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Abstract

The principle of resting-state paradigms is appealing and practical for collecting data from 

impaired patients and special populations, especially if data collection times can be minimized. 

To achieve this goal, researchers need to ensure estimated signal features of interest are robust. 

In electro- and magnetoencephalography (EEG, MEG) we are not aware of any studies of the 

minimal length of data required to yield a robust one-session snapshot of the frequency-spectrum 

derivatives that are typically used to characterize the complex dynamics of the brain’s resting-

state. We aimed to fill this knowledge gap by studying the stability of common spectra measures 

of resting-state MEG source time series obtained from large samples of single-session recordings 

from shared data repositories featuring different recording conditions and instrument technologies 

(OMEGA: N = 107; Cam-CAN: N = 50). We discovered that the rhythmic and arrhythmic 

spectral properties of intrinsic brain activity can be robustly estimated in most cortical regions 

when derived from relatively short segments of 30-s to 120-s of resting-state data, regardless 

of instrument technology and resting-state paradigm. Using an adapted leave-one-out approach 

and Bayesian analysis, we also provide evidence that the stability of spectral features over time 

is unaffected by age, sex, handedness, and general cognitive function. In summary, short MEG 

sessions are sufficient to yield robust estimates of frequency-defined brain activity during resting-

state. This study may help guide future empirical designs in the field, particularly when recording 

times need to be minimized, such as with patient or special populations.
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1. Introduction

The study of intrinsic brain activity during resting-state is advancing our understanding 

of neural processes underlying a wide spectrum of brain functions in health and disease. 

Though the full functional relevance of the approach is still debated (Cole et al., 2010; 

Gonzalez-Castillo et al., 2021; Stevens and Spreng, 2014), the potential benefits of task-free 

paradigms are multifold. In electro- and magnetoencephalography (EEG, MEG), resting-

state protocols lend themselves to a great variety of analysis approaches based on spectral 

transformations, including sophisticated derivatives of cross-frequency interactions (Canolty 

and Knight, 2010; Florin and Baillet, 2015) and functional connectivity (Hutchison et al., 

2013). In principle, the fast temporal resolution of EEG and MEG may enable the estimation 

of such metrics across time, possibly over short, sliding time windows. A companion 

idea is to determine core individual features of brain activity in single individuals from 

the minimum possible amount of data, i.e., recording duration, especially in paediatric 

populations (Kurz et al., 2014, 2018; Raschle et al., 2012), those with chronic pain (Davis 

et al., 2017; Diers et al., 2020; Witjes et al., 2021), and patients with cognitive impairment 

(Binnewijzend et al., 2012; Cassani et al., 2018; Mandal et al., 2018; Rombouts et al., 2005; 

Wiesman et al., 2021a, 2021b, 2018). Both aspects require the rigorous determination of 

brain signal stationarity and robustness of feature extraction.

Intra-session variability in resting-state activity has been of recent interest for 

“fingerprinting” (da Silva Castanheira et al., 2021; Finn et al., 2015), functional parcellation 

(Laumann et al., 2015), and enhanced prediction of behaviour (Waschke et al., 2021) at 

the level of individual participants. Notwithstanding these recent efforts, most resting-state 

research derives and interprets summary statistics of neural fluctuations over data durations 

that vary considerably between studies, ranging at least from one (Ranasinghe et al., 2020) 

to fifteen (Marquetand et al., 2019) minutes. We are not aware of systematic studies of the 

within-session robustness of commonly used estimates of resting-state MEG signal features, 

nor of any resulting guidelines for minimum recording durations. Such guidelines would 

contribute to the evidence-based design of resting-state MEG studies that are more likely to 

be reproducible and would help researchers make informed decisions concerning key data 

collection parameters of shared repositories of MEG resting-state data.

Previous electrophysiological reliability studies have focused on the consistency of various 

signal metrics across sessions separated by days, months, or years (Duan et al., 2021; 

Fingelkurts et al., 2006; Garcés et al., 2016; Gasser et al., 1985; Keil et al., 2003; Lew et 

al., 2021; Liuzzi et al., 2017; Marquetand et al., 2019; McCusker et al., 2021; Thatcher, 

2010). Here, we instead investigate the minimum recording duration required to achieve 

robust estimates of the main spectral properties of MEG resting-state source signals within 
a single recording session. Thus, we define a robust estimate as a signal derivative that 

exhibits stable, consistent values when computed from a sufficiently long duration of data 

recorded during a single session.

We also emphasize the recent interest in discriminating between periodic (i.e., rhythmic) and 

aperiodic (i.e., arrhythmic) components of the power spectrum of neurophysiological brain 

signals (Donoghue et al., 2020). Studies have shown that their respective parameterizations 
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help clarify the possible confounding contribution of background arhythmic brain activity 

to the measurement of oscillatory components of neural activity (Donoghue et al., 2021). 

For example, variability in the aperiodic slope and offset accounts for changes in the neural 

power spectrum along the lifespan (Cellier et al., 2021; Schaworonkow and Voytek, 2021), 

covaries with clinical outcomes in a number of disorders (Ostlund et al., 2021; Pani et 

al., 2021; Van Heumen et al., 2021; Wilkinson and Nelson, 2021), and predicts memory 

consolidation during sleep (Helfrich et al., 2021) and individual differences in visuomotor 

learning (Immink et al., 2021). Regarding the reliability and stability of these components, 

Pathania et al. (2021) found that estimates of aperiodic components are consistent over 

intervals of at least seven days. We wish to expand these investigations by determining the 

minimum data duration required to produce robust estimates of the periodic and aperiodic 

components of MEG resting-state source maps.

Here we qualify an estimate obtained from a given data length as robust when its group-

wise consistency exceeds pre-defined thresholds across measurements. We use intra-class 

coefficient (ICC) statistics, with thresholds of ICC > 0.90 for excellent, ICC > 0.75 for good, 

and ICC > 0.50 for moderate levels of estimate stability (Koo and Li, 2016). We examine 

the stability of spectral features derived from varying lengths of source-imaged MEG 

resting-state data collected from two different models of MEG instrument and available 

from two different shared repositories: the Open MEG Archive (OMEGA; CTF instrument; 

N = 107; Nisoet al., 2016) and the Cambridge Centre for Ageing and Neuroscience dataset 

(Cam-CAN; MEGIN/Elekta instrument; N = 50; Taylor et al., 2017). We use the Fitting 

Oscillations & One-Over-F toolbox (FOOOF; Donoghue et al., 2020) to decompose the 

spectra from MEG source time series into periodic and aperiodic components and examine 

the robustness of these components over varying data durations. Finally, we leverage the 

balanced demographic distribution and detailed cognitive testing of the Cam-CAN dataset to 

investigate potential linear effects of key demographics (i.e., age, sex, and handedness) and 

cognitive function (as measured by the Addenbrooke’s Cognitive Examination – Revised; 

ACE-R; Mioshi et al., 2006) on the intra-session stability of MEG resting-state spectral 

features, derived from multiple tested data durations. From these empirical results, we 

recommend minimum data durations, contingent on spectral and neuroanatomical features of 

interest, to ensure the robustness of spectral estimates from MEG resting-state data.

2. Methods

2.1. Data and participants

We used subsets of data from two shared repositories: the Open MEG Archive (OMEGA; 

Nisoet al., 2016) and the Cambridge Centre for Ageing and Neuroscience dataset (Cam-

CAN; Shafto et al., 2014; Taylor et al., 2017). Both OMEGA and Cam-CAN include 

resting-state MEG recordings from healthy adults, alongside basic demographic data and T1 

MRIs. Key differences in the resting-state acquisition parameters between the two datasets 

include: the MEG system used (OMEGA: 275-axial gradiometer CTF, Port Coquitlam, 

BC, Canada; Cam-CAN: 204-planar gradiometer & 102-magnetometer MEGIN/Elekta 

VectorView, Helsinki, Finland), the data acquisition site (OMEGA: Montreal, QC, CA; 
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Cam-CAN: Cambridge, UK), basic participant behaviour (OMEGA: eyes-open; Cam-CAN: 

eyes-closed), and the sampling rate (OMEGA: 2400 Hz; Cam-CAN: 1000 Hz).

From the OMEGA dataset, 107 participants (mean age = 30.57 [SD = 12.70]; age range = 

19 – 74 years; 102 right-handed; 46 female) were included based on the following criteria: 

no current neurological or psychiatric disorder, no history of head trauma, and no MRI 

or MEG contraindications. Participants without MEG, MRI, or demographic data (or any 

auxiliary data necessary for the present analyses; e.g., head digitization files for MEG) 

were also excluded. Eyes-open resting-state MEG data were collected from each participant 

at a sampling rate of 2400 Hz and with an antialiasing filter with a 600 Hz cut-off. Noise-

cancellation was applied using CTF’s software-based built-in third-order spatial gradient 

noise filters. Recordings lasted a minimum of 4 min and were conducted with participants in 

the seated position as they fixated on a centrally-presented crosshair.

We also selected a validation sample of 50 healthy adult participants (mean age = 44.72 

[SD = 14.56]; age range = 20 – 69 years; 45 right-handed; 23 female) from the Cam-CAN 

dataset. The sample size of 50 was determined quasi-empirically, by modelling the time-by-

ICC stability relationship as a function of sample size in the OMEGA sample (see 2.4 

Temporal stability analysis and Fig. 1 B–2). From these relationships, it was apparent that 

a sample of at least 40–50 participants was necessary for the time-by-ICC estimation to 

stabilize, and for the variability in this estimation due to random participant subsampling 

to diminish (Fig. S1). To study the impact of age on the stability of MEG derivatives, 

10 participants were selected per each decade from 20–69 years of age, with the other 

demographics matched to those of the OMEGA participant sample. Exclusionary criteria 

included current neurological or psychiatric disorder, MRI or MEG contraindications, 

unusable MEG, MRI, or demographic data, and cognitive impairment (MMSE ≤ 24). 

Resting-state MEG data were collected from each participant at a sampling rate of 1000 

Hz and with a band-pass filter of 0.03 – 330 Hz. Noise-cancellation was applied using tSSS/

MaxFilter (v2.2; 0.98 correlation limit; 10 s window; MEGIN/Elekta). Recordings lasted 

approximately 8 min with participants in the seated position and their eyes closed.

The data collection and management protocols for the OMEGA and Cam-CAN repositories 

were approved by the research ethics boards at the Montreal Neurological Institute and 

the University of Cambridge, respectively. All participants in both studies provided written 

informed consent in accordance with the Declaration of Helsinki.

2.2. MEG data preprocessing

MEG preprocessing procedures for both datasets were similar to those reported by da 

Silva Castanheira et al. (2021), following good-practice guidelines (Gross et al., 2013). All 

processing steps were performed using Brainstorm (Tadel et al., 2011), unless otherwise 

specified. Notch filters were applied at the respective line-in frequency (and harmonics) of 

each dataset (60 Hz for OMEGA, 50 Hz for Cam-CAN), along with a 0.3 Hz high-pass 

FIR filter to attenuate slow-wave drift and DC offset. Additional notch filters were applied 

at 88 Hz (and harmonics) to attenuate known artifacts in the Cam-CAN dataset. Signal 

space projectors (SSPs) were derived around cardiac and eye-blink events detected from 

ECG and EOG channels using the automated procedure available in Brainstorm (Niso et 
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al., 2019) and applied to the data. SSPs were also used to attenuate low-frequency (1 – 7 

Hz) and high-frequency (40 – 400 Hz) noise related to saccades and muscle activity. To 

test whether the initial length of the recording influenced the efficacy of these preprocessing 

steps, and thereby the stability of the underlying spectral derivatives, we replicated all 

preprocessing (except for tSSS/MaxFilter) and source imaging (see 2.3 Source imaging & 

spectral analysis) steps on truncated versions of the recordings from the Cam-CAN sample, 

ranging from 60 to 150 s in increments of 30 s. We then computed our spectral and stability 

analyses (see 2.3 Source imaging & spectral analysis and 2.4 Temporal stability analysis) 

with the first 8 six-second epochs extracted from these truncated data segments, limited by 

the number of available epochs in the 60 s data segment to enhance comparability. To enable 

juxtaposition with our other analyses, we similarly extracted the 8 corresponding epochs 

from our “full-length” version of data recordings for stability estimation.

2.3. Source imaging and spectral analysis

Using approximately 100 digitized head points, MEG data were co-registered to each 

participant’s T1-weighted MRI that was segmented and labelled with Freesurfer (Fischl, 

2012) using recon-all. Source imaging was performed on the full-bandwidth data using 

only gradiometer data with individually fitted overlapping-spheres forward models (15,000 

vertices, with elementary sources constrained normal to the cortical surface) and two 

widely-used source estimation techniques with Brainstorm default parameters: the linearly-

constrained minimum variance (LCMV) beamformer and dynamic statistical parametric 

mapping (dSPM). dSPM source imaging was performed using noise covariance estimated 

from empty-room recordings taken as close in time as possible to each participant’s visit. 

To verify that the inclusion of additional data in the form of empty-room recordings did not 

bias the stability analysis of dSPM, we also ran a control analysis using the identity matrix 

in place of the noise covariance matrix. These source imaging procedures yielded continuous 

time series per each spatially-resolved location (i.e., vertex) on the cortical surface for each 

participant. Only gradiometer data were used for source imaging to facilitate comparison 

across the OMEGA and Cam-CAN samples, as the MEG instrument used in the OMEGA 

study comprises gradiometer sensors only.

Source-imaged data were segmented into contiguous, non-overlapping 6 s epochs, resulting 

in a total of 40 epochs (total of 240 s) for OMEGA participants and 70 epochs (total of 

420 s) for Cam-CAN participants. Vertex-wise estimates of power spectral density (PSD) 

were obtained using Welch’s method (3 s time window, 50% overlap) and averaged over 

canonical frequency bands using Brainstorm defaults (delta: 2–4 Hz; theta: 5–7 Hz; alpha: 

8–12 Hz; beta: 15–29 Hz; low-gamma: 30–59 Hz; high-gamma: 60–90 Hz; Niso et al., 

2019). To examine the potential effect of frequency bandwidth on subsequent analyses, 

a complementary procedure was performed in the OMEGA participants across the same 

approximate frequency ranges using constant spectral increments (i.e., from 3–92 Hz in 

10-Hz steps). To study the effects of epoch/window length on spectral parametrization (see 

2.5 Stability of power spectrum parameterization), we also estimated PSDs from 12 s epochs 

using 6 s time windows in the OMEGA sample (also with 50% overlap). Within each 

frequency band and for each participant, PSD values were averaged over vertices belonging 

to each of the 68 regions of a standard atlas (Desikan et al., 2006) registered to individual 
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structural data. This resulted in an array of PSD values of number of atlas regions × number 

of frequency bins × number of participants × number of epochs (e.g., 68 × 6 × 107 × 40 

from OMEGA).

2.4. Temporal stability analysis

The stability of spectral estimates was assessed via intraclass correlation coefficients (ICC; 

single-rater, two-way mixed-effects, absolute agreement; Koo and Li, 2016; McGraw and 

Wong, 1996) between multi-dimensional PSD arrays averaged across various numbers of 

randomly selected, non-overlapping epochs (Fig. 1A). To control for the potential bias that 

could be due to the epoch’s temporal position in the session, ICC derivations were repeated 

across 1000 randomizations of the epoch order: for each of 1000 permutations, the order 

of the matrix data was randomized over epochs using the randperm function in MATLAB 

(version 2019b; Mathworks, Inc., Massachusetts, USA), and ICCs were calculated for each 

region and frequency between sets of PSD estimates averaged over progressively larger 

numbers of epochs from one to nepochs/2 (using the ICC.m function in Matlab; Salarian, 

2016). Confidence intervals (95%) were also generated alongside the ICCs to quantitatively 

compare stability metrics across datasets and analyses. The medians of these values were 

then computed across randomizations, leading to estimates of intraclass similarity for each 

cortical region and spectral frequency as a function of recording length (Fig. 1B–1). From 

these data, the minimum durations where ICC exceeded established thresholds (Koo and Li, 

2016) for moderate (ICC > 0.50), good (ICC > 0.75), and excellent (ICC > 0.90) reliability 

were extracted for each combination of region with frequency and plotted on a spatial 

representation of the Desikan-Killiany atlas using ggseg (Mowinckel and Vidal-Piñeiro, 

2020). Additionally, the median, median absolute deviation, and range of ICC values across 

regions were computed and plotted as a function of time and frequency using ggplot2 
(Wickham, 2011). To examine the potential effect of group size on stability, the original 

4-dimensional PSD arrays were averaged across all regions and a similar approach was 

taken to test for the robustness of spectral estimates across various sample sizes of randomly 

selected participants (N = [5, 10, 20, 40, 60, 80, 100]; Fig. 1B–2). One hundred iterations of 

the participant randomization were performed and within each of these randomizations the 

previously described stability estimation approach was followed (1000 epoch permutations). 

Medians and median absolute deviations of the resulting time-by-ICC estimates were 

calculated across the 100 participant randomizations to examine their stabilization with 

increasing sample sizes.

2.5. Stability of power spectrum parameterization

We parameterized the power spectra of each brain region using the FOOOF algorithm 

(Donoghue et al., 2020) implemented in Brainstorm (MATLAB version; frequency range 

= 0.5–40 Hz; Gaussian peak model; peak width limits = 0.5 – 12 Hz; maximum npeaks = 

3; minimum peak height = 3 dB; proximity threshold = 2 SD; fixed aperiodic; no guess 

weight). Note that gamma-frequencies were not subjected to FOOOF parametrization, as the 

FOOOF algorithm struggles with fitting PSD data properly above 40 Hz due to the loss of 

linearity in log-log space and lack of clear peaks in gamma frequency ranges and above 

(Donoghue et al., 2020). Thus, we elected to use the FOOOF-recommended default range 

of 0.5–40 Hz. The robustness of estimated aperiodic features from the FOOOF models (i.e., 
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the exponent and offset) over varying epoch lengths was tested using the same procedure 

detailed above. In addition, the periodic (i.e., rhythmic) features were averaged over the 

same canonical frequency bands described earlier (see 2.3 Source imaging & spectral 

analysis) and the robustness over varying epoch lengths tested using the above-mentioned 

pipeline. To examine whether the goodness of fit of FOOOF models might bias the stability 

of parameterized features, we regressed each feature on the model fit (i.e., R2) per each 

relevant location, frequency, and epoch (i.e., with participants as the unit of measurement; 

using the fitglm function in MATLAB) and extracted residuals from these linear models. 

We then re-ran all FOOOF temporal stability analyses on the fit-corrected FOOOF feature 

residuals.

2.6. Individual stability contribution analysis

To determine whether key demographic and cognitive factors biased the estimation of MEG 

temporal stability, we computed an individual stability contribution score per participant 

in the Cam-CAN participant sample (Fig. 1B–3), and related these scores to age, sex, 

handedness, and general cognitive function (as measured by the ACE-R; Mioshi et al., 

2006). We used a leave-one-out adaptation of the previously described stability analysis, 

wherein for each randomization, time-by-ICC models were generated using all but one 

participant. The median of these ICC values across brain regions was then extracted per 

time sample and frequency, leading to a single time-by-ICC model per frequency band. The 

area under the curve (AUC) was calculated for all such models using the trapz function 

in MATLAB. Each missing-participant’s stability model AUC value was subtracted from a 

full-sample model AUC value generated within the same set of epoch permutations. This 

resulted in a single ΔAUC score for each Cam-CAN participant per frequency, representing 

the change in the temporal stability of the model when they were excluded, relative to 

when using the full sample. The higher the ΔAUC score, the more stable the model when 

including said participant. These scores were individually regressed against demographic 

and cognitive data using the lm function in R (Team R.C., 2017). Bayesian testing of these 

models was performed using the BayesFactor package (Morey et al., 2015).

2.7. Code and data availability

Data used in the preparation of this work were obtained from the Cam-CAN repository 

(available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/; Shafto et al., 2014; Taylor 

et al., 2017) and the OMEGA repository (available at https://www.mcgill.ca/bic/resources/

omega; Niso et al., 2016). Code for MEG preprocessing and the stability analysis is 

available at https://github.com/aiwiesman/rsMEG_StabilityAnalysis.

3. Results

3.1. Temporal stability of intra-session MEG across time and space

The minimal recording durations required to derive robust, stable estimates of MEG spectral 

features using LCMV beamforming are illustrated for OMEGA (n = 107) and Cam-CAN (n 
= 50) in Figs. 2 and 3 and summarized in Tables 1 and 2. Despite substantial differences 

in sensing technology, recording environment, and participant demographics, the results 

were similar between both samples across all six frequencies (i.e., median 95% confidence 
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intervals did not diverge at any data length or frequency; Fig. S2). Overall, most spectral 

features were robustly estimated when derived from 30 to 120 s of data. In the alpha (8–12 

Hz) and beta (15–29 Hz) bands, activity in every region showed “excellent” stability (ICC 

> 0.90) when derived from data durations of 2 min or less (i.e., within the range of the 

OMEGA data set), while activity in the delta (2–4 Hz), theta (5–7 Hz) and low-gamma 

(30–59 Hz) bands reached excellent stability in every region with less than 3.5 min of data 

(i.e., within the range of the Cam-CAN data set). High-gamma (60–90 Hz) neural activity 

reached “good” stability in every region but one (left pars opercularis) with data durations of 

3.5 min or less.

Stability of the data source imaged with dSPM was qualitatively similar to, or perhaps more 

stable than, those obtained with the LCMV beamformer (Figs. S3 and S4), and the median 

95% confidence intervals for the two methods did not diverge across tested data lengths and 

frequencies (Fig. S5). The inclusion of empty-room data for estimation of noise covariance 

for dSPM had no discernable effect on stability across frequencies (Fig. S6). We verified 

that these results were unaffected by possible variability in the efficacy of pre-processing 

steps for raw recordings of different lengths. We found that stability estimates from the 

Cam-CAN data were unaffected by the length of raw recordings used for pre-processing and 

source imaging, as data lengths from 60 s to 150 s (tested in increments of 30 s) indicated 

no meaningful difference in stability from the full length (480 s) version in all frequencies 

except high-gamma (Fig. S7). Differences in stability across canonical frequency bands were 

also not due to differences in bandwidth: the tests conducted with the OMEGA sample 

across equivalent bandwidths of 10 Hz produced similar stability results (Fig. S8).

3.2. Stability of aperiodic and periodic spectral components

In both the OMEGA and Cam-CAN samples, the estimation of the aperiodic slope achieved 

excellent stability when derived from less than 2 min of data. However, the estimation of the 

aperiodic offset was noticeably less robust in Cam-CAN participants, particularly in frontal 

cortices (Fig. 4). Parameterized periodic neural activity in the theta, alpha, and beta bands 

reached excellent stability in every region with less than 2 min of data, apart from bilateral 

inferior and medial frontal regions (Fig. 5), which required slightly longer data durations. 

In contrast, the periodic delta components were noticeably less stable, and did not reach 

excellent stability in any region with 3.5 min of data. Importantly, the instability of the delta 

periodic component was neither due to the length of the epoch nor of the time window used 

for PSD derivations: similar results were obtained when using 6-s epochs/3-s time windows 

or 12-s epochs/6-s time windows (Figs. S9 and S10). The instability of the delta periodic 

component may instead have been caused by intra-session fluctuations in the goodness-of-fit 

of the FOOOF model at low frequencies. Controlling for regional variations in FOOOF 

model fit (i.e., R2) across participants in the OMEGA sample markedly improved the robust 

estimation of periodic activity in the delta band (Figs. S11 and S12).

3.3. Influence of demographics and cognitive factors

We investigated whether common participant sample characteristics impacted the stability 

of MEG spectral features. Even without correcting for multiple comparisons (6 frequencies 

× 4 sample characteristics = 24 tests), none of the effects were significant at p < .05. 
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Post-hoc Bayesian testing indicated evidence for the null hypothesis in all cases except one 

(high-gamma & handedness; BF01 = 0.75; error% = 7.09 e−6; Fig. 6).

4. Discussion

Despite a substantial literature examining the relationships between frequency-defined 

neural activity and various states of cognition and disease, little research exists regarding 

appropriate data durations to derive robust spectral estimates of human electrophysiology 

signals. We believe that evidence-based recommendations concerning the minimum data 

duration required for extracting meaningful spectral features of brain activity are required 

to guide the design of resting-state studies and inform decisions when growing shared data 

repositories in the field. This work partially addresses this knowledge gap by quantitatively 

estimating the intra-session stability over time of source-imaged spectral features of resting-

state MEG data.

Overall, we find that spectral estimates of task-free MEG brain activity stabilize remarkably 

quickly when derived from durations as short as 30 s, and typically 120 s, of data. These 

results align with recent publications: one reporting stability of EEG graph theory metrics in 

under 10 s (Fraschini et al., 2016) and another finding that participants can be differentiated 

from one another based on MEG spectral “fingerprints” obtained with as little as 30 s 

of resting-state data (da Silva Castanheira et al., 2021). The length of the recording used 

for initial data preprocessing and source imaging also generally had no effect on stability 

estimates in truncated recordings as short as 60 s. We noted some exceptions in the high-

gamma range. Here, the data duration required to reach stability was longer than for the 

alpha and beta bands, and the initial recording length used for preprocessing and imaging 

had a substantive impact on intra-session stability. This indicates that, in cases where 

shorter MEG recording times are desirable, such as when collecting data from special or 

patient populations, the length of resting-state recordings could be determined depending 

on the cortical regions and spectral frequencies of interest. For instance, data durations of 

at least 2 min of good quality resting-state data would be appropriate for investigations 

focused on ongoing alpha and beta activity, while studies of ongoing delta/theta/low-gamma 

activity would require at least 3 min of good resting-state MEG data, and those targeting 

high-frequency gamma power should aim to record more than 3 min of good-quality data. 

These recommendations for minimum durations of “good” (i.e., artefact-free, noise-reduced) 

data can also be extended to minimum recording times for resting-state MEG: we show 

that preprocessing of shorter raw data lengths has no effect on the stability of spectral 

derivatives in the delta, theta, alpha, beta, and low-gamma bands. Thus, we conclude that 

our recommendations for minimum data durations hold, even for recordings as short as 

60 s. In contrast, the intra-session stability of high-gamma derivatives varies substantially 

with raw data length, which provides additional support to the caveat that longer recording 

times are required to capture the variability of high-frequency activity. Importantly, we also 

emphasize that spectral instability at higher frequencies should not be conflated to signals 

being affected by intractable levels of noise. The variability of high-frequency gamma 

activity is well documented to be associated to various cognitive functions (Başar, 2013; 

Uhlhaas et al., 2011; Ward, 2003; Wiesman et al., 2020; Wiesman and Wilson, 2019), 

disease states (Herrmann and Demiralp, 2005; Mably and Colgin, 2018; Uhlhaas and Singer, 
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2010), and inter-individual differences (da Silva Castanheira et al., 2021; Hirschmann et al., 

2020; Muthukumaraswamy et al., 2010; Perry et al., 2013; Shaw et al., 2017). Furthermore, 

we show that estimates of intra-session resting-state MEG stability in normative populations 

require samples of at least 50 participants. These recommendations are based on our sub-

sampling approach and offer researchers a yardstick when examining stability of spectral 

power derivatives at the group level.

These stability estimates support and extend existing research on the effects of data 

duration on neuroimaging signal reliability. Studies of data stability in fMRI have often 

recommended data durations of more than 10 min (Anderson et al., 2011; Birn et al., 

2013; Murphy et al., 2007), which indicates a divergent pattern of intra-session stability for 

brain hemodynamics. Many of the extant electrophysiology (i.e., MEG and EEG) duration-

reliability studies have focused on inter-session effects, which provide information regarding 

the data durations required for neural features to replicate over long periods of time (i.e., 

test-retest), as opposed to those required for a stable “snapshot” of brain activity within 

a single session (i.e., stability). Nevertheless, inter-session M/EEG reliability studies of 

spectral power derivatives have reported reaching high test-retest reliability with similar data 

durations as those reported herein (Duan et al., 2021; Gasser et al., 1985; Marquetand et al., 

2019; Salinsky et al., 1991; Thatcher, 2010; Van Albada et al., 2007). In contrast, previous 

intra-session M/EEG reliability studies have exclusively examined connectivity metrics and 

reported mixed results. Fraschini et al. (2016) indicate high levels of stability for EEG 

connectivity graph metrics with less than 10 s of data in some cases, while Liuzzi et al. 

(2017) report significantly higher within-session reliability of MEG estimates derived from 

280 versus 120 s of data. While this discrepancy deserves further investigation, reduced 

intra-session reliability of connectivity estimates is perhaps intuitive, as the stability of these 

metrics inherently requires robust estimation of neural activity in two regions rather than 

one, as well as the statistical associations between them.

We also found that the stability of spectral features was similar between both MEG 

instruments tested (CTF vs. MEGIN/Elekta), sampling rates used in data collection 

(2400 Hz vs. 1000 Hz), and resting-state paradigms (i.e., eyes-open vs. eyes-closed). 

We acknowledge the present study was not exhaustive with regards to all possible 

experimental factors that might influence MEG signal stability, but the MEG instruments 

and paradigmatic approaches encompass those most employed in the field. This is in 

agreement with a recent study showing similar longitudinal test-retest reliability of MEG 

derivatives, regardless of instrument type (Boon et al., 2021). The similarity of results from 

data collected with different sampling rates also suggests that it is the absolute temporal 

duration (e.g., in seconds), rather than the number of data samples, that dictates the stability 

of spectral MEG features, at least when sampling at or above 1000 Hz. Differing approaches 

to source imaging (i.e., LCMV beamforming versus dSPM) also produced highly similar 

stability estimates across data durations and frequencies. In fact, the derivatives from data 

source imaged with dSPM qualitatively appeared more stable than those imaged with 

LCMV, indicating that our original recommendations for minimum data durations based 

on the LCMV stability estimates are, if anything, conservative. Additionally, the stability 

of spectral features was unaffected by common participant characteristics such as age, sex, 

handedness, and cognitive status. We emphasize that these factors are of research interest 
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but evidence from our results indicate they may not require different durations of signal 

acquisition in the resting-state of healthy participants.

We also examined the robustness across varying data lengths of estimates of aperiodic and 

periodic spectral components of neurophysiological resting-state time series. The estimates 

of periodic components stabilized (ICC > 0.90) when derived from less than two minutes of 

data in the alpha and beta bands across the brain, and within 3.5 min of data in the theta 

band. We note that the theta, alpha, and beta bands are the most susceptible to exhibiting 

separable peaks in the human neurophysiological spectrum (Donoghue et al., 2020). This 

contrasts with parameterized delta activity estimates, which did not reach excellent temporal 

stability in any region with less than 3.5 min of data. This lack of robustness was not 

explained by the short epoch duration and window length used for PSD derivations: using 

longer epochs (12 s) and window lengths (6 s) produced equivalent results. Rather, we 

found that the instability of low-frequency spectral estimates was due to variability of 

FOOOF models across participants. This indicates that the FOOOF algorithm is challenged 

in accounting for the periodic components in the delta band because it may be too close 

to the lower edge of the frequency spectrum, that the noise floor of MEG sensors is 

slightly higher at delta frequencies, and/or that delta rhythmic activity is uncommon in 

healthy participants and therefore that estimates of periodic activity may be spurious. This 

latter point aligns with the small number of delta peaks in resting-state data reported in 

the original FOOOF study (Donoghue et al., 2020). Overall, low-frequency estimates of 

parameterized periodic spectral components in resting-state MEG are highly variable over 

time within typical session durations and should be interpreted with caution.

We found that estimates of the aperiodic slope were robust when derived from at least 

two minutes of OMEGA and Cam-CAN data. In contrast, the stability of the aperiodic 

offset differed between the OMEGA and Cam-CAN samples. Whereas the estimation of the 

spectral offset was stable for OMEGA data durations of about two minutes, its estimation 

from Cam-CAN data required longer durations and offset estimates in several frontal and 

medial regions did not reach excellent stability. We are unable to empirically determine 

the origin of this discrepancy in this study, as many experimental parameters (e.g., MEG 

instrument, resting-state paradigm, and noise-cancellation approach) were different between 

the OMEGA and Cam-CAN samples. However, we can speculate that the parameters that 

most likely influence the low-frequency offset are the noise-cancellation method (i.e., third-

order synthetic gradiometers versus MaxFilter spatial filter) and the resting-state paradigm 

(i.e., eyes-open vs. eyes-closed). The estimation of the aperiodic offset is highly dependent 

on the correct estimation of lower-frequency periodic components, namely from the delta 

band, in which stability was also challenged in these cortical regions. Future research is 

needed to explore the sources of this disagreement between the OMEGA and Cam-CAN 

samples.

It should be noted that some of our recommendations are predicated on the premise 

of equivalent stability between the OMEGA and Cam-CAN samples, as the OMEGA 

recordings (~4 min) were substantially shorter in duration than those collected for Cam-

CAN (~8 min). This is supported by our finding that the median 95% confidence intervals 

for the stability of these samples overlapped at every frequency and data duration; however, 
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the high dimensionality of our data precluded us from performing this analysis at every 

brain region. Thus, it remains possible that specific combinations of region, frequency, and 

data duration might exhibit higher stability in one sample versus the other. Theta frequency 

derivatives from the right superior temporal sulcus, for example, appear to reach excellent 

stability before 120 s in the Cam-CAN sample, but did not reach an equivalent level of 

stability in the 120 s of the OMEGA data. In cases where planned research will focus on 

these regions of non-overlap in our findings, we conservatively recommend the use of longer 

recording durations to ensure intra-session data stability. We also found that the estimation 

of high-gamma spectral power was not stable over the recording durations available from 

OMEGA and Cam-CAN. We can extrapolate from our data that future studies will require 

MEG resting-state recordings of at least 10 min per participant to derive stable estimates of 

high-gamma power (Fig. S1). This pattern of high intra-session gamma variability and low 

intra-session alpha and beta variability is similar to a recent study of long term (i.e., 3 year) 

inter-session variability of MEG spectral power (Lew et al., 2021). This suggests that alpha 

and beta spectral power represent a reliable estimate of inter-participant neural variability, 

both within a single-session “snapshot” of participant neural activity and across sessions 

separated even by multiple years. We are also aware that our findings may not generalize 

to all populations. These recommendations are based on the amount of artefact-free/useable 

signal available in each recording, which is often unpredictable and may be relatively lower 

in e.g., younger children or specific patient populations. The variability of MEG data may 

also be different in certain participant groups for reasons related to actual differences in 

neurophysiological activity due to age or development of pathology. It is therefore advisable 

to record additional data to account for such eventuality. Finally, we did not test for biases 

in our data due to variations in the signal-to-noise (SNR) of our source estimates, which 

might be expected to artificially inflate signal stability in regions with worse SNR (i.e., 

due to the increased smoothness of data in these regions). While we cannot rule out this 

possibility, we think it is unlikely that our results are biased by SNR, as indicated by 

the spatial distributions of temporal stability across the brain. For example, if SNR would 

bias spatial variability, one would expect regions/frequencies with higher SNR (e.g., alpha 

activity in parieto-occipital cortices, theta activity in frontal regions, beta activity in somato-

motor regions) to exhibit lower stability. Across the tested sensor technologies (i.e., MEG 

instruments), recording paradigms, and source imaging methods, no such bias appears to 

exist in our data.

Considering these limitations, we look at our present findings as a normative benchmark 

for neuroscience studies of resting-state brain activity. We hope that our recommendations 

will prove particularly useful to researchers when designing their MEG resting-state studies 

and extracting spectral features. Amidst concerns about the reproducibility and replicability 

of findings across scientific fields (Loken and Gelman, 2017), it may be reassuring that 

common estimators of spectral properties of brain signals are robust when derived from 

recording durations typically used in a large majority of existing research and open datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Stability analysis pipeline. Source-imaged MEG data was epoched into consecutive, non-

overlapping segments and transformed into the frequency domain per vertex. Power spectral 

density values were then averaged within canonical frequency bands and over vertices within 

Desikan-Killiany atlas regions. For each of 1000 permutations, the temporal order of these 

epochs was randomized. Data for each cortical location, frequency, and participant were then 

averaged over time bins of progressively larger numbers of epochs from one to nepochs/2 and 

used to compute ICC with time bins averaged over the same number of different epochs. 

For instance, within each permutation for participants 1…n, spectral power estimates from 

the first epoch (time bin 1-A) were correlated with spectral power estimates derived from 

the last epoch (time bin 1-B), spectral power estimates averaged over the first two epochs 
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(time bin 2-A) were then correlated with spectral power estimates averaged over the last 

two epochs (time bin 2-B), and so forth until all epochs were included (two time bins each 

averaged over nepochs/2 epochs, i.e., 1/2 of the total recording duration). Computing the 

median across these permutations for each size of time bin (from 1 to nepochs/2) resulted 

in a time course of intra-session ICC values per each combination of region and frequency. 

(B) Graphical workflows. All analysis steps are indicated for the derivation of (1) stability 

estimates per each combination of region and frequency, (2) stability estimates per each 

combination of frequency and sample size, and (3) change scores representing the omission 

of each participant from the stability analysis. The extra inset to the far right indicates the 

participant subsamples on which each workflow was implemented. AUC: area under the 

curve. Cam-CAN: Cambridge Centre for Ageing and Neuroscience participant subsample. 

ICC: intraclass correlation coefficient. MAD: median absolute deviation. OMEGA: Open 

MEG Archives participant subsample.
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Fig. 2. 
Intra-session temporal stability of band-limited power. Intraclass correlation coefficients (y-

axes) were obtained from 1000 permutations of epoch order and represent a measure of the 

stability of spectral power for each frequency band of interest as a function of data duration 

(x-axes, in seconds; top: OMEGA, N = 107; bottom: Cam-CAN, N = 50). Coloured lines 

represent the median across regions, dotted lines indicate ± one median absolute deviation 

across regions, and coloured shaded intervals represent the range of stability values across 

all modelled cortical regions of the Desikan-Killiany atlas. Horizontal shaded intervals in 

each plot represent typical thresholds used to define moderate (ICC > 0.50), good (ICC > 

0.75), and excellent (ICC > 0.90) reliability. Note that the maximum data duration from 

OMEGA was shorter than from Cam-CAN (see Methods).
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Fig. 3. 
Brain maps of intra-session stability of spectral power estimates. Parcellated surface maps 

per each spectral frequency (denoted by Greek letters to the top-left of each set) indicate the 

length of data (colour bar; in seconds) required to achieve accepted thresholds for moderate 

(ICC > 0.50; right), good (ICC > 0.75; middle), and excellent (ICC > 0.90; left) reliability 

in each participant sample (top: OMEGA, N = 107; bottom: Cam-CAN, N = 50) for 

each modelled cortical region of the Desikan-Killiany atlas. Warmer colors indicate worse 

temporal stability, and regions left grey did not achieve the indicated level of reliability 

within the maximum length of data available for the respective participant sample (OMEGA: 

120 s; Cam-CAN: 210 s). Note that these are spatial representations of the same data shown 

in Fig. 2.
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Fig. 4. 
Brain maps of intra-session stability of parameterized aperiodic features. Parcellated surface 

maps per each aperiodic feature (left: slope; right: offset) indicate the length of data (colour 

bar; in seconds) required to achieve accepted thresholds for moderate (ICC > 0.50; bottom 

rows), good (ICC > 0.75; middle rows), and excellent (ICC > 0.90; top rows) reliability 

in each participant sample (top: OMEGA, N = 107; bottom: Cam-CAN, N = 50) for 

each modelled cortical region of the Desikan-Killiany atlas. Warmer colors indicate worse 

temporal stability, and regions left grey did not achieve the indicated level of reliability 

within the maximum length of data available for the respective participant sample (OMEGA: 

120 s; Cam-CAN: 210 s).

Wiesman et al. Page 22

Neuroimage. Author manuscript; available in PMC 2022 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Brain maps of intra-session stability of parameterized periodic features. Parcellated surface 

maps per each spectral frequency (denoted by Greek letters to the top-left of each set) 

indicate the length of data (colour bar; in seconds) required to achieve accepted thresholds 

for moderate (ICC > 0.50; right), good (ICC > 0.75; middle), and excellent (ICC > 0.90; 

left) reliability in each participant sample (top: OMEGA, N = 107; bottom: Cam-CAN, 

N = 50) for each modelled cortical region of the Desikan-Killiany atlas. Warmer colors 

indicate worse temporal stability, and regions left grey did not achieve the indicated level of 

reliability within the maximum length of data available for the respective participant sample 

(OMEGA: 120 s; Cam-CAN: 210 s).
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Fig. 6. 
Bayesian model evidence for null effects of participant sample characteristics on the stability 

of spectral power estimates. Dots indicate Bayesian model evidence (y-axis; in BF01) and 

associated model errors (denoted by relative dot size) for null effects of common participant 

sample characteristics (x-axis) on temporal stability for each spectral frequency (denoted by 

dot colour). Horizontal shaded intervals represent accepted thresholds for weak evidence for 

H1 (BF01 = 0.3 – 1), weak evidence for H0 (BF01 = 1 – 3), and moderate evidence for H0 

(BF01 ≥ 3). Note that these models were only obtained for the Cam-CAN sample, due to its 

even distribution of age and availability of ACE-R cognitive scores.
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