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KEY POINTS

� Long-term persistence of COVID-19–related symptoms after SARS-CoV-2 infection im-
pacts quality of life.

� Several mechanisms may be involved in the persistence of COVID-19 symptoms,
including chronic inflammation, immunometabolic processes, endothelial dysfunction,
and gut dysbiosis.

� Bioactive foods, supplements, and nutraceuticals may be used for the management of
long-term COVID-19 clinical sequelae.
INTRODUCTION

SARS-CoV-2 infection affects multiple organs owing to the ubiquitous distribution of
its target receptor ACE-2.1 Increasing interest has been paid to the postacute phase
of COVID-19. The time to recover from an acute COVID-19 episode ranges from 2 to
6 weeks depending on disease severity.2 However, a substantial share of people re-
ports clinical sequelae weeks or months after symptom onset. This condition, known
as postacute COVID-19 syndrome, postacute sequelae of COVID-19, or long COVID
syndrome, encompasses long-lasting signs and symptoms, such as cough, dyspnea,
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L.go F. Vito 8, Rome 00168, Italy
* Corresponding author.
E-mail address: riccardo.calvani@policlinicogemelli.it

Clin Geriatr Med 38 (2022) 565–591
https://doi.org/10.1016/j.cger.2022.04.004 geriatric.theclinics.com
0749-0690/22/ª 2022 Elsevier Inc. All rights reserved.

mailto:riccardo.calvani@policlinicogemelli.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cger.2022.04.004&domain=pdf
https://doi.org/10.1016/j.cger.2022.04.004
http://geriatric.theclinics.com


Tosato et al566
fatigue, difficulties with memory and concentration ("brain fog"), sleep disorders,
gastrointestinal complaints, and musculoskeletal problems.3,4

A recent systematic review showed that more than half of COVID-19 survivors
(mostly middle-aged men hospitalized during the acute phase) had at least one
long-lasting symptom at 6 months.5 Results from a digital questionnaire in a cohort
of middle-aged nonhospitalized patients with COVID-19 from Denmark showed that
persistent symptoms lasting for more than 4 weeks were experienced by 36% of par-
ticipants who had been symptomatic during the acute phase.6 Recently, our group
showed that persisting symptoms were common in older adults who had been hospi-
talized for COVID-19, with approximately 50% of the sample presenting with 3 or more
symptoms after 3 months of hospital discharge.7 Symptom persistence was more
frequent in those who experienced fatigue during acute COVID-19.
The mechanisms of chronic COVID-19 manifestations have not been yet unveiled.

Several hypotheses are currently being tested.4,8 These include viral persistence
associated with chronic inflammation, autoimmune processes, alterations in immuno-
metabolic pathways, dysbiosis, endothelial damage, and unresolved organ dam-
age.3,4,8 It is noteworthy that some of the immunologic and systemic features of
long COVID resemble signs of accelerated or premature aging, and may aggravate
pre-existing age-associated degenerative conditions, such as sarcopenia and cogni-
tive decline.9–11

Specific treatments for long COVID are currently lacking. Patient management
mostly relies on symptomatic treatments and recommendations to conduct an active
and healthy lifestyle. A plethora of dietary supplements and natural bioactive sub-
stances have been tested for their potential to contrast long COVID.12,13 In this review,
the possible actions of nutraceuticals and dietary supplements on mechanisms asso-
ciated with long COVID are described. A brief overview of ongoing studies investi-
gating the effects of specific nutraceuticals in patients with long COVID attending
the outpatient service at the Fondazione Policlinico A. Gemelli IRCCS (Rome, Italy)14

is presented.
DISCUSSION
Amino Acids

Amino acids play a crucial role in cell metabolism and modulate several biological pro-
cesses (eg, inflammation, glucose homeostasis, redox balance) that may be involved
in post-COVID clinical sequelae.4,8,15 Amino acids support the increased metabolic
demands of activated immune cells by contributing critical intermediates to biosyn-
thetic and energy-producing pathways, such as glycolysis, tricarboxylic acid (TCA) cy-
cle, and oxidative phosphorylation pathways.15

Glutamine replenishes TCA cycle intermediates that have been consumed in
biosynthetic processes in T cells, macrophages, and plasma cells through anaplero-
sis.16–18 In immune cells, glutamine is also used for glutathione and in hexosamine
biosynthetic pathways and supplies amino groups for other amino acids via
transamination.19

The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are essen-
tial amino acids with well-established effects on protein synthesis and glucose ho-
meostasis. BCAAs mainly act through the stimulation of cellular anabolic signaling
pathways (eg, phosphoinositide 3-kinase-protein kinase B, mammalian target of rapa-
mycin [mTOR]).20 BCAAs may exert direct and indirect effects on immune function.15

In vitro models have shown that BCAAs are essential for proliferating lymphocytes to
synthesize proteins and nucleotides in response to stimulation.21 BCAAs can be
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incorporated into and oxidized by immune cells. The amount of BCAAs incorporated
into proteins is higher in lymphocytes, followed by eosinophils and neutrophils.21 In
immune cells, BCAAs are also sources of the coenzyme A (CoA) derivatives acetyl-
CoA and succinyl-CoA, which enter the TCA cycle and support mitochondrial bioen-
ergetics.15 BCAAs may also improve gut mucosal surface defense by stimulating sol-
uble immunoglobulin A secretion.22

Arginine is a semiessential amino acid involved in multiple biological processes. Its
main activities on the immune system derive from its conversion to nitric oxide (NO) by
NO synthase (NOS) and its metabolism through arginase, that competes with NOS for
arginine availability in most immune cells.23 NO is known to have direct and indirect
antiviral activity through the generation of immunomodulatory oxidized phospho-
lipids.24–26 NO also exerts potent anti-inflammatory effects via inhibition of leukocyte
recruitment.27,28 Several studies in animal models have shown that the mechanisms of
NO action on leukocyte function involve the activation of guanylyl cyclase, followed by
the generation of cyclic GMP that suppresses the expression of P-selectin, a crucial
mediator in leukocyte adhesion.29 Reduced arginine bioavailability may impair T-cell
response and function.30 In patients with COVID-19, a decrease in plasma arginine
levels with concomitant increase in arginase activity was associated with impaired
T-cell proliferative capacity, which can be restored in vitro by arginine supplementa-
tion.31 Arginine, through its action on NO synthesis, may also modulate endothelial
and respiratory functions and exert antithrombotic and cytoprotective activities.32

Preliminary data suggest that oral arginine supplementation added to standard ther-
apy reduced the need of respiratory support and the duration of in-hospital stay in pa-
tients with severe COVID-19.33 Because of its modulating activities on inflammation
and endothelial function, arginine has also been indicated as a plausible agent to
contrast COVID-19 sequelae.
Collectively, available evidence suggests that amino acids are crucial to modulate

immune response and several other mechanisms involved in both acute and chronic
COVID-19. In older adults, the physiologic changes associated with the aging process
(eg, increased splanchnic extraction, anabolic resistance, chronic inflammation) may
further increase the need of adequate amino acid supplies.34 Protein/amino acid
malnutrition in older adults is associated with immune dysfunction and sarcopenia,
the latter being aggravated by reduced mobility and inflammatory processes induced
by COVID-19.35

Given these premises, it is reasonable to focus on the achievement of an adequate
amino acid intake in COVID-19 survivors, also through oral supplementation. In partic-
ular, amino acid intake should be monitored in older people who are at greater risk of
malnutrition as a specific consequence of SARS-CoV-2 infection.

Hydroxy-Beta-Methylbutyrate

Beta-hydroxy-beta-methyl butyrate (HMB) is the active metabolite of leucine.36 HMB,
through the stimulation of mTOR-dependent pathways, modulates several physiologic
processes, including protein metabolism, insulin activity, skeletal muscle hypertrophy,
cell apoptosis, and muscle stem cell proliferation and differentiation.37

Oral supplementation of HMB (3 g/d) mitigates the decline in muscle mass and pre-
serves muscle function in older adults and frail people, especially during hospital stay
and recovery.38 Interestingly, HMB may modulate the immune and inflammatory
response, especially under stressful conditions.39 HMB supplementation was found
to have short-term anti-inflammatory and anticatabolic effects and to improve pulmo-
nary function in patients with chronic obstructive pulmonary disease in an intensive
care unit setting.40



Tosato et al568
Possible effects of HMB on brain have also been explored, starting from the evi-
dence that HMB crosses the blood-brain barrier in rats.41 HMB was found to promote
neurite outgrowth in vitro,42 and long-term HMB supplementation in rats attenuated
age-related dendritic shrinkage of pyramidal neurons in the medial prefrontal cortex,43

thus suggesting possible beneficial effects on cognition.44,45

Based on its well-established effects on muscle mass preservation and its poten-
tial biological activities on physiologic systems perturbed by COVID-19, HMB may
represent a useful support for older patients suffering from long-term COVID-19
sequelae.

Tricarboxylic Acid Cycle Intermediates

Malic acid, citric acid, and succinic acid are TCA cycle intermediates with a well-
established role in mitochondrial energy metabolism. Once considered byproducts
of cellular metabolism to be used for the biosynthesis of macromolecules (eg, lipids,
nucleotides, proteins), TCA cycle intermediates are now recognized as important
mitochondrial signaling molecules regulating multiple cellular functions.46 Indeed,
TCA cycle metabolites may also modulate chromatin remodeling, DNA methylation,
posttranslational protein modifications, platelet activity, and immunity.15,47,48

Supplementation with TCA cycle intermediates may help preserve mitochondrial
biogenesis and function and fulfill the increased metabolic demands of older people
recovering from COVID-19. In this context, TCA cycle metabolites may support the
beneficial effects of amino acid supplementation in the prevention of mitochondrial
dysfunction, oxidative damage, and muscle loss.49 Novel formulas combining mix-
tures of amino acids plus TCA intermediates, such as citric, succinic, and malic
acid, and B group vitamins, were tested for their effects on mitochondrial bioener-
getics and antioxidant response both in vitro and in animal models of aging.50,51 In mu-
rine neural stem cells and human-induced pluripotent stem cells, mitochondrial
function, oxidant scavenging mechanisms, and neuronal stem cells differentiation
were boosted via activation of the mechanistic target of rapamycin complex 1 and nu-
clear factor erythroid 2 like 2 (Nrf2)-mediated gene expression.50 In a mouse model of
accelerated muscular and cognitive aging, the combination of amino acids plus TCA
cycle metabolites and cofactors preserved mitochondrial efficiency, muscle mass,
and physical and cognitive abilities by acting on proliferator-activated receptor g
coactivator 1a and NRF2 in skeletal muscle and hippocampus.51

Further investigation is warranted to evaluate the potential effects of TCA cycle me-
tabolites (alone or combined with other nutrients) to contrast long-term consequences
of COVID-19.

Micronutrients

Nutritional surveys indicate that vitamin and mineral deficiencies are highly prevalent
in older adults. Micronutrient deficiencies are associated with increased risk of non-
communicable diseases, such as fatigue, cardiometabolic disease, musculoskeletal
disorders, and cognitive impairment.52 Micronutrients, including selenium, iron, zinc,
and magnesium, are also critical for the proper functioning of the immune system.53

Selenium

Selenium is an essential trace element and is mainly present in the form of selenopro-
teins. Selenium is involved in several physiologic processes, including neurologic,
endocrinologic, cardiovascular, and immune functions.54

Several studies have investigated the role of selenium in modulating the immune
response, and for this reason, a putative role for selenium has been evoked in the
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context of COVID-19.55 Evidence in human, animal, and cellular models suggests that
selenium plays an important role in response to viral infections, including respiratory
viruses,56 while its deficiency seems to increase host susceptibility to infections.55,57

In viral infections, selenoproteins inhibit type I interferon responses and viral transcrip-
tional activators.54,55 Selenium supplementation stimulates innate immune system
and increases CD41 T cells and natural killer cell response.58 Selenium alsomodulates
the secretion of proinflammatory interleukins by inhibiting nuclear factor kB (NF-kB).55

Selenium deficiency has been correlated to greater secretion of interleukin-6 (IL-6) in
older adults,59 whereas higher levels of selenium are associated with reduced C-reac-
tive protein (CRP) circulating levels.60 Low plasma concentration of selenium was also
correlated with increased tissue damage and organ failure, prothrombotic activity, and
overall mortality in patients in intensive care, which could explain a correlation with
severity of symptoms in patients with COVID-19 and possible COVID-19 sequelae
in long haulers.3,61–63 Several studies have reported that circulating selenium concen-
trations were lower in patients with COVID-19 as compared with healthy controls and
associated with COVID-19 severity and mortality.64,65

Low selenium levels may increase individual susceptibility to SARS-CoV-2 infection,
influence the severity of the disease,66,67 and be related to postacute sequelae and
long-lasting symptoms.68
Iron

Iron is essential for all living organisms, being a crucial component of hundreds of
proteins involved in fundamental biological processes, including oxygen transport,
energy production, and nucleic acid synthesis.69 During viral infections, the rapid
viral proliferation determines a competition for iron between the invading pathogen
and the host.70 Moreover, iron homeostasis influences both the innate and the adap-
tive host immune response. In fact, hypoferremia is linked to altered B- and
T-lymphocyte proliferation and function71 and is associated with higher levels of
proinflammatory cytokines and reactive oxygen species.72 Low-iron levels have
been associated with the severity of respiratory insufficiency, acute multiorgan fail-
ure, and mortality in patients with COVID-19.73–75 Iron status parameters, such as
ferritin, transferrin, and hepcidin, which respectively serve to store, transport, and
absorb iron in the human body, may be considered risk factors and clinical bio-
markers for COVID-19 prognosis.76 In particular, meta-analyses have correlated
high-ferritin levels with COVID-19 severity and mortality.77–79 Ferritin stimulates
the expression of proinflammatory cytokines, such as IL-1b, IL-6, IL-12, and tumor
necrosis factor-a (TNF-a),71 and a gradual reduction of its circulating levels has
been demonstrated in patients with COVID-19 after infusion of monoclonal anti-
bodies targeting IL-6 receptor.200 Preliminary data from a prospective observational
cohort study in patients with mild to critical COVID-19 show that alterations in iron
homeostasis may persist for at least 2 months after acute infection and are associ-
ated with nonresolving lung disorders and impaired physical performance.80 Iron
deficiency was associated with elevated levels of inflammation markers, such as
IL-6 and CRP.80 Finally, low-iron levels could theoretically impair the efficacy of
COVID-19 vaccination,71 underlining the importance of monitoring iron levels, espe-
cially in older adults with long COVID.
Based on the available evidence, iron supplementation, especially in older adults

with low iron and hemoglobin levels, could be particularly useful for reducing the level
of inflammation, mitigating persistent symptoms (such as fatigue and dyspnea), and
improving immune response to vaccination.
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Zinc

Zinc is the second most abundant trace metal in the human body after iron and is
essential for the maintenance of immune health, cell homeostasis, and reproduc-
tion.81,82 Zinc deficiency is quite common in the general population and is also asso-
ciated with immune dysfunction, affecting both the innate and the adaptive immune
systems.83,84 Inadequate zinc intake has been associated with increased risk of up-
per- and lower-respiratory tract infections, especially in older adults,85,86 whereas
supplementation with zinc gluconate seems to reduce duration and severity of com-
mon cold symptoms.87

Zinc may inhibit coronavirus RNA polymerase activity in vitro and viral replication in
cultured cells.88 Zinc has also an immunomodulatory, antioxidant, and anti-
inflammatory role that could influence the trajectory of SARS-CoV-2 infection, and
its supplementation could ameliorate lung function, enhance mucociliary clearance,
and reduce ventilator-induced lung injury in critical patients with COVID-19.85 Lower
serum zinc levels were found in patients with severe COVID-19 with acute respiratory
distress syndrome and associated with a higher rate of complications and in-hospital
length of stay.64,85 Zinc deficiency could also be connected to the onset and persis-
tence of symptoms such as anosmia and dysgeusia, which can last for a variable
amount of time after resolution of acute infection.89

Zinc supplementation was tested for its potential role in contrasting the conse-
quences of SARS-CoV-2 infection. However, available data on the efficacy of zinc
supplementation for the management of patients with COVID-19 are scarce and con-
tradictory.64,90,91 A prospective randomized clinical trial, COVID A to Z study, evalu-
ated the efficacy of a treatment with zinc gluconate, ascorbic acid, or their
combination in shortening the duration of COVID-19 symptoms.92 The study failed
to demonstrate a significant improvement in symptoms, and the study was stopped
for futility.
Further studies are needed to evaluate the effects of zinc or mixtures of micronu-

trients, including zinc in both acute COVID-19 and in long COVID-19 syndrome.
Magnesium

Magnesium is essential for several physiologic functions and biochemical reactions
and may exert important anti-inflammatory and antioxidant functions.93,94

Although severe magnesium deficiency with clinical symptoms is quite rare, hypo-
magnesemia is frequent in patients in the intensive care unit, regardless of the cause of
admission, and is associated with increased mortality, higher need for ventilator sup-
port and incidence of sepsis, and longer hospital stays.95 Although there are no signif-
icant data on magnesium homeostasis in patients with COVID-19, it has been
suggested that magnesium deficiency could modulate the progress and severity of
SARS-CoV-2 infection.96 Magnesium supplementation protects organs and tissues
from damage through multiple mechanisms and could potentially influence the natural
history of COVID-19.96

It is well known that magnesium exerts anticholinergic, antihistaminic, and anti-
inflammatory activities, reduces the risk of airway hyperreactivity and wheezing, and
promotes bronchodilation by inhibiting bronchial smooth muscle contraction via
blockage of calcium channels.94,97 A systematic review demonstrated that a single
infusion of 1.2 or 2 g of magnesium sulfate in adults with exacerbations of asthma
was associated with a reduction in hospitalization rate and improved lung function
in patients who did not respond to standard treatment (ie, oxygen, nebulized short-
acting b2-agonist, and intravenous corticosteroids).98 In addition, magnesium reduces
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the secretion of transforming growth factor b1, thereby preventing lung fibrosis,99 a
rare but fearsome consequence of COVID-19.
Magnesium plays a role in modulating the innate and adaptive immune system.93,94

Subclinical magnesium deficiency is correlated with low-grade chronic inflammation,
which can be crucial for the prognosis of COVID-19 and the persistence of COVID-19
symptoms.93 It has been demonstrated that magnesium sulfate supplementation
downregulates inflammatory response and oxidative stress by inhibiting chemokine
and cytokines, such as IL-1, IL-6, IL-8, TNF-a, and CRP, which are often significantly
elevated in severe COVID-19 cases.93,94 Magnesium may also modulate the adaptive
immune system, influencing the proliferation and the activation of CD41 and CD81 T
lymphocytes.96 Furthermore, magnesium exerts an important role in maintaining
endothelial function and vascular integrity.100 In response to an acute inflammation
stimulus, such as SARS-CoV-2 infection, the endothelium increases the secretion of
prothrombotic factors. Accumulating evidence suggests that the endothelium might
be directly affected in patients with COVID-19.101 Magnesium supplementation, espe-
cially in older adults, could help prevent the risk of thromboembolism in COVID-19 and
long-term consequences in COVID-19 survivors.102 In critically ill patients with COVID-
19, magnesium sulfate supplementation can represent a supportive treatment with
promising beneficial effects.94 A retrospective observational study demonstrated
that in hospitalized patients with COVID-19 aged 50 years and older, a combination
of oral vitamin D3, magnesium, and vitamin B12 supplementation for up to 14 days
significantly reduced the need of oxygen therapy compared with controls.103

Despite the lack of clinical trials and well-powered studies in patients with COVID-
19, magnesium supplementation seems to find a potential application in controlling
respiratory symptoms, but also in modulating inflammation, cardiovascular and neuro-
logic disorders, and electrolyte abnormalities. The monitoring of magnesium status
should be encouraged, as it may influence immune homeostasis and help decrease
morbidity and mortality in patients with COVID-19.93

Bromelain

Bromelain is a proteolytic enzyme derived from the fruit and stem of pineapple.
Bromelain is commonly used as an anti-inflammatory agent, although its potential bio-
logical activity spans from respiratory, digestive, immune, and circulatory systems to
anticancer and antimicrobial therapy.104

Bromelain regulates inflammatory processes through the modulation of NF-kB and
cyclooxygenase 2 pathways that regulate the synthesis of inflammatory cytokines and
prostaglandin E2 and thromboxane A2, respectively.105 Moreover, bromelain has fibri-
nolytic and antithrombotic properties106,107 and may also exert analgesic effects by
regulating the synthesis of pain mediators, such as bradykinin.108 The decrease in bra-
dykinin levels induced by bromelain may also indirectly act on inflammatory response
through the regulation of vascular permeability and reduction in edema. Bromelain
showed immunomodulatory effects both in vitro and in vivo.109 Bromelain may simul-
taneously enhance and inhibit T-cell responses by acting on accessory cells and
directly on T cells. Moreover, bromelain enhanced T-cell–dependent, antigen-
specific, B-cell antibody responses in vivo.109

In vitro studies suggest that bromelain may also inhibit SARS-CoV-2 infection by
targeting ACE-2, transmembrane serine protease 2, and SARS-CoV-2 S-protein.110

Considering its multiple potential activities on mechanisms involved in acute and
chronic COVID-19 phases, bromelain could represent a candidate therapeutic agent
for the management of COVID-19. In this context, bromelain may also increase the ab-
sorption of curcumin and other bioactive compounds with possible anti–COVID-19
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activities after oral administration.111 Currently, data about the properties of bromelain
on persistent symptoms related to long COVID-19 are lacking, but it can be hypothe-
sized that its biological activities might help in the process of recovery from chronic
fatigue, joint pain, and myalgia.104

Troxerutin

Troxerutin is a flavonoid derived from rutin that can be found in tea, coffee, cereals,
fruits, and vegetables. Troxerutin exerts multiple biological functions, including antiox-
idant, anti-inflammatory, nephroprotective, antithrombotic, antidiabetic, and neuro-
protective effects.112 Following ingestion, flavonoids are partially digested by
microbiome, which facilitates the absorption by small or large bowel.
Troxerutin exerts its antioxidant functions through direct free radical scavenging ac-

tivity113 and by enhancing the activity of glutathione and antioxidant enzymes, such as
superoxide dismutase, catalase, and glutathione peroxidase.114 Through its antioxi-
dant activities, troxerutin might preserve epithelial cells, fibroblasts, and lymphocytes
from oxidative stress-induced apoptosis.113

Troxerutin was found to protect against gentamycin-induced acute kidney injury in
rats through the downregulation of inflammatory cytokines (IL-10, TNF-a, and IL-6),
the reduction of apoptotic cell death, and the induction of renal tissue regenerative ca-
pacity, by acting on p38 mitogen-activated protein kinase signaling.115

Troxerutin protects the hippocampus against amyloid-beta induced oxidative stress
and apoptosis by reducing the acetylcholinesterase activity and oxidative stress.114 In
a rat model of traumatic brain injury, troxerutin exerted multiple protective effects
through the regulation of endothelial NOS activity.116 Moreover, troxerutin demon-
strated anxiolytic- and antidepressant-like activities in rodents.117

In rat models of type 1 and type 2 diabetes, troxerutin preserved male fertility and
protected against diabetic cardiomyopathy through the reduction of reactive oxygen
species and its activity of NF-kB, serine/threonine kinase 1, and insulin receptor sub-
strate 1.118,119

Data on the activity of troxerutin in COVID-19 are currently lacking. However, its
antioxidant and anti-inflammatory properties might be helpful for both the acute and
the chronic consequences of SARS-CoV-2 infection.

Lactoferrin

Lactoferrin is an iron-binding glycoprotein, which acts as a host defense molecule
against microbes. Lactoferrin is mainly secreted from exocrine glands and is present
in granules in neutrophils following infections.120 Lactoferrin prevents microbial and
viral adhesion to human cells through its iron-chelating ability, which reduces availabil-
ity of iron used for microbial growth, aggregation, and biofilm formation.121 The activity
of lactoferrin is mostly bacteriostatic, but a lethal effect has been demonstrated. One
of its derivates, lactoferricin, tends to inactivate the lipid A from lipopolysaccharide of
gram-negative bacteria. Lactoferrin may also have a bactericidal effect on gram-
positive bacteria. Lactoferrin exerts its antiviral activity through different mechanisms
at the mucosal level, including binding to heparan sulfate glycosaminoglycans, viral
particles, and viral receptors, thus limiting viral entry.122

In vitro, bovine lactoferrin blocks human cell apoptosis induced by influenza A vi-
rus.123 In vitro and in vivo studies showed that lactoferrin may also inhibit cytomega-
lovirus124 and herpes simplex virus infection.125 The antiviral activity of lactoferrin has
been demonstrated against a multitude of viruses, including respiratory syncytial virus,
poliovirus, hepatitis B virus, hepatitis C virus, alphaviruses, hantavirus, human papillo-
mavirus, adenovirus, and enterovirus.126 Given its immunomodulatory and antiviral
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properties, the use of lactoferrin was also proposed to contrast SARS-CoV-2 infec-
tion.127 In vitro and in silico assays showed that lactoferrin may have an antiviral activ-
ity against SARS-CoV-2 through direct attachment to both SARS-CoV-2 spike S
glycoprotein and cell surface components.128 Lactoferrin may also modulate the in-
flammatory cascade through the reduction of IL-6, TNF-a, and ferritin levels.129 A pre-
liminary study testing the antiviral effect of oral and intranasal liposomal bovine
lactoferrin in asymptomatic and patients with mild to moderate COVID-19 showed
that lactoferrin treatment induced fast symptom resolution compared with standard
care.130 Treatment with lactoferrin also elicited a significant decrease in serum ferritin,
IL-6, and D-dimer.
Based on available evidence, lactoferrin may represent a promising molecule to be

used in both patients with acute COVID-19 or patients with postacute COVID-19 syn-
drome. Further investigations are needed to corroborate the positive preliminary find-
ings obtained in patients with COVID-19, and to determine whether lactoferrin
supplementation alone or with other bioactive compoundsmay result in additive bene-
ficial effects against acute and postacute COVID-19.

Probiotics

The gastrointestinal system may be affected during acute and postacute COVID-
19.131 Gastrointestinal symptoms, such as diarrhea, nausea, vomiting, and loss of
appetite, are commonly experienced by people with COVID-19. SARS-CoV-2 RNA
may be detected in stools even after viral clearance in the respiratory tract.132 More-
over, alterations in gut microbiota were associated with COVID-19 severity, possibly
as a consequence of a "leaky gut" phenomenon and the release of microbial products
and toxins into systemic circulation.133,134 Long-term antibiotic therapies, hospitaliza-
tion, stress, comorbidities, and the direct action of SARS-CoV-2 on ACE2 receptor at
the gastrointestinal level are associated with gut dysbiosis. Perturbations in gut micro-
biota may persist months after acute COVID-19 andmay be associated with long-term
complications.135

Probiotics are “live microbes that, when administered in adequate amounts, confer
health benefits on their hosts.”136 Probiotics (mainly Bifidobacteria and Lactobacilli)
may exert relevant immunomodulatory functions on the gut-lung axis.137 Probiotics in-
crease host mucosal defense through the stimulation of immunoglobulin A secretion,
induce polarization of the immune response toward Th1, modulate cytokine produc-
tion, and produce metabolites, such as short chain fatty acids, that contribute to set
the tone of the immune system.138 Probiotics may have also anti-inflammatory,139

antioxidant,140 and antiviral properties.141 Interestingly, an in silico molecular docking
approach suggested that metabolites from Lactobacillus plantarum may have poten-
tial antiviral activity against SARS-CoV-2 by targeting helicase nsp13.142 Probiotics
may also have synergistic antiviral activities when combined with compounds with
antimicrobial properties. For instance, Lacticaseibacillus paracasei DG strain en-
hances the lactoferrin anti–SARS-CoV-2 response in Caco-2 cells.143

Numerous studies are currently testing the use of different mixtures of probiotics as
adjunctive treatment for the management of both acute and postacute COVID-
19.141,144,145 Preliminary evidence suggests that probiotics administration may reduce
secondary infections in people with severe COVID-19.146 The consumption of a spe-
cific bacterial formulation containing strains of Streptococcus thermophilus, Lactoba-
cillus acidophilus, Lactobacillus helveticus, Lactobacillus paracasei, L plantarum,
Lactobacillus brevis, and Bifidobacterium lactis was associated with remission of
gastrointestinal symptoms and reduced risk of respiratory failure in hospitalized pa-
tients with COVID-19.145 In COVID-19 outpatients, the administration of a mixture of
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Lactiplantibacillus plantarum and Pediococcus acidilactici strains improved viral clear-
ance and reduced both respiratory and gastrointestinal symptoms compared with
placebo.147

Further studies are needed to assess the effects of specific probiotic formulations
and/or the combination of probiotics with other bioactive compounds on long-term
COVID-19 sequelae.
The use of probiotics may be particularly recommended in older patients with

COVID-19, in whom age-related factors, including frailty, multimorbidity, and malnutri-
tion, may aggravate gut dysbiosis.

Vitamin D

Vitamin D plays a crucial role in the regulation of calcium and bone metabolism.148

Accumulating evidence from preclinical and observational studies suggests that
vitamin D could be involved in many extraskeletal pathways, including immune and
muscle function, reproduction, and energy metabolism.148 Vitamin D may modulate
different aspects of the innate and adaptive immune response.149 Both vitamin D re-
ceptor and enzymes involved in vitamin D metabolism are expressed by several im-
mune cell types, including lymphocytes, monocytes, macrophages, and dendritic
cells.149

Vitamin D may support innate immunity by stimulating the synthesis of several anti-
microbial peptides, including cathelicidins and defensivins.150 Vitamin D may also
regulate the activity of antigen-presenting cells, T- and B-cell differentiation, and the
balance between proinflammatory and anti-inflammatory cytokines.151 Low vitamin
D levels were associated with increased risk of numerous immune-related conditions,
including type 1 diabetes,152 multiple sclerosis,153 and rheumatoid arthritis.154

Furthermore, people with vitamin D deficiency tend to be more prone to develop acute
respiratory infections.155

Vitamin D deficiency has been associated with increased risk of SARS-CoV-2 infec-
tion and worse clinical outcomes, including more severe lung impairment, need for
respiratory support and intensive care, and mortality.156,157 Hence, vitamin D supple-
mentation has been tested as a candidate adjunctive treatment for COVID-19. In
asymptomatic or mildly symptomatic individuals with SARS-CoV-2 and vitamin D defi-
ciency, a 7-day administration of high-dose vitamin D (60,000 IU of cholecalciferol per
day) accelerated viral clearance compared with placebo.158 Vitamin D supplementa-
tion taken before or during COVID-19 was associated with better 3-month survival
in older adults hospitalized for COVID-19 compared with nonsupplemented peers.159

However, a recent living systematic review found insufficient evidence to determine
the benefits of vitamin D supplementation as a treatment of COVID-19, owing to the
heterogeneity of studies, including different supplementation strategies, formulations,
vitamin D status of participants, and reported outcomes.160

As for postacute COVID-19, data on the association between vitamin D levels and
the persistence of symptoms are scarce. In a small group of COVID-19 survivors from
Dublin, persistent fatigue and reduced exercise tolerance were not associated with
vitamin D levels.161

Because of the multiple effects of vitamin D on biological pathways associated with
long COVID and its relevance for the overall health status, vitamin D supplementation
should be considered to avoid the detrimental consequences of vitamin deficiency.
This holds true in particular for vulnerable people, such as older COVID-19 survivors,
in whom vitamin D may also contrast geriatric conditions, such as frailty and sarcope-
nia, that are associated with negative health outcomes and may further reduce the
quality of life.162
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Pollen-Based Herbal Extracts

Pollen, the male gametophyte of the flower, has long been used for therapeutic pur-
poses by various ancient civilizations.163 Pollen contains a mixture of amino acids, car-
bohydrates, minerals, and bioactive substances that vary depending on the plant
source and geographic origin, climatic conditions, soil type, and the activity of bees.164

Purified cytoplasm of pollen (PCP) is a nonhormonal herbal remedy used to manage
vasomotor symptoms and sleep and mood disorders in menopausal women.165 Even
if the mechanisms of action of PCP are not fully understood, this compound seems to
act as a selective serotonin reuptake inhibitor (SSRI)-like agent to increase serotonin
availability in hypothalamic serotonergic neurons. This explains, at least partly, its ef-
ficacy in controlling thermoregulation, and sleep and mood disorders in menopausal
woman, without the adverse effects of currently prescribed SSRIs.166 Another putative
mechanism action of PCP could be based on the precursors of serotonin. Indeed,
tryptophan and methyl serotonins have been identified in low concentrations in PCP
extracts, even if their contribution to intraneuronal serotonin synthesis could be negli-
gible.166 Studies conducted in women with symptomatic menopause demonstrated
that PCP supplementation improved sleep quality and quality of life and reduced
hot flushes, fatigue, and muscle and joint pain.165,167 The most common symptoms
complained of by COVID-19 long haulers are fatigue, muscle weakness, and sleep dif-
ficulties, with a higher risk of developing anxiety or depression. Given the accumu-
lating evidence on the effects of PCP in contrasting these symptoms in menopausal
women, it could be speculated that PCP may be used as a remedy to mitigate persist-
ing symptoms in long COVID patients.
Beetroot Juice

Beetroot juice, which is obtained from the red beetroot (Beta vulgaris), has spurred
much attention owing to its potential beneficial effects on cardiovascular health, meta-
bolic homeostasis, inflammation, and pulmonary function.168–170 The multiple health
benefits of beetroot juice have traditionally been attributed to its high nitrate (NO3

�)
content. Following ingestion, beetroot juice (as well as other nitrate-rich foods, such
as leafy green vegetables) increases NO availability through the nitrate-nitrite-NO
pathway.171 Dietary nitrate administration in the form of beetroot juice has been exten-
sively studied in sport nutrition, owing to its purported beneficial effects on physical
performance.172 In this context, beetroot juice may improve both endurance and po-
wer exercise performance through increasing NO bioavailability, which in turn modu-
lates mitochondrial respiration, reduces oxygen cost of exercise, and improves
muscular and cerebral perfusion.173,174 Recent evidence has shown that the stimula-
tion of the nitrate-nitrite-NO pathway by beetroot juice consumption may improve
endothelial function, as measured by flow-mediated dilation, in persons with or at
risk of endothelial dysfunction, including older adults,175 people with peripheral artery
disease,176 pregnant women,177 and persons with hypercholesterolemia178 and hy-
pertension.179 Moreover, beetroot juice ingestion was associated with a reduction in
blood pressure in normotensive180 and hypertensive people,181 and in older adults.182

Interestingly, higher baseline blood pressure, being overweight or obese, and male
sex were associated with better response to beetroot juice supplementation.183 Beet-
root juice consumption may also increase NO bioavailability in upper and lower air-
ways, which boosts innate immune defense and protects against respiratory tract
infections.184 In people with chronic obstructive pulmonary disease, nitrate-rich beet-
root juice improves exercise tolerance as measured by the Borg Rating of Perceived
Exertion scale.185
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Accumulating evidence in preclinical models of inflammatory diseases suggests
that inorganic nitrate and nitrite may modulate the inflammatory response by acting
on neutrophil and monocyte/macrophage recruitment and activation.171 Only a few
studies have investigated the effects of beetroot juice ingestion on the inflammatory
response in humans. In healthy older volunteers and individuals with hypercholester-
olemia, both acute and medium-term supplementation with beetroot juice was asso-
ciated with a reduction in proinflammatory monocyte-platelets aggregates.178,186

Moreover, a decrease in neutrophil activation was observed within 3 hours of beetroot
juice supplementation.186

Besides nitrate, beetroot juice also contains a plethora of bioactive ingredients with
antioxidant and anti-inflammatory properties, including polyphenols, carotenoids,
betalains, and organic acids.169,187 In particular, betalains, a class of natural pigments
that includes the red-violet betacyanins and the yellow-orange betaxanthins,188 have
gainedmuch attention owing to their ability of stimulating the activity of antioxidant en-
zymes and inhibiting the inflammatory cascade.169,187 Betanin, the most abundant
betalain found in beetroots, may directly scavenge reactive oxygen species189 and in-
crease the expression of catalase, superoxide dismutase, and glutathione peroxidase
through the activation of Nrf2/antioxidant response element pathway.190 Moreover,
betanin and its derivatives may exert anti-inflammatory effects through the inhibition
of COX2191 and lipoxygenase 1.192 Betanin may also inhibit NF-kB, a master regulator
of the inflammatory response.193 Very few studies have investigated the anti-
inflammatory effect of betanins in humans.194 Ten-day supplementation with
betalain-rich beetroot extracts reduced the concentration of TNF-a and IL-6 in people
with osteoarthritis.195 Consumption of both raw beetroot juice and cooked beets
reduced intracellular adhesion molecule-1, vascular endothelial adhesion molecule-
1, CRP, IL-6, E-selectin, and TNF-a in adults with hypertension.181 Although both sup-
plementation forms were effective, people consuming beetroot juice showed greater
improvement in systemic inflammatory parameters, as well as in blood pressure and
endothelial function.181 Collectively, these findings suggest that beetroot juice may
have multiple beneficial effects on crucial physiologic functions that could be
exploited against COVID-19 and its systemic consequences.196

Further studies are needed to investigate the effects of supplementation with beet-
root juice and/or its derivatives in patients with COVID-19 across disease stages and
during recovery.

Ongoing Studies

Based on the putative beneficial effects against several processes involved in long
COVID, a panel of bioactive foods, nutraceuticals, and supplements is being tested
in the outpatient service at the Fondazione Policlinico A. Gemelli IRCSS (Rome, Italy)
(Fig. 1)
A combination of amino acids and malic, succinic, and citric acid (Amino-Ther Pro;

Professional Dietetics, Milan, Italy) has been tested in patients with long COVID with
malnutrition and fatigue. Preliminary data on the first 20 patients show improvement
in nutritional status and better performance on the handgrip strength and five-
repetition chair-stand test after 2 months of treatment (The Gemelli Against COVID-
19 Post-Acute Care Study Group, 2022).
In a second pilot study, patients with persistent fatigue received a combination of

amino acids and micronutrients (including magnesium, selenium, iron) (ApportAl;
PharmaNutra, Pisa, Italy). After 6 weeks of treatment, muscle mass and strength
improved with a significant reduction of inflammatory markers (CRP and IL-6) (The
Gemelli Against COVID-19 Post-Acute Care Study Group, 2022).



Fig. 1. Long COVID pathophysiological processes potentially targeted by the nutraceuticals
and dietary supplements described in the study.
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L-Arginine plus vitamin C (Bioarginina C; Farmaceutici Damor, Naples, Italy) has
been tested in COVID-19 survivors with persistent fatigue. Preliminary results on the
first 46 patients treated with Bioarginina C indicate reduction in fatigue, better physical
performance, and better quality of life (The Gemelli Against COVID-19 Post-Acute
Care Study Group, 2022).
A combination of bromelain and troxerutin (BromeREX; Pharma G, Anzio, Italy) has

been tested in patients with long COVID with increased inflammation. In the first 20
participants treated with bromelain and troxerutin, attenuation of post–COVID-19
symptoms and significant reduction of serum CRP levels were observed (The Gemelli
Against COVID-19 Post-Acute Care Study Group, 2022).
A combination of lactoferrin and L paracasei (Pirv-F20; Farmagens Health Care,

Rome, Italy) has been administered to persons with long COVID. Preliminary data sug-
gest a significant reduction in inflammatory status and improvement in fatigue, dys-
pnea, and joint and muscle pain (The Gemelli Against COVID-19 Post-Acute Care
Study Group, 2022).
A pollen-based herbal extract (Femal; Shionogi, Milan, Italy) has been prescribed to

women with persistent fatigue, sleep disorders, and cognitive distress (brain fog)
following an acute COVID-19 episode. A substantial improvement in persistent symp-
toms and quality has been observed (The Gemelli Against COVID-19 Post-Acute Care
Study Group, 2022).



Tosato et al578
A beetroot juice (Aureli Mario S.S. Agricola, Ortucchio, Italy) with a well-
characterized phytochemical profile197 has been tested in COVID-19 survivors
with fatigue. Changes in physical performance (6-minute walking test, handgrip
strength), endothelial function, inflammatory status, urinary and fecal metabolomics,
and metagenomics are being evaluated. Preliminary data suggest that beetroot juice
supplementation induces favorable immune and metabolic changes (The Gemelli
Against COVID-19 Post-Acute Care Study Group, 2022).
Results from the authors’ ongoing studies may indicate novel strategies for theman-

agement of long COVID as part of multimodal interventions. An example of such inter-
ventions combining personalized nutrition counseling and physical activity was
successfully in the Sarcopenia and Physical fRailty IN older people: multi-
componenT Treatment strategies" (SPRINTT) project.198 A multimodel intervention
inspired by SPRINTT is currently being implemented at the authors’ outpatient
clinic.199

SUMMARY

Long COVID affects a large share of persons of all age groups but may be especially
burdensome for vulnerable older adults. Long COVID has a complex pathophysiology
encompassing inflammatory and autoimmune processes, perturbations in metabolic
pathways, and alterations in endothelial function and redox homeostasis.
The management of long COVID requires a multidimensional approach that should

include a comprehensive nutritional assessment. Several food bioactive com-
pounds, nutraceuticals, and supplements may target specific pathways involved in
long COVID and may, therefore, be used as an adjunctive therapy to manage the
condition.

CLINICS CARE POINTS
� Long COVID affects a large share of persons of all age groups but may be especially
burdensome for vulnerable older adults.

� Long COVID has a complex pathophysiology, and its management requires a
multidimensional approach that should include a nutritional assessment.

� Food bioactive compounds and nutraceuticals may target specific pathways involved in long
COVID.
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120. Siqueiros-Cendón T, Arévalo-Gallegos S, Iglesias-Figueroa BF, et al. Immuno-
modulatory effects of lactoferrin. Acta Pharmacol Sin 2014;35(5):557–66.

121. Bruni N, Capucchio MT, Biasibetti E, et al. Antimicrobial activity of lactoferrin-
related peptides and applications in human and veterinary medicine. Molecules
2016;21(6). https://doi.org/10.3390/MOLECULES21060752.

122. Valenti P, Antonini G. Lactoferrin: an important host defence against microbial
and viral attack. Cell Mol Life Sci 2005;62(22):2576–87.

123. Pietrantoni A, Dofrelli E, Tinari A, et al. Bovine lactoferrin inhibits influenza A virus
induced programmed cell death in vitro. Biometals 2010;23(3):465–75.

124. Beljaars L, Van Der Strate BWA, Bakker HI, et al. Inhibition of cytomegalovirus
infection by lactoferrin in vitro and in vivo. Antivir Res 2004;63(3):197–208.

125. Andersen JH, Jenssen H, Sandvik K, et al. Anti-HSV activity of lactoferrin and
lactoferricin is dependent on the presence of heparan sulphate at the cell sur-
face. J Med Virol 2004;74(2):262–71.

126. Berlutti F, Pantanella F, Natalizi T, et al. Antiviral properties of lactoferrin–a natural
immunity molecule. Molecules 2011;16(8):6992–7012.

127. Chang R, Ng TB, Sun WZ. Lactoferrin as potential preventative and adjunct
treatment for COVID-19. Int J Antimicrob Agents 2020;56(3). https://doi.org/
10.1016/J.IJANTIMICAG.2020.106118.

128. Campione E, Lanna C, Cosio T, et al. Lactoferrin against SARS-CoV-2: in vitro
and in silico evidences. Front Pharmacol 2021;12. https://doi.org/10.3389/
FPHAR.2021.666600.

129. Rosa L, Cutone A, Lepanto MS, et al. Lactoferrin: a natural glycoprotein involved
in iron and inflammatory homeostasis. Int J Mol Sci 2017;18(9). https://doi.org/
10.3390/IJMS18091985.

130. Campione E, Lanna C, Cosio T, et al. Lactoferrin as antiviral treatment in COVID-
19 management: preliminary evidence. Int J Environ Res Public Health 2021;
18(20). https://doi.org/10.3390/IJERPH182010985.

131. Zhong P, Xu J, Yang D, et al. COVID-19-associated gastrointestinal and liver
injury: clinical features and potential mechanisms. Signal Transduct Target
Ther 2020;5(1). https://doi.org/10.1038/S41392-020-00373-7.

132. Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in
faecal samples. Lancet Gastroenterol Hepatol 2020;5(5):434–5.

133. Yeoh YK, Zuo T, Lui GCY, et al. Gut microbiota composition reflects disease
severity and dysfunctional immune responses in patients with COVID-19. Gut
2021;70(4):698–706.

134. Hussain I, Cher GLY, Abid MA, et al. Role of gut microbiome in COVID-19: an
insight into pathogenesis and therapeutic potential. Front Immunol 2021;12.
https://doi.org/10.3389/FIMMU.2021.765965.

135. Liu Q, Mak JWY, Su Q, et al. Gut microbiota dynamics in a prospective cohort of
patients with post-acute COVID-19 syndrome. Gut 2022;71(3):544–52.

http://refhub.elsevier.com/S0749-0690(22)00022-2/sref117
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref117
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref117
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref118
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref118
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref118
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref119
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref119
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref119
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref120
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref120
https://doi.org/10.3390/MOLECULES21060752
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref122
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref122
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref123
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref123
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref124
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref124
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref125
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref125
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref125
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref126
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref126
https://doi.org/10.1016/J.IJANTIMICAG.2020.106118
https://doi.org/10.1016/J.IJANTIMICAG.2020.106118
https://doi.org/10.3389/FPHAR.2021.666600
https://doi.org/10.3389/FPHAR.2021.666600
https://doi.org/10.3390/IJMS18091985
https://doi.org/10.3390/IJMS18091985
https://doi.org/10.3390/IJERPH182010985
https://doi.org/10.1038/S41392-020-00373-7
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref132
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref132
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref133
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref133
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref133
https://doi.org/10.3389/FIMMU.2021.765965
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref135
http://refhub.elsevier.com/S0749-0690(22)00022-2/sref135


Nutraceuticals for Older Adults with Long COVID 587
136. Hill C, Guarner F, Reid G, et al. Expert consensus document. the international
scientific association for probiotics and Prebiotics consensus statement on
the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol
Hepatol 2014;11(8):506–14.

137. Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal
Immunol 2019;12(4):843–50.

138. Yahfoufi N, Mallet JF, Graham E, et al. Role of probiotics and prebiotics in immu-
nomodulation. Curr Opin Food Sci 2018;20:82–91.

139. Cristofori F, Dargenio VN, Dargenio C, et al. Anti-inflammatory and immunomod-
ulatory effects of probiotics in gut inflammation: a door to the body. Front Immu-
nol 2021;12. https://doi.org/10.3389/FIMMU.2021.578386.

140. Wang Y, Wu Y, Wang Y, et al. Antioxidant properties of probiotic bacteria. Nutri-
ents 2017;9(5). https://doi.org/10.3390/NU9050521.

141. Mirashrafi S, Moravejolahkami AR, Balouch Zehi Z, et al. The efficacy of probi-
otics on virus titres and antibody production in virus diseases: a systematic re-
view on recent evidence for COVID-19 treatment. Clin Nutr ESPEN 2021;46:1–8.
https://doi.org/10.1016/J.CLNESP.2021.10.016.

142. Rather IA, Choi SB, Kamli MR, et al. Potential adjuvant therapeutic effect of
lactobacillus plantarum probio-88 postbiotics against SARS-COV-2. Vaccines
2021;9(10). https://doi.org/10.3390/VACCINES9101067.

143. Salaris C, Scarpa M, Elli M, et al. Lacticaseibacillus paracasei DG enhances the
lactoferrin anti-SARS-CoV-2 response in Caco-2 cells. Gut Microbes 2021;13(1).
https://doi.org/10.1080/19490976.2021.1961970.

144. Nguyen QV, Chong LC, Hor YY, et al. Role of probiotics in the management of
COVID-19: a computational perspective. Nutrients 2022;14(2). https://doi.org/
10.3390/NU14020274.

145. d’Ettorre G, Ceccarelli G, Marazzato M, et al. Challenges in the management of
SARS-CoV2 infection: the role of oral bacteriotherapy as complementary thera-
peutic strategy to avoid the progression of COVID-19. Front Med 2020;7. https://
doi.org/10.3389/FMED.2020.00389.

146. Li Q, Cheng F, Xu Q, et al. The role of probiotics in coronavirus disease-19 infec-
tion in Wuhan: a retrospective study of 311 severe patients. Int Immunopharma-
col 2021;95. https://doi.org/10.1016/J.INTIMP.2021.107531.

147. Gutiérrez-Castrellón P, Gandara-Martı́ T, Abreu Y Abreu AT, et al. Probiotic im-
proves symptomatic and viral clearance in Covid19 outpatients: a randomized,
quadruple-blinded, placebo-controlled trial. Gut Microbes 2022;14(1). https://
doi.org/10.1080/19490976.2021.2018899.

148. Bouillon R, Marcocci C, Carmeliet G, et al. Skeletal and extraskeletal actions of
vitamin D: current evidence and outstanding questions. Endocr Rev 2019;40(4):
1109–51.

149. Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health
and disease. Nutrients 2020;12(7):1–28.

150. Gombart AF. The vitamin D-antimicrobial peptide pathway and its role in protec-
tion against infection. Future Microbiol 2009;4(9):1151–65.

151. Rak K, Bronkowska M. Immunomodulatory effect of vitamin D and its potential
role in the prevention and treatment of type 1 diabetes mellitus-a narrative re-
view. Molecules 2018;24(1). https://doi.org/10.3390/MOLECULES24010053.
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