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Abstract: This paper presents the development and assessment of two types of Long 
Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a 
reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart 
control charts were used to assess the liquid level sensing capacity and reliability of the 
mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level 
experiment and each group underwent ten repeated wavelength shift measurements. The 
results showed that all measurands were within the control limits; thus, this mobile sensor 
was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a 
reflective sensor consisting of five LPFGs in series with a reflective end has been 
developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were 
fabricated by the electrical arc discharge method and the reflective end was coated with 
silver by Tollen’s test. After each liquid level experiment was performed five times, the 
average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 
1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used 
to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at 
least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity 
sensor was based on analyzing the relationship among the optical power, time, and the 
LPFG’s length. There were two types of fluid-flow velocity measurements: inflow and 
drainage processes. The differences between the LPFG-based fluid-flow velocities and the 
measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first 
time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow 
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velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating 
chemical compounds. 

Keywords: long-period fiber grating (LPFG); sensor; Shewhart control chart; refractive 
index (RI); wavelength shift; liquid level; fluid-flow velocity 

PACS: 42.81.Pa, 07.60.Vg, 47.80.Cb, 07.07.Df 
 

1. Introduction 

The primary motivation of this study is to develop and assess a light weight and low-cost  
long-period fiber grating (LPFG) sensor for the measurement of liquid level and fluid-flow velocity, 
which has the potential for use in civil engineering work such as health monitoring for pavement 
structures [1] and other applications such as liquid level monitoring of tanks or reservoirs for industrial 
sectors, debris flow monitoring and warnings for the tropical cyclone season, as well as water level and 
fluid-flow velocity monitoring for hydraulic applications such as pipes, channels, and dam facilities. 

The development and fabrication of LPFGs and the related measurands take place in many physical 
parameters, such as temperature, strain, refractive index (RI), bending, in-series, and multi-parameter 
sensing [2]. The LPFG in conjunction with a capillary tube can be used to measure fluid viscosity [3]. 
LPFGs are especially suitable for measurements and applications when liquids or solutions undergo a 
change in RI [2]. For liquid level sensing, a liquid level sensor has been developed using LPFG technology; 
the measurand is the change in RI and the liquid is oil [4]. However, there is lack of information on 
liquid level sensing capacity and reliability. Liquid level sensors have also been investigated using 
fiber Bragg grating (FBG) technology [5,6]. Other optical liquid level sensing systems include optical 
intensity, special D-shaped silica fiber, LED sensing, and fluorescent technologies [7–10]. The LPFG 
is extremely sensitive to the RI of the medium surrounding the cladding surface of the sensing grating 
region, thus allowing it to be used as an ambient index sensor [11–14]. 

For the fluid-flow velocity measurement using optical techniques, an optical fiber flowmeter has 
been demonstrated to use a single fiber mounted transversely to the fluid flow within the pipe. The 
fiber is vibrated by the natural phenomenon of vortex shedding, causing phase modulation of the 
optical carrier within. The flow rate is determined from the vibration frequency [15]. An optical fiber 
photorefractometer is reported for observing water mixed with the concentration of alcohol or sugar. 
The fluid-flow velocity can be estimated from the cross-correlation between outputs of two 
photorefractometric sensors placed at distances along the path of flow [16]. Two MEMS based optical 
sensors for wall shear stress and velocity measurements in flow fields are reported. The experimental 
results obtained with the wall shear stress sensor are compared with boundary layer velocity 
measurements obtained with a traversing laser Doppler anemometer [17]. A scanning laser Doppler 
microscope to measure the velocity flow profile within a capillary has been reported and the fluid-flow 
velocity is established by detecting the periodic fluctuation in the scattered light as the microspheres 
pass through a measurement volume with a diameter of 15 μm [18]. A novel fiber-optic fluid-flow 
velocity sensor based on a twin-core fiber Michelson interferometer has been proposed and the sensor 
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only is a segment of twin-core fiber acting as cylinder cantilever beam. The force exerted on the 
cylinder by the slow flow speeds of order mm/s of the fluid with unknown velocity bends the fiber, 
which corresponds to the shift of the phase of this Michelson interferometer [19]. Summary, the above 
optical fluid-flow velocity sensors are based on different sensing techniques, such as two 
photorefractometric sensors, two MEMS based optical sensors, a traversing laser Doppler anemometer, 
a scanning laser Doppler microscope, and a twin-core fiber Michelson interferometer to obtain the 
fluid-flow velocity. 

In this paper, we present the development and assessment of two types of LPFG-based sensors 
including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and 
fluid-flow velocity. Quality control charts were used to assess the liquid level sensing capacity and 
reliability of the mobile liquid level sensor. A reflective sensor consists of five LPFGs in series with a 
reflective mirror (end) has been developed to evaluate the liquid level and fluid-flow velocity without 
modifying LPFGs or coating chemical compounds. This reflective sensor with a reflective end and the 
spectrum is detected in reflective mode as a result of a reflective coating at the tip of the fiber. The 
reflective LPFG sensor is more suitable than a conventional transmitted LPFG sensor for sensing and 
monitoring applications in civil engineering. For the first time to our knowledge, we have 
demonstrated the feasibility of measuring liquid level and fluid-flow velocity using a reflective sensor 
with LPFGs in series. 

2. Principle of Refractive Index Sensing 

The LPFGs with periods ranging from several hundred microns to several millimeters couple 
incident light guided by a fundamental mode in the core to different forward-propagating cladding 
modes of high diffraction order m in an optical fiber, which decay rapidly because of the radiation 
from scattering losses. The coupling of the light into the cladding region generates a set of resonant 
bands centered at wavelength λm in the transmission spectrum of the fiber. The resonance wavelengths 
λm of an attenuation band are solutions of the following phase matched conditions [20]:  

, Λ Λ     (1) 

where Λ is the period of grating, and  is the effective RI of the fundamental core mode at the 
wavelength of λm, which also depends on the core RI and cladding RI. Besides, ,  is the effective RI 
of the mth radial cladding mode (m = 2, 3, 4,….) at the wavelength λm, which is also a function of 
cladding RI and in particular the RI of the surrounding medium nS. It is noted that both indices depend 
on the temperature and the strain experienced by the fiber. The spectral properties of individual 
cladding modes are determined by the fiber structure and may be observed through their associated 
attenuation bands. When the RI of the surrounding medium changes ,  also changes and a 
wavelength shift can be obtained in the transmission spectrum. An LPFG can be very sensitive to the 
changes in temperature and deformations due to fiber imperfections, loading, and bending, which also 
produce a noticeable wavelength shift in loss peaks. Therefore, in order to precisely measure variations 
in RI changes, temperature changes and deformations must be compensated or avoided. 
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Since the grating period is unaltered under the effect of a change in ambient RI and assuming the RI 
of the core mode remains unchanged by ns, the influence of the variation in the RI around the cladding 
of an LPFG is expressed by: 

, ,       (2) 

The spectral sensitivity, defined as dλ/dns, is relevant to each of the measurands and contributes to 
the effective wavelength change of the mth cladding mode. The RI sensitivity of an LPFG arises from 
the dependence of the resonance wavelength on the effective RI of the cladding mode, which also 
depends on the RI of the surrounding materials. The LPFG is expected to strongly depend on the order 

of the coupled cladding mode because each cladding mode ,  is distinct. In general, as ns increases, 

the spectral sensitivity increases monotonically to a maximum value occurring at the value of ns at 
which the cladding mode becomes unguided. The wavelength shift arising from the RI changes, for a 
given fiber and cladding mode, may be positive or negative, depending on the local slope of the 
characteristic phase-matching curve dλ/dΛ. 

The shift is shown to be negative for all band and increases with the order of the cladding mode for 
this grating [12]. It is also shown that the RI of the LPFG sensitivity is chiefly within the range of 1.33 
to 1.46. The distinct resonance bands disappear at approximately ns = 1.46 when the cladding mode is 
converted to radiation mode losses. The maximum RI sensitivity is imposed by the RI of the cladding 
material. No measurable wavelength shift is observed for RI above this limit. The high sensitivity of 
the LPFG to the surrounding medium offers the potential to monitor the chemical changes and 
corrosion condition for various material structures. This study is aimed to demonstrate that the 
wavelength shift and optical power can be implemented as a key part for LPFG-based liquid level and 
fluid-flow velocity sensing, respectively. 

3. Experiment 

The experiments mentioned in this section address the operation of the mobile liquid level sensor, 
the application of Shewhart control charts, and the description of the reflective sensor consisting of 
five LPFGs in series with a mirror (end) coated using Tollen’s reagent for the measurement of liquid 
level and fluid-flow velocity. For the use of light sources, a broadband amplified spontaneous emission 
(ASE) light source (C + L bands, operating wavelength: 1,530 nm–1,610 nm) was used for both the 
mobile and reflective liquid level sensors, whereas a broadband laser diode (LD, Advantest Q81212) 
light source at a wavelength of 1,550 ± 30 nm was only used for the fluid-flow velocity sensor. 

3.1. Mobile Liquid Level Sensor and Shewhart Control Chart 

The fabrication and techniques of LPFGs in this study have been reported elsewhere [11–14].  
The LPFGs studied in the paper were fabricated using hydrogen-free Corning SMF-28 fibers. The 
CO2-laser engraved LPFG used for the mobile sensor was about 22 mm long and the grating period 
was about 550 μm. The experimental setup for the mobile liquid level sensor with a 1,546.25-nm 
resonance wavelength LPFG is displayed in Figure 1(a) and the top of this LPFG was exactly 
immersed in water for each liquid level sensing. The photo of this sensor is shown in Figure 1(b). 
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There was a 15 cm-inside diameter, 120 cm-high, and hollow cylindrical storage tank having at least a 
100-cm liquid level capacity.  

Figure 1. (a) Experimental setup for a mobile LPFG-based liquid level sensor with a 
1,546.25-nm resonance wavelength LPFG and the whole LPFG was completely immersed 
in water for each liquid level sensing; (b) The photo of the mobile liquid level sensor. 

 
(a) 

 

 
(b) 

 
The position controller was established to adjust the movement of the mobile liquid level sensor. 

The 1,200 ± 1 mm ruler was glued on the surface of the liquid storage tank for observing different 
water levels. A broadband ASE light source (C + L bands: 1,530 nm–1,610 nm) and an optical 
spectrum analyzer (OSA, ANDO AQ6331) were used to conduct the mobile liquid level sensing 
measurements based on wavelength-shift detection. The measurements included the transmission 
spectra for different water levels. Regarding the resonance wavelength for each transmission spectrum, 
the 3-dB bandwidth method was used. The 3-dB bandwidth was determined by finding the dip (valley) 
of the spectrum, and rising by 3 dB on each side. The spectral width of the spectrum was determined 
by the separation of these two points because each has a power spectral density equal to one half  
the dip power spectral densities. The resonance wavelength was the average of two wavelengths 
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determined in the 3-dB bandwidth measurements (see Figure 2). For precise liquid level 
measurements, we kept experimental setup at a constant temperature (within 0.5 °C fluctuation). Since 
we measured the same test temperature for both in air and water, the temperature effect causing 
wavelength change between room temperature and test temperature is the same and can be eliminated. 
The LPFG was fastened, with water-resistance adhesive tape, at both ends on a straight plastic sheet, to 
minimize the strain and bending effects. We controlled to minimize the variations of experimental 
results, not influenced by temperature, strain or bending effects, as much as possible. 

Figure 2. The typical transmission spectra of a CO2-laser engraved LPFG sensor in air and 
immersed in water and the resonance wavelength (1,577.06 nm) was obtained with 3-dB 
bandwidth method. 

 
 
The liquid level sensing experiment included ten groups of water levels, i.e., 10, 20, 30, 40, 50, 60, 

70, 80, 90, and 100 cm. For each group, the top of the LPFG was exactly immersed in water for each 
liquid level sensing (wavelength shift) measurements conducted 10 times for both measurements in air 
and immersed in water, respectively. Although the fiber was kept straight and temperature properly 
controlled, the 3-dB bandwidth method for spectrum dip was used to obtain the resonance wavelengths, 
the LPFG is also possibly sensitive to system uncertainty, such as fluctuations from the intensity of the 
ASE light source (see Figure 3(a): left-hand side). Thus, the results were then analyzed using the 
concept of Shewhart control charts, such as X-bar charts, s charts, and R charts [21,22], to evaluate the 
reliability of the mobile liquid level sensor. For new fabricated or designed products, Shewhart control 
charts could be used to reduce the variation, satisfy the design criteria, and improve the quality. They 
are often called quality control charts and could be carried out the inspection of quality improvement. 
A sample size of n of measurements is taken, and they are measured resulting in observations,  
x1, x2,…, and xn. The average  and the standard deviation s are computed. This is done k times, and 
the k values of   and s are averaged resulting in  and , respectively; usually k is equal to some 
number between 10 and 30. For liquid level measurements, k is equal to 10. 
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Figure 3. (a) Experimental setup for the reflective LPFGs-in-series liquid level sensor;  
(b) Schematic and photo about the reflective mode for five LPFGs in series as a result of a 
reflective coating at the tip of the SMF-28 fiber; (c) Experimental setup for the reflective 
fluid-flow velocity sensor. 
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For the average of wavelength shifts versus liquid level, the upper control limit (UCL) and the 
lower control limit (LCL) for the X-bar chart are expressed by:  UCL       (3) LCL       (4) 

For the s chart, the UCL and LCL are expressed by: UCL        (5) LCL        (6) 

For the R chart, the UCL and LCL are expressed by: UCL        (7) LCL        (8) 

where the sample size, n = 10, and X-bar, , is the sample average and X-double bar, , is the average 
of ten individual X-bar values. The s value is the standard deviation of the sample and s-bar, , is the 
average of ten individual s values. R value is the absolute value of the difference in the extremes of the 
samples and R-bar,  is the average of ten individual R values. In addition, A2, A3, B4, B3, D4, and D3 
are the control chart constants, based on the central limit theorem and sample distribution theory, 
shown in Table 1 [21,22]. They can be used to determine the control limits, UCL and LCL, for the  
X-bar chart, s chart, and R chart, respectively. 

Table 1. Constants of upper and lower control limits for the X-bar charts, s charts, and R charts. 

Sample size X-bar chart 
constants R chart constants s chart constants 

n A2 A3 D3 D4 B3 B4 
10 0.308 0.975 0.223 1.777 0.284 1.716 

3.2. Reflective Liquid Level Sensor 

Our experimental setup for the reflective liquid level sensor is shown in Figure 3(a). The 
experimental devices include a liquid level sensor consisting of five LPFGs in series with a reflective 
end (LPFGs and the reflective end fixed on a plastic strip), a broadband ASE light source (C + L 
bands: 1,530 nm–1,610 nm, see Figure 3(a): left-hand side), and a computer with LabVIEW–GPIB 
data acquisition system connected with a high-resolution OSA (ANDO AQ6331). LPFGs were 
fabricated by the electrical arc discharge method [23] with hydrogen-free Corning SMF-28 fibers. The  
electric-arc discharge-induced LPFGs were about 1.5–3.5 cm long and their grating periods were about 
600 μm. This reflective sensor with a reflective end and the spectrum was detected in reflective mode 
as a result of a reflective coating at the tip of the fiber. The proposed reflective liquid level sensor 
consisting of five LPFGs in series, resonance wavelengths: λ1 = 1,505.45 nm, λ2 =1,524.20 nm,  
λ3 =1,548.80 nm, λ4 =1,569.60 nm, and λ5 =1,605.70 nm, was fusion spliced to a reflective end (silver 
mirror, see Figure 3(b): left-hand side) coated with silver using Tollen’s reagent [24]. When a chemical 
reaction exhibits an aldehyde is oxidized by silver to generate a carboxylic acid and silver metal, which 
could be used to coat the surface of the SMF-28 fiber. For the fabrication of silver mirror, we cleaned 
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the test tube to be used by rinsing with concentrated nitric acid and washing well with deionized water 
and prepared materials as follows: 5 mL of 0.6 M AgNO3 (aq), 3 mL of 2.5 M NaOH (aq), 5 mL of  
2 M ammonium hydroxide (aq), 10% glucose solution (C6H12O6). We added AgNO3 (aq) and NaOH 
(aq) into the test tube and completely mixed them together and then titrated 2 M ammonium hydroxide 
(aq) with stirring. We then shook this solution until the precipitated solid just dissolved completely. 
Later, the SMF-28 fiber was immersed inside the test tube. We added 10 drops of 10% glucose 
solution and the silver film was gradually formed within several minutes. A uniform coating formed on 
the surrounding surface of the SMF-28 fiber and a superior silver film formed on the end of the  
SMF-28 fiber (see Figure 3(b): left-hand side). The five LPFGs at the corresponding resonance 
wavelengths of λ1, λ2, λ3, λ4 and λ5 were interrogated using a broadband ASE light source and an OSA. 
A fiber coupler was used for coupling the reflected light signals of the sensor to the OSA (see  
Figure 3(a)). Thus, the reflective spectra of different liquid level measurements could be obtained. 
Figure 3(b) shows the schematic and the photo about the reflective mode for five LPFGs in series as a 
result of a reflective coating at the tip of the SMF-28 fiber and the marked red arrows represent the 
direction of reflective light. A broadband ASE light source (see Figure 3(a): left-hand side) with the 
home-made silver mirror (see Figure 3(b): left-hand side) were used to perform the reflective mode 
liquid level sensing for five LPFGs in series since we could obtain the reflective spectra (see  
Figure 3(a): right-hand side). Other measured reflective spectra could also be seen in the following 
sections; thus, our silver mirror exhibited enough reflective light intensity for the OSA to acquire the 
spectral data. 

A 15 cm-inside diameter, 120 cm-high, and hollow cylindrical storage tank having at least a 100-cm 
water level capacity was used for liquid level measurements. The reflective liquid level sensing 
experiment included five liquid level measurements that LPFG Nos. 1–5 in series and their 
corresponding liquid levels were about 22, 42, 62, 82, and 102 cm marked from the bottom of the 
hollow cylindrical tank (see Figure 3(a)). For each liquid level, the sensing measurements were 
conducted five times for both in air and immersed in water, respectively. For precise liquid level and 
fluid-flow velocity measurements, we kept experimental setup at a constant temperature (within 0.5 °C 
fluctuation). Since we measured the same test temperature for both in air and water, the temperature 
effect causing wavelength change between room temperature and test temperature is the same and can 
be eliminated. The LPFGs were fastened, with water-resistance adhesive tape, at both ends on a long 
straight plastic sheet, which was glued to the wall of this liquid storage tank to minimize the bending 
of the fiber. Therefore, we controlled to minimize the variations of experimental results, not influenced 
by temperature, strain or bending effects, as much as possible. 

3.3. Fluid-Flow Velocity Sensor 

We used the same reflective sensor to measure the fluid-flow velocity. The mechanism of the  
fluid-flow velocity sensor was based on analyzing the relationship among the optical power (mW), 
time (s), and the LPFG’s length (cm). An optical power meter was used instead of the OSA; thus, the 
plot of optical power versus time was analyzed to obtain the fluid-flow velocity (cm/s). The sensing 
system consists of the reflective sensor, an optical power meter (Advantest Q8221) with a broadband 
LD light source (Advantest Q81212) at a wavelength of 1,550 ± 30 nm (see Figure 3(c): left-hand 
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side), and a computer with LabVIEW–GPIB data acquisition system (see Figure 3(c)). For the 
convenience of sight observation, we used LPFG No. 4 (around 82-cm liquid level) as a fluid-flow 
velocity sensor to conduct the experiment (see Figure 3(c)). There are two types of fluid-flow velocity 
measurements: inflow I and II (dry-to-wet process) as well as drainage (wet-to-dry process). We 
infused water flowing from 77-cm liquid level upward to 87-cm and 87.8-cm liquid levels for inflow I 
and II, respectively. The inflow experiment lasted 1,400 s and the optical power (mW) per second was 
acquired. The drainage flow velocity experiment was performed by discharging water flowing from 
87.8-cm liquid level downward to 75.9-cm liquid level. The drainage experiment lasted 840 s and the 
optical power per second was also obtained. The LPFG-based fluid-flow velocity was proposed as the 
follows: 

       (9) 

where , is the fluid-flow velocity obtained using the reflective LPFG sensor and L is the length of 
LPFG No. 4 (L = 1.4 cm). For the plot of optical power versus time, the time t2 and t1 could be 
obtained based on the initial and final tangential lines of a concave curve crossing the abscissa and Δt 
is equal to t1 minus t2. 

During the course of data taking, we kept the eye’s horizon line be matching with the ruler and the 
inflow or discharge time, independently measured by using a stopwatch (within 0.1 s error), was the 
time duration. The measured average fluid-flow velocities, , was calculated as the ratio of 
fluid-flow distance (the liquid level difference) and time duration. 

4. Results and Discussion 

4.1. Mobile Liquid Level Measurement  

As described, the 100-cm liquid level capacity experiments were conducted for ten water level 
groups, i.e., 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 cm, and each group underwent ten repeated 
measurements. For assessing measurement reliability, the results were analyzed and plotted using the 
X-bar chart, s chart, and R chart. The spectra of the mobile liquid level sensor with a 1,546.25-nm 
resonance wavelength LPFG is shown in Figure 4(a) and the sensor was immersed in air and in water 
when liquid level was equal to 10 cm. Figure 4(b) shows the X-bar chart of wavelength shifts for ten 
groups of water level experiment. The s chart and R chart of wavelength shifts for ten groups of water 
level experiment are shown in Figure 4(c,d), respectively. Each group represented 10 repeated 
measurements and the solid and dashed lines were UCL and LCL lines. Clearly, all measurands were 
within the control limits (UCL and LCL) for the X-bar chart, s chart, and R chart. Based on the results 
of the liquid level experiment using quality control charts, the mobile liquid level sensor was reliable 
and had 100-cm liquid level measurement capacity. 

4.2. Reflective Liquid Level Measurement  

As addressed, the reflective liquid level experiment was conducted five times for both 
measurements in air and immersed in water, respectively. Figure 5(a–e) shows the transmission spectra 
of the reflective liquid level sensor with LPFG No. 1, Nos. 1–2, Nos. 1–3, Nos. 1–4, and Nos. 1–5 
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immersed in water, respectively. The findings showed that the reflective liquid level sensor was 
successfully to measure five fixed liquid levels (i.e., 22, 42, 62, 82, and 102 cm). After each liquid 
level experiment was performed five times, the average values (with standard deviations) of the 
resonance wavelength shifts for LPFG Nos. 1–5 were 1.96 nm (within 0.17 nm), 1.35 nm (within  
0.29 nm), 2.19 nm (within 0.07 nm), 3.68 nm (within 0.08 nm), and 9.14 nm (within 0.30 nm), 
respectively (see Figure 5(f)). The experimental findings show that the reflective liquid level sensor 
could be used to automatically monitor five fixed liquid levels and had at least 100-cm liquid level 
measurement capacity. 

Figure 4. (a) The spectra of the mobile liquid level sensor with a 1,546.25-nm resonance 
wavelength LPFG was immersed in air and in water when liquid level was equal to 10 cm; 
(b) The X-bar chart of wavelength shifts for ten groups of water level experiment; (c) The 
s chart of wavelength shifts for ten groups of water level experiment; (d) The R chart of 
wavelength shifts for ten groups of water level experiment. 
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Figure 5. (a–e) Transmission spectra of the liquid level sensor with LPFG Nos. 1, 2, 3, 4 , 
and 5 immersed in water (22, 42, 62, 82, and 102 cm liquid levels), respectively; (f) Box 
plot of average wavelength shifts by performing five times reflective liquid level 
measurements. 
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4.3. Fluid Flow-Velocity Measurement 

Figure 6(a–c) shows the plot of optical power versus time for inflow I, inflow II, and drainage 
processes, respectively. Time t2 and t1 were obtained based on the initial and final tangential lines (blue 
solid lines) of a concave curve (around red dash lines) crossing the abscissa. The LPFG-based flow 
velocities, , were calculated for inflow I, inflow II, and discharge processes as 6.424 × 10−3 cm/s, 
7.043 × 10−3 cm/s, and 1.239 × 10−2 cm/s, respectively. In addition, the measured average flow 
velocities, , determined as the ratio of flow distance and time duration for inflow I, inflow II, 
and discharge processes were 7.143 × 10−3 cm/s, 7.714 × 10−3 cm/s, and 1.417 × 10−2 cm/s, 
respectively. The comparison plot of the fluid-flow velocity experiment was shown in Figure 6(d) and 
the differences between  and  for inflow I, inflow II, and drainage processes were 
10.1%, 8.7%, and 12.6%, respectively. The differences (8.7% and 10.1%, respectively) between 

 and  for dry-to-wet cases (inflow I and II) were less than that (12.6%) of wet-to-dry 
process (drainage). 

Figure 6. Plot of optical power versus time using LPFG No. 4 for fluid-flow velocity 
measurement: (a) Inflow I; (b) Inflow II; and (c) Drainage; (d) Comparison Plot of  
fluid-flow velocity for inflow and drainage processes. 
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Based on the results, we found that the LPFG-based fluid-flow velocities, , were less than 
those obtained from the measured average fluid-flow velocities,  and the differences between 

 and  were found in the range of 8.7–12.6%. In addition, the dry-to-wet process had 
smaller differences than those obtained from wet-to-dry condition since the LPFG sensing is more 
representative when the surrounding RI changes significantly. It is obvious that the reflective sensor 
has potential to measure liquid level and fluid-flow velocity. In addition, we demonstrated the feasibility 
of the reflective flow-velocity sensor and have not yet taken the error analysis and measurement 
uncertainty into account. Te principle of calibrating, characterizing, and accumulating uncertainties for 
the optical power with flow velocity usually is based on the IEC 61315 standard—Calibration of  
fiber-optic power meters [25]. This standard method takes into account the random and systematic 
uncertainties of all power meters and all transfer processes in the calibration chain according to Guide 
to the expression of uncertainty in measurement (GUM:1995) [26]. 

5. Conclusions 

This paper presents the development and assessment of two types of LPFG-based sensors including 
a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow 
velocity. A broadband ASE light source (1,530 nm–610 nm) was used for both the mobile and 
reflective liquid level sensors, whereas a broadband LD light source at a wavelength of 1,550 ± 30 nm 
was only used for the fluid-flow velocity sensor. Shewhart control charts, X-bar charts, s charts, and R 
charts, were used to assess the liquid level sensing capacity and reliability of the mobile liquid level 
sensor. The LPFG used for the mobile liquid level sensor was fabricated with the CO2-laser engraving 
method and this liquid level sensor was designed with the capacity of moving upward and downward 
using a position controller. There were ten groups of different liquid level capacity experiment and 
each group underwent ten repeated wavelength shift measurements. The results of Shewhart control 
charts showed that all measurands were within the upper and lower control limits. The examined 
mobile liquid level sensor was reliable and had at least 100-cm liquid level measurement capacity. 

A reflective liquid level sensor consisting of five LPFGs in series with a reflective end (silver 
mirror) has been demonstrated to evaluate the liquid level and fluid-flow velocity. The LPFGs used for 
reflective liquid level and fluid-flow velocity sensors were fabricated by the electrical arc discharge 
method. This reflective sensor was fusion spliced to a reflective end coated with silver by Tollen’s test. 
The reflective sensor was used to conduct five fixed liquid levels experiment for LPFG Nos. 1–5 and 
their corresponding liquid levels are 22, 42, 62, 82, and 102 cm. For each liquid level experiment, the 
sensing measurements were conducted five times for both measurements in air and immersed in water, 
respectively. The experimental findings showed that the reflective sensor was successfully to measure 
five liquid levels and it had at least 100-cm liquid level measurement capacity. The mechanism of the 
fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and 
the LPFG’s length. For the fluid-flow velocity measurement, there were two types of fluid-flow 
velocity measurements: inflow I and II (dry-to-wet process), as well as drainage (wet-to-dry process). 
Based on the results, the differences between the LPFG-based fluid-flow velocities ( ) and the 
measured average fluid-flow velocities ( ) were found in the range of 8.7–12.6%. This 
reflective sensor is more suitable than conventional LPFG sensors (sensing with transmitted light) for 
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the widespread use on structural sensing and monitoring applications in civil engineering. It is feasible 
that the reflective sensor has potential to measure liquid level and fluid-flow velocity without 
modifying LPFGs or coating chemical compounds. 

We have successfully demonstrated the feasibility of a mobile LPFG liquid level sensor and a 
reflective LPFGs-in-series sensor possessing ability to successfully yield a comparable liquid level and 
fluid-flow velocity sensing performance. These two types of simple and low-cost fiber-optic sensor is 
expected to benefit the development and application of civil, hydraulic, and agronomy engineering, 
such as in liquid level and fluid-flow velocity monitoring for hydraulic structures and paddy fields, as 
well as in liquid level monitoring of tanks or reservoirs for industrial sectors. 
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