 1000) could identify the

most critical factors to harness the model’s prediction accuracy
and was conducted to avoid overfitting via the “glmnet”
package.50 Five genes were obtained to build the prognostic
model, and risk scores were calculated using the following
formula: risk score = ∑i=1

n (coefi × expi) (Table S2). The
median risk score of the TCGA cohort divided OC samples
into high- and low-risk subgroups. Principal component
analysis (PCA) is a common method of data analysis and is
often used to transform high-dimensional data into low-
dimensional data via some variables. Every OC sample’s PCA
score could be calculated based on the expression of five genes
(GLIS2, ISG20, HLA−DOB, KRTCAP3, OCIAD2) via R
functions (“prcomp”, “predict”). Kaplan−Meier survival
analysis was conducted to compare the OS of subgroups. We
applied a time-dependent receiver operating characteristic
(ROC) curve to estimate the prognostic precision of the model
via the “timeROC” package.51 Moreover, univariate and
multivariate Cox regression analyses were used to determine
whether this prognostic model was an independent survival
factor impacted by clinical features.
Establishment of Nomogram. A nomogram was adopted

as an assisted tool to calculate the possibility of one-year, three-
year, and five-year OS for every individual based on the risk
scores and clinical elements.52 The ROC curve was used to
determine the sensitivity and specificity of the nomogram. The
calibration curve was conducted to judge the consistency
between predicted survival and actual survival.
Functional Analysis of the Prognostic Model. To

further explore the primary signaling pathways involved in the
prognostic signature, the OC samples were divided into high-
and low-risk subgroups based on the median risk score. We
then analyzed the DEGs between the high- and low-risk
subgroups via the “limma” package48 with the significance set
at adj. p value < 0.05. Gene Ontology (GO) annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis were achieved via the “clusterProfiler”
package53 based on the DEGs. GSEA software (version 4.3.2)
was used to analyze the different pathways between the two
subgroups. A normal p value < 0.05 identified the significant
pathways.
TME Analysis in Two Subgroups. Single−sample gene

set enrichment analysis (ssGSEA) was conducted to estimate
the immune cell abundance of each OC patient in TCGA via
the “GSVA” package.54 We then calculated various scores,
including tumor purity, immune, stromal, and ESTIMATE
scores, via the “estimate” package.55 Antitumor immunity
consists of seven steps, called the cancer-immunity cycle.
Tracking Tumor Immunophenotype (TIP) is a meta-server for
tracking, analyzing, and visualizing the status of anticancer
immunity and the proportion of tumor-infiltrating immune
cells, and we downloaded every step for OC patients in
TCGA.56 Then, we compared the different activation of seven
steps between the two subgroups.
Evaluation of TMB and Response to Treatment

Efficacy. The TMB of each OC patient was calculated and
compared between the high- and low-risk subgroups. Then, we
examined the differences in somatic mutations between the
two subgroups via the “maftools” package.57 Subsequently, we
analyzed the effects of immunotherapy and chemotherapy to
determine whether the prognostic model influenced therapeu-
tic efficacy. To clarify the impacts on the common drugs in
OC, we adopted the “pRRophetic” package58 to evaluate the
half-maximal inhibitory concentration (IC50) by ridge
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regression based on the Cancer Cell Line Encyclopedia
(CCLE) database.
Statistical Analysis. R software was used to complete all

statistical analyses and graph visualization (v4.2.2; http://
www.r-project.org). The Wilcoxon rank-sum test was imple-
mented for data not following a uniform distribution and
variance. A p < 0.05 was considered to be significant.
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