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Abstract: Beneficial effects of n-3 fatty acids on metabolic biomarkers in patients with type 2 diabetes
(T2DM) has been reported. The objectives of this current research were to investigate the effects
of n-3 supplementation on metabolic factors, weight, and body mass index (BMI) in patients with
type 2 diabetes mellitus (T2DM), using a meta-analysis of randomized, controlled trials (RCTs).
Online databases PubMed, Embase, Web of Science, and Science Direct were searched until 2021 to
identify eligible articles. Thirty trials were included. The results showed that n-3 consumption can
significantly reduce glycemic factors including fasting blood sugar (FBS) (−0.36 (−0.71 to −0.01)),
glycated hemoglobulin (HbA1c) (−0.74 (−1.13 to −0.35)), and homeostatic model assessment of
insulin resistance (HOMA.IR) (−0.58 (−1.13 to −0.03)). Furthermore, significant improvement in
lipid profile including triglycerides (TG) (−0.27 (−0.37 to −0.18)), total cholesterol (−0.60 (−0.88 to
−0.32)), low density lipoprotein (LDL) (−0.54 (−0.85 to −0.23)), and high-density lipoprotein (HDL)
(0.60 (0.23 to 0.96)) levels were found in the present meta-analysis. The reduction in the inflammatory
marker’s tumor necrosis factor-alpha (TNF-α) (−0.13 (−0.75 to 0.48)) and c-reactive protein (CRP)
(−0.72 (−1.70 to 0.27)), as well as weight (−0.09 (−0.24 to 0.07)) and BMI (−0.13 (−0.29 to 0.02)) were
not statistically significant. Furthermore, the findings revealed that the optimal dose and duration of
n-3 consumption for patients with T2DM is 1000–2000 mg/d for more than 8 weeks. The present
meta-analysis and review reveals that n-3 supplementation can improve glycemic factors and lipid
profile in patients with T2DM. Furthermore, n-3 supplementation may provide beneficial effects on
inflammatory markers and body weight if used at the appropriate dose and duration.

Keywords: meta-analysis; n-3; polyunsaturated fatty acids PUFA; T2DM; diabetes; randomized
controlled trials RCTs; glycemic control; metabolic and inflammatory biomarkers; weight; BMI

1. Introduction

Type 2 diabetes (T2DM) is a metabolic disorder characterized by hyperglycemia in
the context of insulin resistance and β-cell dysfunction. Its prevalence is increasing at an
alarming rate worldwide [1,2]. Epidemiological and clinical trials have demonstrated that
lifestyle, in particular daily diet, is of importance in the development and treatment of
T2DM [3].
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It has been reported that high fish and seafood consumption can significantly reduce
the incidence of T2DM [4]. Bang et al. attributed such benefits of fish consumption to its
main components, n-3 fatty acids (in particular eicosapentaenoic acid (C20: 5 n-3, EPA) and
docosahexaenoic acid (C22: 6 n-3, DHA)) a family of homologue polyunsaturated fatty
acids (PUFAs) [5].

Recent data supports the beneficial effects of n-3 PUFAs intake on metabolic profiles
in patients with T2DM and obesity [6], and gestational diabetes (GDM) [7]. Several studies
have reported that circulating levels of n-3 fatty acid were negatively associated with
the risk of T2DM [8,9]. Moreover, some studies have demonstrated that n-3 fatty acids
administration improve insulin sensitivity in overweight women with an inflammatory
phenotype [10], whereas others observed that n-3 fatty acids in healthy people have
no insulin-sensitizing effects [11]. Interestingly, favorable effects of n-3 fatty acids on
inflammation and oxidative stress have been reported in patients with a high inflammatory
status including pregnant women with GDM [12] and cancer-related cachexia [13]. These
discrepancies may be explained by the different population studies, the origin of n-3
fatty acids, dosage, and length of treatment. Considering that the pathogenesis of T2DM
may be linked to impaired metabolic profiles, inflammation and oxidative stress and
as there is evidence that n-3 fatty acids may have anti-inflammatory effects and reduce
oxidative stress [12], several trials have been conducted evaluating the beneficial effect of
n-3 polyunsaturated fatty acids (PUFA) consumption on metabolic parameters in patients
with T2DM.

The purpose of the present study was to perform a systematic review and meta-
analysis of randomized controlled trials (RCTs) on the effects of n-3 PUFAs, both the
parent alpha-linolenic acid (ALA, C18: 3 n-3) and the longer chain n-3 PUFA EPA and
DHA, on metabolic biomarkers including glycemic profile, lipid profiles, and inflammatory
parameters and body weight and body mass index (BMI) in patients with T2DM.

2. Results

The literature search yielded 4105 citations. We retrieved 94 articles, of which 30 met
eligibility criteria. A flow chart on article selection for the meta-analysis is shown in
Figure 1.

2.1. Characteristics of Included Studies

Table 1 contains specific information on intervention dosages and duration of treat-
ment, and measurement parameters in studies. Thirty randomized clinical trials were
included in the final meta-analysis. Twenty-four studies reported changes in glycemic
factors, 20 studies reported changes in lipid profile, 13 studies reported changes in body
weight, and 6 studies reported changes in inflammatory markers (Table 1). The subjects of
all studies consumed n-3 as oral supplementation.
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Table 1. Characteristics of included studies.

N ID Supplement Type Duration
(Weeks)

Dose
(mg/d)

Analysis

Glycemic Factors Lipid Profile Inflammatory Markers
Weight BMIFBS HbA1c HOMA.IR TG Chol LDL HDL TNF-α CRP

1 Hajianfar, [14] n-3 capsules 8 - X X

2 Golpour, [15] n-3 capsules 10 2700 X X X X X

3 Dasarathy, [16] EPA/DHA supplement 48 3600 X X X X X X X

4 Mirhashemi, [17] flaxseed oil 12 1000 X X

5 Orang, [18] n-3 capsules 12 2000 X X X X X X X

6 Raygan, [19] fish oil 12 1000 X X X X X X X X X

7 Javid, [20] n-3 capsules 8 2000 X X X X X X X X

8 Soleimani, [21] flaxseed oil 12 1000 X X X X X X X X X X

9 Soleimani, [22] flaxseed oil 12 1000 X X X X X X

10 Veleba, [23] EPA + DHA concentrate 24 5000 X X X X X X X X

11 Ansari, [24] n-3 capsules 10 3750 X X X X X

12 Jacobo-Cejudo, [25] fish-oil 24 520 X X X X X X X X X

13 Kabir, [26] fish-oil 8 3000 X X X X X X X

14 Hosseinzadeh, [27] n-3 capsules 8 2000 X X

15 Malekshahi, [28] n-3 capsules 8 2714 X X X

16 Hua, [29]

A

Fish oil

4

2000

X X X X X X X

B 8 X X X X X X X

C 12 X X X X X X X

17 Chauhan, [30]

A

n-3 capsule

6 1000 X X X X

B 12 2000 X X X X X X

C 6 1000 X X X X

D 12 2000 X X X X X X

18 Shidfar, [31] Purified n-3 10 2000 X X X X X X

19 Udupa, [32] n-3 soft gels 13 300 X X

20 Liu, [33]

A

fish oil

4

3650

X X X X X X

B 8 X X X X X X X

C 12 X X X X X X X
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Table 1. Cont.

N ID Supplement Type Duration
(Weeks)

Dose
(mg/d)

Analysis

Glycemic Factors Lipid Profile Inflammatory Markers
Weight BMIFBS HbA1c HOMA.IR TG Chol LDL HDL TNF-α CRP

21 Mansoori, [34] fish oil 8 1850 X X X X X X

22 Pooya, [35] n-3 capsules 8 2714 X X X X X

23 Fayh, [36] n-3 capsules 8 300 X X X X X X

24 Poursoleiman, [37] n-3 soft gels 6 2000 X X X X X

25 Wang, [38]
A

fish oil
12

4000
X X X X X X X

B 24 X X X X X X X

26 Sarbolouki, [39] purified EPA 12 2000 X X X

27 Woodman, [40]
A purified EPA 6 4000 X X X X X X

B purified DHA 6 4000 X X X X X X

28 Zheng, [22]
A

fish oil
12

2000
X X X X X X

B 26 X X X X X X

29 Holman, [41] n-3 capsules 28 2000 X X X X

30 Siniarski, [42] juice box 12 2000 X X X X
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2.2. Meta-Analysis Results
2.2.1. Glycemic Factors
FBS

The common SMD from 24 studies was −0.36 (95% CI: −0.71 to −0.01, p = 0.047)
based on a random effect model, with significant heterogeneity between studies (I2 = 92.9%,
p = 0.00) (Figure 2A). Further investigation detected 7 outliers with large effect sizes (Liu,
2018 A, SMD = −7.17; Liu, 2018 B, SMD = −8.57; Liu, 2018 C, SMD = −10.73; Fayh, 2018,
SMD = 2.24; Veleba, 2015, SMD = 2.84; Woodman, 2002 A, SMD = 9.81; Woodman, 2002 B,
SMD = 9.07), so we removed them from further analyses in this outcome. Removing these
studies resulted in a reduction in effect size (SMD = −0.28, 95% CI: −0.46 to −0.10), but
heterogeneity still remained significant although considerable reduction in heterogeneity
was observed (I2 = 72.2%, p = 0.00). According to the shape of the funnel plot, we considered
that there was no obvious publication bias among the included studies (Figure 2B).

HbA1c

The common SMD from 21 studies was −0.74 (95% CI: −1.13 to −0.35, p = 0.00) based
on a random effect model, with significant heterogeneity between studies (I2 = 94.8%,
p = 0.00) (Figure 3A). Further investigation detected 9 outliers with large effect sizes (Hua,
2019 C, SMD = −2.45; Holman, 2009, SMD = 0.5; Liu, 2018 B, SMD = −2.33; Liu, 2018
C, SMD = −6.67; Dasarathy, 2015, SMD = 0.5; Soleimani, 2017, SMD = −1.11; Veleba,
2015, SMD = 1.17; Cejudo, 2017, SMD = 2.55; Sarbolouki, 2013, SMD = −0.97), thus these
were removed from the analyses in this outcome. Removing these studies resulted in a
reduction in effect size (SMD = −0.55, 95% CI: −0.90 to −0.20), but heterogeneity remained
significant although considerable reduction in heterogeneity was observed (I2 = 88.5%,
p = 0.00). According to the shape of funnel plot, we considered that there was no obvious
publication bias among the included studies (Figure 3B).
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HOMA.IR

The common SMD from 13 studies was −0.58 (95% CI: −1.13 to −0.03, p = 0.038)
based on a random effect model, with significant heterogeneity between studies (I2 = 95.6%,
p = 0.00) (Figure 4A). Further investigation detected 5 outliers with large effect sizes (Hua,
2019 C, SMD = −3.28; Liu, 2018 A, SMD = 3.50; Liu, 2018 B, SMD = 2.17; Liu, 2018 C,
SMD = −3.85; Ansari, 2017, SMD = −2.21), these were therefore removed from any further
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analyses. This resulted in a reduction in effect size (SMD = −0.38, 95% CI: −0.75 to −0.01),
but heterogeneity remained significant although considerable reduction in heterogeneity
was observed (I2 = 88.5%, p = 0.00). According to the shape of funnel plot, we considered
that there was no obvious publication bias among the included studies (Figure 4B).
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Sub-group analysis of different dosage of n-3 (<1000, 1000–2000, and >2000 mg/d)
showed that n-3 consumption of 1000–2000 mg/d could significantly reduce FBS level
and HOMA.IR; however, the reduction in supplementation for less than 1000mg/d and
more than 2000 mg/d was not significant. The reduction in HbA1c level was significant at
all the 3 dose sub-groups. Moreover, sub-group analysis of duration of n-3 consumption
(≤8 week/>8 week) showed that n-3 consumption for more than 8 weeks could signifi-
cantly reduce FBS level and HOMA.IR, but the reduction in HbA1c level was significant at
both ≤8 and >8 weeks (Table 2).

Table 2. Pooled estimates of n-3 effects on glycemic factors within dosage and duration subgroups.

Variable Group No. of
Comparisons SMD (95% CI) p-Value I2 (%) p-Heterogeneity

FBS

Total 34 −0.36 (−0.71, −0.01) 0.047 92.9 0.000

Intervention dosage (mg/d)

≤1000 8 −0.20 (−0.83, 0.42) 0.084 40.9 0.084

1000–2000 13 −0.33 (−0.57, −0.09) 0.008 * 69.0 0.000

≥2000 13 −1.40 (−1.42, 0.63) 0.448 96.9 0.000

Intervention duration (w)

≤8 14 −0.21 (−0.96, 0.54) 0.588 95.6 0.000

>8 20 −0.40 (−0.75, −0.05) 0.026 * 92.9 0.000
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Table 2. Cont.

Variable Group No. of
Comparisons SMD (95% CI) p-Value I2 (%) p-Heterogeneity

HbA1c

Total 29 −0.74 (−1.13, −0.35) 0.047 94.8 0.000

Intervention dosage (mg/d)

≤1000 5 −0.66 (−1.11, −0.20) 0.005 * 68.4 0.013

1000–2000 11 −0.75 (−1.37, −0.14) 0.016 * 95.9 0.000

≥2000 13 −0.81 (−1.58, −0.03) 0.042 * 95.4 0.000

Intervention duration (w)

≤8 10 −0.69 (−1.29, −0.08) 0.025 * 90.4 0.000

>8 19 −0.77 (−1.25, −0.29) 0.002 * 95.3 0.000

HOMA.IR

Total 19 −0.58 (−1.13, −0.35) 0.038 95.6 0.000

Intervention dosage (mg/d)

≤1000 3 0.32 (−0.96, 0.32) 0.324 77.5 0.012

1000–2000 8 −0.93 (−1.71, −0.16) 0.019 * 95.6 0.000

≥2000 8 −0.33 (−1.40, 0.74) 0.546 96.6 0.000

Intervention duration (w)

≤8 5 0.16 (−1.28, 1.60) 0.828 97.6 0.000

>8 14 −0.84 (−1.42, −0.26) 0.005 * 94.5 0.000
Note: * Shows statistical significance level.

2.2.2. Lipid Profile
TG

The common SMD from 17 studies was −0.27 (95% CI: −0.37 to −0.18, p = 0.00) based
on a random effect model, with no heterogeneity between studies (I2 = 0.0%, p = 0.975)
(Figure 5A). Furthermore, according to the shape of funnel plot, we considered that there
was no obvious publication bias among the included studies (Figure 5B).
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Cholesterol

The common SMD from 20 studies was −0.60 (95% CI: −0.88 to −0.32, p = 0.00) based
on a random effect model, with significant heterogeneity between studies (I2 = 90.8%,
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p = 0.00) (Figure 6A). Further investigation detected 7 outliers with large effect sizes (Hua,
2019 B, SMD = −2.57; Hua, 2019 C, SMD = −3.50; Siniarski, 2018, SMD = −4.97; Liu, 2018
B, SMD = −2.60; Liu, 2018 C, SMD = −2.51; Poursoleiman, 2018, SMD = 3.09; Soleimani,
2017, SMD = −3.61), therefore they were removed from the analysis. Removing these
studies resulted in a reduction in effect size (SMD = −0.35, 95% CI: −0.58 to −0.13), but
heterogeneity still remained significant although a reduction in heterogeneity was observed
(I2 = 81.3%, p = 0.00). According to the shape of the funnel plot, we considered that there
was no obvious publication bias among the included studies with cholesterol as an outcome
measure (Figure 6B).
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LDL

The common SMD from 20 studies was −0.54 (95% CI: −0.85 to −0.23, p = 0.001)
based on a random effect model, with significant heterogeneity between studies (I2 = 91.8%,
p = 0.00) (Figure 7A). Further investigation detected 7 outliers with large effect sizes (Hua,
2019 C, SMD = −3.65; Siniarski, 2018, SMD = −4.75; Liu, 2018 A, SMD = −2.98; Liu,
2018 B, SMD = −4.67; Liu, 2018 C, SMD = −4.39; Poursoleiman, 2018, SMD = 2.96; Javid,
2017, SMD = 2.82). Therefore, these studies were removed from further analyses in this
outcome. The removal of these studies resulted in a reduction in effect size (SMD = −0.22,
95% CI: −0.42 to −0.03), but heterogeneity remained significant although a reduction in
heterogeneity was observed (I2 = 74.7%, p = 0.00).

Publication bias regarding studies of LDL was observed using visual inspection
of funnel plot, however, the results of a Begg’s and Egger’s asymmetry test were not
significant (p > 0.05). Trim and fill analysis was therefore conducted to correct the bias
imputing three hypothetical studies. The results were significant even after trim and fill
analysis (SMD = −0.662; 95% CI: −0.96 to −0.35; p = 0.00) (Figure 7B).
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HDL

The common SMD from 20 studies was 0.60 (95% CI: 0.23 to 0.96, p = 0.001) based on
a random effect model, with significant heterogeneity between studies (I2 = 94.0%, p = 0.00)
(Figure 8A). Further investigation detected 7 outliers with large effect sizes (Hua, 2019 B,
SMD = 2.44; Hua, 2019 C, SMD = 2.92; Holman, 2009, SMD = 2.50; Liu, 2018 B, SMD = 2.41;
Liu, 2018 C, SMD = 5.76; Poursoleiman, 2018, SMD = −2.36; Javid, 2017, SMD = −2.50).
These studies were therefore removed from further analyses of the HDL as an outcome.
Removal of these studies resulted in a reduction in effect size (SMD = 0.32, 95% CI: 0.14
to 0.51), but heterogeneity still remained significant although considerable reduction in
heterogeneity was observed (I2 = 64.0%, p = 0.00). According to the shape of funnel plot,
we considered that there was no obvious publication bias among the included studies
(Figure 8B).

Sub-group analysis of different dosage of n-3 consumption (<1000, 1000–200, or
>2000 mg/d) showed that n-3 consumption in all the 3 dose sub-groups could significantly
reduce TG and total-cholesterol levels. LDL and HDL levels were also significantly changed
by n-3 consumption of more than 1000 mg/d. Moreover, sub-group analysis of duration
of n-3 consumption (≤8 week/>8 week) showed that n-3 consumption for both ≤8 and
>8 weeks could significantly reduce TG and total cholesterol levels and increase HDL level;
however, the significant reduction in LDL level occurred only when n-3 was consumed for
more than 8 weeks (Table 3).
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Table 3. Pooled estimates of n-3 effects on lipid profile within dosage and duration subgroups.

Variable Group No. of
Comparisons SMD (95% CI) p-Value I2 (%) p-Heterogeneity

TG

Total 26 −0.27 (−0.37, −0.18) 0.038 0.0 0.958

Intervention dosage (mg/d)

≤1000 7 −0.23 (−0.43, 0.03) 0.023 * 0.0 0.851

1000–2000 10 −0.32 (−0.47, −0.17) 0.000 * 0.0 0.621

≥2000 9 −0.24 (−0.42, −0.07) 0.006 * 0.0 0.958

Intervention duration (w)

≤8 13 −0.23 (−0.37, −0.08) 0.002 * 0.0 0.909

>8 13 −0.23 (−0.45, −0.18) 0.000 * 0.0 0.904

CHOL

Total 30 −0.60 (−0.88, −0.32) 0.038 90.8 0.000

Intervention dosage (mg/d)

≤1000 7 −0.62 (−1.16, −0.08) 0.024 * 85.3 0.000

1000–2000 13 −0.66 (−1.14, −0.18) 0.007 * 94.2 0.000

≥2000 10 −0.49 (−0.95, −0.03) 0.037 * 86.0 0.000

Intervention duration (w)

≤8 13 −0.50 (−0.93, −0.07) 0.024 * 88.1 0.000

>8 17 −0.67 (−1.05, −0.29) 0.001 * 92.3 0.000
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Table 3. Cont.

Variable Group No. of
Comparisons SMD (95% CI) p-Value I2 (%) p-Heterogeneity

LDL

Total 28 −0.54 (−0.85, −0.23) 0.047 91.8 0.000

Intervention dosage (mg/d)

≤1000 6 −0.31 (−0.65, 0.03) 0.073 58.2 0.035

1000–2000 12 −0.51 (−1.01, −0.02) 0.042 * 93.9 0.000

≥2000 10 −0.72 (−1.38, −0.07) 0.029 * 93.1 0.000

Intervention duration (w)

≤8 12 −0.43 (−0.98, 0.13) 0.132 91.8 0.000

>8 16 −0.62 (−1.01, −0.23) 0.002 * 92.2 0.000

HDL

Total 29 0.60 (0.23, 0.96) 0.001 94.0 0.000

Intervention dosage (mg/d)

≤1000 7 0.27 (−0.01, 0.55) 0.063 48.8 0.069

1000–2000 13 0.63 (0.04, 1.22) 0.036 * 96.0 0.000

≥2000 9 0.81 (0.14, 1.49) 0.001 * 91.1 0.000

Intervention duration (w)

≤8 12 0.52 (0.03, 1.01) 0.036 * 88.9 0.000

>8 17 0.65 (0.15, 1.16) 0.012 * 95.5 0.000
Note: * Shows statistical significance level.

2.2.3. Inflammatory Markers
TNF-α

The common SMD from 4 studies was −0.13 (95% CI: −0.75 to 0.48, p = 0.668) based
on a random effect model, with significant heterogeneity between studies (I2 = 78.8%,
p = 0.003) (Figure 9A). Further investigation detected no outliers.
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Figure 9. (A) The effect of n-3 on TNF-α; (B) funnel plot examining the publication bias of TNF-α and n-3 supplementation.

Publication bias regarding studies of TNF-αwas observed using visual inspection of
funnel plot, however, the results for Begg’s and Egger’s asymmetry test were not significant
(p > 0.05). Therefore, trim and fill analysis were conducted to correct the bias imputing
two hypothetical studies. The results were non-significant even after trim and fill analysis
(SMD = −0.482; 95% CI: −1.05 to 0.08; p = 0.096) (Figure 9B).
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CRP

The common SMD from 6 studies was −0.72 (95% CI: −1.70 to 0.27, p = 0.156) based
on a random effect model, with significant heterogeneity between studies (I2 = 95.1%,
p = 0.00) (Figure 10A). Further investigation detected no outliers. Furthermore, according
to the shape of the funnel plot, it was considered that there was no obvious publication
bias among the included studies (Figure 10B).
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2.2.4. Anthropometric Parameters
Weight

The common SMD from 13 studies was −0.09 (95% CI: −0.24 to 0.07, p = 0.280) based
on a random effect model, with no heterogeneity between studies (I2 = 0.0%, p = 0.989)
(Figure 11A).
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Publication bias regarding studies of weight was observed using visual inspection
of funnel plot, however, the results for Begg’s and Egger’s asymmetry test were not
significant (p > 0.05). Trim and fill analysis was conducted to correct the bias imputing
two hypothetical studies. The results were not significant even after trim and fill analysis
(SMD = −0.108; 95% CI: −0.25 to 0.042; p = 0.157) (Figure 11B).

BMI

The common SMD from 12 studies was −0.13 (95% CI: −0.29 to 0.02, p = 0.093) based
on a random effect model, with no heterogeneity between studies (I2 = 0.0%, p = 0.930)
(Figure 12A). According to the shape of funnel plot, we considered that there was no
obvious publication bias among the included studies (Figure 12B).
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3. Discussion

The beneficial effects of n-3 supplementation on metabolic biomarkers have been pre-
viously investigated in several studies, including our own, in T2DM [25,43,44]. The present
review has systematically analyzed RCTs to further clarify the effects of n-3 consumption
on glycemic factors, body weight, lipid profile, and inflammatory biomarkers in patients
with T2DM. The results show that consuming n-3 significantly improve glycemic factors
(FBS, HbA1c, and HOMA.IR) and lipid profile (TG, total cholesterol, LDL, and HDL) in
patients with T2DM. However, in the small number of sample studies investigated reduc-
tions in weight, BMI, and inflammatory biomarkers (TNF-α and CRP) were not statistically
significant.

It has long been known that membrane phospholipid PUFAs composition is asso-
ciated with insulin sensitivity [45]. The beneficial effects of n-3 fatty acids on glycemic
control and glucose homeostasis are likely to involve several mechanisms. With increased
incorporation of n-3 fatty acids into cellular membranes, via supplementation, membrane
fluidity and several cell membrane and intracellular receptors, which regulate cellular
signaling and gene expression, can be affected leading to increased insulin sensitivity [46].
For example, EPA and DHA can increase GLUT1 and GLUT4 translocation respectively
and the transport of glucose [47,48]. Furthermore, n-3 fatty acids may improve glucose
homeostasis through regulating inflammation [48,49]. In addition, studies in animal mod-
els have shown that n-3 fatty acids improve insulin sensitivity and glucose homeostasis by
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influencing the insulin signaling pathway [50–52]. The results of the present meta-analysis
show that n-3 supplementation can significantly improve the glycemic response in patients
with T2DM. The results are consistent with those of a previous meta-analysis conducted
by O’Mahoney et al. [43]. They showed that n-3 PUFAs supplementation can produce
favorable improvement in glycaemia. Importantly, in the present investigation, in a sub-
group analysis, we found that consuming a dose of 1000–2000 mg/d n-3 supplement for
more than 8 weeks can improve the FBS level and HOMA.IR index. A previous study
demonstrated that n-3 fatty acids supplementation at high doses (12 g of fish oil for 6 weeks)
increased glycerol gluconeogenesis by 32%, which could contribute to a deterioration of
glycemic control during long-term treatment [53]. Therefore, we suggest based on our
analysis the optimal dosage of n-3 supplementation, for improving glycemic and related
parameters is 1000–2000 mg/d.

It is well established that T2DM is associated with dyslipidemia (4) and that n-3 intake
has long been indicated in the treatment of hyperlipidemia [30,31]. As cell membrane
fatty acids play an important role in signal transduction, and n-3 fatty acids are capable of
modifying gene expression, it is thought that the dramatic lipid-altering effects of n-3 fatty
acids are mediated via this mechanism [54]. More specifically, n-3 fatty acids can modulate
the function of peroxisome proliferator–activated receptors (PPARs) and sterol regulatory
element-binding proteins (SREBPs), both of which are involved in lipid homeostasis [55]
and have been reviewed in detail elsewhere [54]. We observed a significant reduction
in triglycerides, total cholesterol, and LDL levels and significant increase in HDL level
in response to n-3 supplementation in T2DM. These findings are similar to the results
of previous meta-analyses [56–59]. Our sub-group analysis however also revealed that
n-3 supplementation of greater than 1000 mg/d for more than 8 weeks can significantly
improve the lipid profile in patients with T2DM.

In relation to inflammation TNF-α and IL-6 can impair insulin signaling and action by
post-translational modulation of insulin receptor substrates [60]. Furthermore, TNF-α can
induce lipolysis in fat cells leading to increased free fatty acids [61] and the adipocytokines
have inflammatory effects, e.g., pro-inflammatory resistin and leptin [25,62]. Clinical trials
indicate that n-3 fatty acid supplementation can affect the serum concentrations of inflam-
matory biomarkers, including TNF-α and serum CRP levels. A direct mechanism through
which n-3 PUFA can decrease inflammation includes rapid effects on the regulation of
transcription factors [63,64], and indirect modes of actions including the production of, e.g.,
five-series eicosanoids [65] and inflammation-resolving lipid mediators and suppression of
acute phase reactants [66,67]. In a study conducted by Rangel-Huerta et al., they reviewed
26 RCTs which supplemented n-3 FAs over 10 years; ten of the reported trials were under-
taken in healthy and the remainder in chronic diseases participants [68]. In the studies
of healthy participants, they found that n-3 supplementation generally had no effect on
inflammatory biomarkers, which may have been due to low circulating levels. Among
the cardiovascular disease patients, the level of CRP and IL-6 was generally decreased
after 12 weeks of the n-3 supplement. In contrast in the large meta-analysis by Li et al. [69]
which included 68 RCTs (total of 4601 subjects) they found that marine-derived n-3 PUFA
(EPA, DHA, fish oil) significantly decreased CRP, TNF-α and IL-6 in healthy (particularly
older subjects) and in patients with chronic non-autoimmune disease. They also reported
that the effects were associated with treatment dose and duration. In the current analysis
however, we found that n-3 supplementation did not significantly decrease inflammatory
biomarkers. This may in-part be due to low number of included studies, the variable
levels of inflammatory biomarkers reported, use of drug treatments, background diet and
relatively low dose used in some of the studies. This meta-analysis and other studies
discussed consistently show that n-3 supplementation effects on metabolic or inflammatory
markers depends on dose and time. Most likely this is a function of the time required
to fully incorporate fatty acids into membrane phospholipids and affect dysregulated
homeostatic mechanisms.
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There is evidence that increased intakes of n-3 fatty acids can reduce body fat in
humans, but human studies are relatively few and have generally been conducted over
short time periods with small sample sizes [70]. The mechanisms by which n-3 PUFA
reduce body fat are not well understood. There is evidence from both human [71] and
animal [72,73] studies that suggest that these fatty acids may contribute to improvements
in body composition by suppressing appetite and promoting apoptosis of adipocytes [73].
Moreover, there is considerable evidence from animal studies indicating that the effects of
n-3 PUFA on body weight and body fat are mediated by altering the expression of genes
involved in the regulation of fat metabolism in several tissues. However, the effect of n-3
supplementation on body weight and BMI was not significant in the present analysis. More
studies to increase sample size, better controlled inclusion and exclusion criteria for weight
or longer duration and higher dosage of n-3 supplementation might uncover significant
effects of n-3 supplementation on weight in T2DM.

There have been several other meta-analysis studies of the effects of n-3 in T2DM.
Chen et al. (2015) [74] reported no significant difference in glucose control between placebo
and n-3 supplementation but did report beneficial effects on lipid profile in their meta-
analysis. In the meta-analysis by Brown et al. (2019) [75] they found that neither n-3, n-6 or
total PUFA supplementation affects the development or treatment of diabetes. Importantly
Brown et al. investigated both diet intake and supplementation studies. It is well known
that dietary intake analysis is not necessarily precise (in contrast our data were obtained
directly from supplementation RCTs only) and they also state that their data included a high
number of RCTs at risk of bias. In the meta-analysis undertaken by Natto et al. (2019) [76]
they suggested that n-3 supplementation may improve metabolic or inflammatory markers,
e.g., TNF-α in patients with diabetes or cardiovascular disease, but their data was not
conclusive, and furthermore they did not explore the effects of dose or time. Gao et al.
(2020) [77] in their meta-analysis found no effect of fish oil supplementation on glucose
metabolism parameters but did observe a positive effect on lipid profile markers. The
difference in glycemic parameters we observed in the present study may be linked to the
different supplement sources included in our meta-analysis. Furthermore, in some of the
RCTs included in previous studies there may have been dietary components that track
with n-3 intake which could have disrupted any beneficial effects. We included a greater
number of n-3 supplementation RCTs in our meta-analysis compared with most previous
meta-analysis studies, which may also account for the glycemic parameter differences
between some previous studies and present analysis.

The present study has some limitations. Firstly, the number of studies evaluating
the effect of n-3 supplementation on inflammatory markers and body weight was low.
Secondly, different n-3 fatty acids (parent ALA and it’s metabolic products EPA and DHA)
supplementation has been used in different studies i.e., marine-derived (EPA, DHA and fish
oil) and plant-derived (ALA, flaxseed). Although it is generally accepted that ALA exerts
its effects via conversion to EPA [78], it is also possible ALA has biological effects in T2DM
without conversation to EPA [79]. Thirdly, significant heterogeneity was found in most of
the analyzed parameters, and the source of the heterogeneity was not explored further. We
also only used random-effects models to address heterogeneity, which may have affected
the strength and extrapolation of our conclusions. In addition, it is becoming clear that
the effects of n-3 fatty acids supplementation in T2DM populations differ depending on
their ethnic and dietary backgrounds [44]. Finally, the effects of a more balanced intake of
n-3 and n-6 PUFAs on metabolic and inflammatory biomarkers [45,79–82] with or without
probiotics [83] on T2DM are also now warranted.

4. Methods

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines. The study protocol was registered prospectively in PROS-
PERO (CRD42021250440).
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4.1. Search Strategy

Online databases PubMed, Embase, Web of Science, and Science Direct were searched
until 2021 for studies that investigated the effects of omega-3 supplementation on metabolic
biomarkers and body weight in patients with T2DM. The following search terms were used:
(Omega-3 OR n-3 OR fish oil) AND (diabetes OR type 2 diabetes OR T2D OR T2DM) AND
(FBS OR fasting blood glucose OR glycemic OR glucose OR Insulin OR HOMA.IR OR A1c
OR HbA1c OR lipid profile OR TG OR Cholesterol OR LDL OR HDL OR triglyceride OR
CRP OR TNF-α OR weight OR BMI OR Body Mass Index). Our search was restricted to
studies published in the English language.

4.2. Study Selection and Inclusion and Exclusion Criteria

The following criteria were used to identify eligible studies: (i) randomized placebo-
controlled trials with either parallel or cross-over design, (ii) investigation of the effects of
n-3 on glycemic factors in patients with T2DM, (iii) investigation of the effects of n-3 on lipid
profile in patients with T2DM, (iv) investigation of the effects of n-3 on inflammatory bio-
markers in patients with T2DM, (v) investigation of the effects of n-3 on BMI or body weight
in patients with T2DM and (vi) providing sufficient information on the baseline and end-
trial metabolic bio-markers, weight, and/or BMI in both n-3 and control groups. Exclusion
criteria were (i) animal studies, (ii) observational studies, (iii) uncontrolled studies, and (iv)
lack of sufficient/relevant information on the baseline or end-trial blood biomarkers.

4.3. Data Extraction

The following data were abstracted: (1) first author’s name; (2) year of publication; (3)
number of participants in the omega-3 and control groups; (4) dose of omega-3 supplement;
and (5) treatment duration.

4.4. Quality Assessment

A systematic assessment of bias in the included studies was performed using the
Cochrane criteria. The items used for the assessment of each study were as follows:
adequacy of sequence generation, allocation concealment, blinding, addressing of dropouts
(incomplete outcome data), selective outcome reporting, and other potential sources of
bias. According to the recommendations of the Cochrane Handbook, a judgment of “yes”
indicated a low risk of bias, while “no” indicated high risk of bias. Labeling an item as
“unclear” indicated an unclear or unknown risk of bias.

4.5. Statistical Analysis

The mean changes (mean values and SD) in fasting blood sugar (FBS), glycated
hemoglobulin (HbA1c), homeostatic model assessment of insulin resistance (HOMA.IR),
insulin, malonaldehyde (MDA), c-reactive protein (CRP), tumor necrosis factor-alpha (TNF-
α), triglycerides (TG), cholesterol, low density lipoprotein (LDL), high density lipoprotein
(HDL), weight, and body mass index (BMI) for each study were calculated. Statistical
analysis was conducted using Stata 16.0 (Stata Corp, College Station, Texas, USA). The
heterogeneity among studies was evaluated by Cochran heterogeneity test and I2 statistic. p-
values of <0.05 or I2 of >50% indicated that heterogeneity existed among studies. Otherwise,
homogeneity of those studies was indicated. The standardized mean difference (SMD)
of each study along with its 95% CI was calculated. Sensitivity analysis was carried out
to check the influence of one single study removal on overall effect size. Additionally,
funnel plots were conducted for assessing the publication bias of included literatures and
we could assess the publication bias by seeing whether their shapes were of any obvious
asymmetry. To find the studies with outlier SMD, a series of sensitivity analyses was
conducted and in the case of being outlier a second meta-analysis was performed after
removing the outlier study.
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5. Conclusions

The present meta-analysis and review found that n-3 supplementation can regulate the
glycemic response and lipid profile in patients with T2DM. Furthermore n-3 supplementa-
tion may provide beneficial effects on inflammatory biomarkers and body weight if used
at a specific dose and duration. The preferred dose and duration for patients with T2DM is
1000–2000 mg/d for more than 8 weeks. More studies are needed to fully evaluate the effect
of the different types of n-3 fatty acids i.e., fish-oil, and EPA and DHA and plant-derived
ALA supplements on T2DM metabolic and inflammatory biomarkers. The effectiveness
of different doses and durations of such interventions in T2DM should be compared and
should include T2DM populations with different dietary and ethnic backgrounds.
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