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Trigonal quasicrystalline states 
in 30◦ rotated double moiré 
superlattices
J. A. Crosse1,2 & Pilkyung Moon 1,2,3*

We study the lattice configuration and electronic structure of a double moiré superlattice, which is 
composed of a graphene layer encapsulated by two other layers in a way such that the two hexagonal 
moiré patterns are arranged in a dodecagonal quasicrystalline configuration. We show that there are 
between 0 and 4 such configurations depending on the lattice mismatch between graphene and the 
encapsulating layer. We then reveal the resonant interaction, which is distinct from the conventional 
2-, 3-, 4-wave mixing of moiré superlattices, that brings together and hybridizes twelve degenerate 
Bloch states of monolayer graphene. These states do not fully satisfy the dodecagonal quasicrystalline 
rotational symmetry due to the symmetry of the wave vectors involved. Instead, their wave functions 
exhibit trigonal quasicrystalline order, which lacks inversion symmetry, at the energies much closer to 
the charge neutrality point of graphene.

When two or more two-dimensional atomic layers which do not share a common periodicity are overlaid, an 
additional periodicity in the form of moiré interference pattern  emerges1. The electronic structures of such 
systems—for example twisted bilayer  graphene2–6, graphene on hexagonal boron nitride (hBN)7–13, and twisted 
bilayer transition metal  dichalcogenides14,15 with small twist angles θ ≈ 1◦—have been investigated extensively. 
These materials have very long moiré superlattice vectors LMi  ( i = 1, 2) , and, hence, exhibit many exotic proper-
ties such as the Fermi velocity  renormalization2,3, mini Dirac points  formation11,13, Hofstadter’s  butterfly5,7–9,16, 
the emergence of  superconductivity17, correlated  phases18, and orbital magnetic  moment19.

A special case occurs when two hexagonal lattices are overlapped at θ = 30◦ (Fig. 1a). In this instance the 
atomic arrangement is mapped on to a quasicrystalline lattice, which is ordered but not periodic, with a 12-fold 
rotational  symmetry20–28. Owing to the momentum  mismatch21, quasicrystalline twisted bilayer graphene exhibits 
the electronic structure of almost decoupled bilayer graphene at most energy ranges. Nevertheless, it also hosts 
unique electronic states which satisfy the 12-fold rotational  symmetry22,27,28. Such quasicrystalline states arise 
from the resonant interaction between the states at specific wave vectors via the rotational symmetry of the 
quasicrystal as well as the translational symmetry of the constituent atomic  layers22,28. The red and blue hexa-
gons in Fig. 1b show the first Brillouin zones of the two lattices. The numbered points and dashed lines show the 
wave vectors of the constituent monolayer states and the interlayer interaction which form the quasicrystalline 
resonant states. Such quasicrystalline states exhibit a wave amplitude distributed selectively on a limited number 
of sites in a characteristic 12-fold rotationally symmetric pattern (Fig. 1c). These states, however, appear at the 
energies (about ±1.7 eV) - far from the charge neutrality point of graphene. Similar quasicrystalline resonant 
states also arise in any bilayer stacked in a quasicrystalline configuration if all the dominant interlayer interac-
tions occur between the atomic orbitals that have the same magnetic quantum  number28. Thus, even transition 
metal dichalcogenides (TMDC) or square lattices can show the quasicrystalline states.

Recently, rapid progress has been made in stacking more than two incommensurate atomic layers and a num-
ber of studies have investigated the effects of multiple moiré superlattice potentials on the electronic structure. 
The most notable example among them is a double moiré system, which is composed of a graphene layer encap-
sulated by hBN layers (BN/G/BN)29,30. The lattice mismatch between graphene and hBN results in a hexagonal 
moiré superlattice potential with a superlattice period LMi  ( i = 1, 2 ) that can be as long as 14 nm (Fig. 2a). Such a 
long period [which results in short superlattice reciprocal lattice vectors, Fig. 2b] carves the graphene electronic 
structures into superlattice bands with an energy scale much smaller than that of pristine graphene (Fig. 2c)13. 
Recently, Leconte and Jung show that BN/G/BN at specific configurations can host two hexagonal moiré pat-
terns overlaid at a twist angle of 30◦ , and claimed that the system hosts quasicrystalline electronic  structure31. 

OPEN

1New York University Shanghai, Arts and Sciences, Shanghai 200122, China. 2NYU-ECNU Institute of Physics 
at NYU Shanghai, Shanghai 200062, China. 3Department of Physics, New York University, New York 10003, 
USA. *email: pilkyung.moon@nyu.edu

http://orcid.org/0000-0003-3994-4255
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-91044-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11548  | https://doi.org/10.1038/s41598-021-91044-2

www.nature.com/scientificreports/

However, the interaction mechanism responsible for such unique electronic states in BN/G/BN, as well as the 
actual electronic band structure, and whether the wave functions actually satisfy the symmetry of the quasicrystal 
have not yet been investigated.

Here, we investigate the conditions where the two hexagonal moiré patterns in double moiré superlattice are 
arranged in a dodecagonal (12-fold) quasicrystalline configuration. Then we reveal the resonant interactions 
that bring together and hybridize twelve degenerate Bloch states of monolayer graphene and show that such 
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Figure 1.  (a) Lattice structures of quasicrystalline twisted bilayer  graphene21,22,28. The red and blue hexagons 
represent the unit cells of each layer. (b) The wave vectors of the twelve monolayer states Cn ( n = 0, 1, . . . , 11 ) 
which hybridize to quasicrystalline resonant states. The red and blue hexagons, and the red and blue arrows [ a∗

i
 

and ã∗
i
 ( i = 1, 2 )] represent the first Brillouin zones and the reciprocal lattice vectors of each layer. Due to the 

symmetry, these twelve states are all degenerate in energy, and the dashed lines show that these twelve states 
interact by the reciprocal lattice vectors of the two layers. Note that these twelve states are centered around the 
Ŵ point. (c) Local density of states of the quasicrystalline resonant states. The area of the circle is proportional 
to the squared wave amplitude, and red and blue circles represent the states in the upper and the lower layers, 
respectively.
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Figure 2.  (a) Lattice structure of graphene on  hBN8,13. The black and red hexagons represent the unit cells 
of graphene and hBN, respectively, and θ shows the relative orientation. The green hexagons and the vectors 
L
M
i

 ( i = 1, 2 ) represent the unit cells and superlattice vectors of the moiré superlattice, respectively. Here, 
the lattice constant of hBN is drawn 15% larger than that of graphene to enhance the visibility of the moiré 
pattern (actual difference is about 1.79%). Inset shows the lattice configuration of graphene; the black and 
white circles represent the A and B sublattices, ai and τX show the primitive lattice vectors and the coordinates 
of the sublattices, respectively. (b) Superlattice Brillouin zone (blue hexagon) near the Dirac point (the region 
surrounded by blue lines in the inset) and the reciprocal lattice vectors GM

i
 of graphene on hBN. X and Y show 

the Brillouin zone corners where mini Dirac point appear, and φ shows the relative orientation of GM
1  to the 

reciprocal lattice vector a∗1 of pristine graphene. Inset shows the first Brillouin zone of graphene, where the black 
and white circles represent the three equivalent Dirac points, K and K ′ , respectively. (c) The band dispersion of 
the first two bands in the conduction and valence bands of graphene on hBN with θ = 0◦ , which show the band 
opening at the primary and the mini Dirac points.
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interactions reconstruct the band dispersion of pristine graphene at these wave vectors. Compared to the resonant 
states of quasicrystalline twisted bilayer graphene where the actual atomic lattices are arranged in a dodecagonal 
 configuration22,27,28, the resonant states of BN/G/BN appear at the energies much closer to the charge neutrality 
point of graphene. However, their wave functions show the quasicrystalline order with a three-fold rotational 
symmetry rather than fully satisfying the 12-fold rotational symmetry of the double moiré pattern.

Methods
Hexagonal moiré superlattices stacked at 30◦. We consider a trilayer system composed of graphene 
sandwiched by hBN. Both graphene and hBN are two-dimensional honeycomb lattice whose unit cell comprises 
of two (A and B) sublattices. Graphene has carbon atoms in both sublattices, while hBN has nitrogen atom on 
A site and boron atom on B site. The lattice constant of hBN, ã ≈ 0.2504 nm32, is slightly larger than that of 
graphene, a ≈ 0.246 nm , and we use a constant interlayer distance of d = 0.322 nm between the adjacent two 
 layers33. Here, we do not consider the lattice relaxation between graphene and  hBN34,35, since the effects of such 
relaxation on the electronic structures is an order of a few meV. Nevertheless, our effective theory that respects 
the lattice symmetry is able to properly describe both the gap at the primary Dirac point and the asymmetric gap 
opening at the two inequivalent mini Dirac  points13, as well as the orbital magnetism of the  structure19.

We define the atomic structure of the double moiré superlattices by starting from a nonrotated arrangement, 
where the hexagon center of the three layers share the same in-plane position (x, y) = (0, 0) , and the A-B bonds 
are parallel to each other. We choose a1 = a(1, 0) and a2 = a(1/2,

√
3/2) ( a = 0.246 nm ) as the primitive lattice 

vectors of graphene, and τA = −τ 1 and τB = τ 1 [ τ 1 = −(1/3)(a1 − 2a2) ] as the coordinates of the A and B sub-
lattices in the unit cell. The primitive lattice vectors of the top ( l = t ) and the bottom ( l = b ) hBN layers become 
ã
(l)
i = Mai ( i = 1, 2 ), where M = (1+ ε)I represents the isotropic expansion by the factor 1+ ε = ã/a ≈ 1.0179 , 

and τ (l)N = −τ
(l)
1 ± dez and τ (l)B = τ

(l)
1 ± dez [ τ (l)1 = −(1/3)(ã

(l)
1 − 2ã

(l)
2 ) ], where the upper and lower signs are 

for the top and bottom layers, respectively, represent the coordinates of the nitrogen and boron atoms in the unit 
cell (Note that we defined the sublattice coordinates τX ( X = A,B ) and τ X̃(l) ( X̃ = N ,B , l = t, b ) differently from 
those in our previous  work13, to make the points with the highest rotational symmetry, i.e., the hexagonal center, 
as the center of the system. However, both definitions keep the interaction matrices (Eq. 9) the same.). We define 
the reciprocal lattice vectors a∗i  and ã∗i  for graphene and hBN, respectively, so as to satisfy ai · a∗j = ãi · ã∗j = 2πδij . 
We then rotate the top and bottom hBN layers with respect to graphene by arbitrary angles θ(t) and θ(b) around 
the origin, respectively. From now on, we use “BN/G/BN” for this configuration only. Due to the symmetry of 
the lattice, 0 ≤ θ(l) ≤ 30◦ ( l ∈ t, b ) spans all the independent configurations.

Figure 3a shows the moiré interference patterns which arise from the lattice mismatch between the top hBN 
and graphene (left side), and also that from the bottom hBN and graphene (right side), respectively, and Fig. 3b 
shows the atomic configuration of the three layers. The lattice vectors LM,(l)

i  and the reciprocal lattice period 
G
M,(l)
i  ( i = 1, 2 ) of each moiré superlattice are

respectively, where c = (1+ ε)/
√

ε2 + 2(1+ ε)(1− cos θ(l)) , φ(l) = arctan[− sin θ(l)/(1+ ε − cos θ(l))] , and 
R(φ) is a rotation by φ13,36. We plot |LMi | and |GM

i | against θ in Fig. 3c in red and blue lines, respectively.
Now, we will find the configuration where the unit cells of the two hexagonal moiré superlattices have the 

same size and are overlaid with a relative twist angle of 30◦ . In such a configuration, the overlaid two hex-
agonal superlattices are mapped onto a 12-fold rotationally symmetric quasicrystalline lattice without any 
translational symmetry, as first shown by  Stampfli37. From Eq. (1), the former and the latter conditions give 
|θ(t)| = |θ(b)| and φ(t) − φ(b) ≡ 30◦ (mod 60◦) , which can be simultaneously satisfied by θ(t) = −θ(b) and 
φ(t) = −φ(b) ≡ 15◦ (mod 30◦) . Figure 3d shows φ as a function of θ for various ε . The red, green, blue lines cor-
respond to ε > 0 , ε = 0 , ε < 0 , respectively, and the thick black line corresponds to hBN. The two hexagonal 
moiré superlattices form a dodecagonal quasicrystalline configuration at θ where the line and the dashed hori-
zontal lines cross. If the lattice constant of the top and bottom layers is the same as that of the middle, graphene 
layer, i.e., ε = 0 , then the two hexagonal moiré patterns cannot have a relative twist angle of 30◦ . On the other 
hands, the systems with ε < 0 , 0 < ε < 0.0353 , and ε ≥ 0.0353 have three, four, and two θ which satisfy the 
conditions. When the top and bottom layers are hBN, i.e., ε ≈ 0.0179 , the four angles are θ1 = 0.274◦ , θ2 = 1.03◦ , 
θ3 = 4.48◦ , θ4 = 25.5◦ , and the corresponding |GM

i | are 0.0182, 0.0251, 0.0795, 0.438 times the |a∗i | . Note that θ4 
gives very long |GM

i | , and accordingly very short |LMi | , which competes with the length scale of monolayer gra-
phene. By choosing θ(t) = −θi and θ(b) = θi ( i = 1, 2, 3, 4 ), we get φ(t) = −φi and φ(b) = φi , where φ1 = −15◦ , 
φ2 = −45◦ , and φ3 = φ4 = −75◦ . Then, the twelve moiré reciprocal lattice vectors

where GM,(l)
3 = −G

M,(l)
1 − G

M,(l)
2  , are arranged in 12-fold rotational symmetry (Fig. 4a), just like the reciprocal 

lattice vectors in quasicrystalline twisted bilayer graphene that give rise to the resonant states (Fig. 1b)22.
It should be noted that, however, although the overlap of the two moiré interference patterns are mapped onto 

a quasicrystalline tiling with 12-fold rotational symmetry, the actual lattice structure belongs to the symmetry 
group D3 ; it is invariant under C3 rotation about the axis perpendicular to the xy-plane and under three C2 rota-
tion about the axes in the plane, but lacks inversion symmetry. If we replace the top and bottom hBN layers by 
a material having the same types of atoms in both sublattices, then the lattice has the symmetry group D6 which 
is still lower than the 12-fold rotational symmetry.

(1)
L
M,(l)
i = cR(φ(l))ai ,

G
M,(l)
i = c−1R(φ(l))a∗i ,

(2){±G
M,(l)
i | i = 1, 2, 3, l = t, b},
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Hamiltonian of double moiré superlattices. The total tight-binding Hamiltonian of the double moiré 
superlattice is expressed as

where HG and H(t)
hBN ( H(b)

hBN ) represent the Hamiltonian for the intrinsic monolayer graphene and the top (bot-
tom) hBN, respectively, U (t) ( U (b) ) is for the interlayer coupling between the graphene and the top (bottom) hBN. 
However, since the hBN electronic bands are far from the charge neutrality point of graphene, we can project 
the total Hamiltonian on to the Bloch bases of graphene pz orbitals at each sublattice,

where |RX� is the atomic orbital at the site RX = n1a1 + n2a2 + τX ( ni ∈ Z , X = A,B ), k is the two-dimensional 
Bloch wave vectors and N = Stot/S is the number of the graphene unit cells with an area S = (

√
3/2)a2 in the total 

system area Stot . Then, the Hamiltonian near the Dirac point Kξ = −ξ(2a∗1 + a∗2 )/3 of graphene, where ξ = ±1 
for K and K ′ , respectively, is reduced to a 2× 2  form13 (Note that the theoretical model can be easily expanded 
to the systems with the encapsulating layers other than hBN; e.g., it is straightforward to expand the model to 
the atomic layers of which energy bands are close to the charge neutrality point of graphene by explicitly using 
the Bloch bases for those layers.),

(3)H = HG +H
(t)
hBN +H

(b)
hBN + U (t) + U (l),

(4)|k,X� =
1√
N

∑

RX

eik·RX |RX�
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Figure 3.  Lattice structure of graphene (gray hexagons) encapsulated by the top (red) and bottom (blue) 
hBN layers with twist angles of θ(t) and θ(b) , respectively. Green hexagons show the unit cells of the moiré 
superlattices which are formed between the graphene and each of the hBN layer. We draw only the top (bottom) 
hBN layer at the left (right) side to enhance the visibility of the pattern. The two hexagonal superlattice unit 
cells are arranged at a relative angle of 30◦ , and form a dodecagonal quasicrystalline pattern when overlaid. (b) 
Atomic configuration of the three layers which shows the D3 point group symmetry. (c) The lengths of the moiré 
lattice vectors (red line) and reciprocal lattice vectors (blue line) plotted against θ . The circles correspond to the 
values at the configuration shown in Fig. 3(a). (d) The angle φ between the primitive vectors (both the real-space 
and the reciprocal lattice vectors) of graphene and moiré superlattice plotted against the twist angle θ between 
the two lattices. The red, green and blue lines show the plot for the systems with ε > 0 , ε = 0 and ε < 0 , 
respectively. The black line corresponds to that between graphene and hBN ( ε = 0.0179 ). Black circles show the 
configuration that can form the quasicrystalline arrangement of the moiré patterns if the top and bottom hBN 
are rotated by −θ and θ from graphene, respectively.
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The intralayer matrix elements of graphene are given by

where L = n1a1 + n2a2 , τX ′X = τX ′ − τX , and

is the transfer integral between two pz orbitals at a relative vector R5,38, V0
ppπ ≈ −3.38 eV (Note that the value 

of V0
ppπ ≈ −3.38 eV used in this work is different from that used in the previous works ( V0

ppπ ≈ −2.7 eV ) on 
the twisted bilayer  graphene6,13,39 and graphene on hexagonal boron  nitride13. In this work, we scaled V0

ppπ by a 
factor of 1.25 to compensate the deviation of the Fermi velocity of a pristine graphene, which affects the entire 
energy scale, due to the summation over sites in the hopping range.), V0

ppσ ≈ 0.48 eV , and r0 ≈ 0.0453 nm6,39. 
The effective potentials by hBN to graphene, V (l)

hBN , are explicitly written  as13 (Note that we defined the sublattice 
coordinates τX ( X = A,B ) and τ X̃(l) ( X̃ = N ,B , l = t, b ) differently from those in our previous  work13, to make 
the points with the highest rotational symmetry, i.e., the hexagonal center, as the center of the system. However, 
both definitions keep the interaction matrices (Eq. 9) the same.)

where we truncated much weaker terms O(u40) which are associated with longer momentum difference. Here,

and

(5)
H̃ = HG + U (t)†(−H

(t)
hBN)

−1U (t) + U (b)†(−H
(b)
hBN)

−1U (b)

≡ HG + V
(t)
hBN + V

(b)
hBN.

(6)
HG =

(

hAA hAB
hBA hBB

)

,

hX,X ′(k) =
∑

L

−T(L + τX ′X)e
−ik·(L+τX′X ),

(7)
−T(R) = Vppπ

[

1−
(

R · ez
R

)2
]

+ Vppσ

(

R · ez
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,
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√
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Figure 4.  (a) Relative orientation of the moiré reciprocal lattice vectors of the lower moiré superlattice ( GM,(b)
i

 , 
blue arrows) for θi ( i = 1, 2, 3, 4 ) with respect to the direction of the vectors of the upper moiré superlattice 
( GM,(t)

i
 , red arrows). (b) Relative direction of the wave vectors involved in the resonant coupling [showing the 

number n of Cn , Eq. (14)] with respect to the direction of GM,(t)
i

 . In both figures, note that the actual direction of 
G
M,(t)
1  is φ rotated from a∗1 (Eq. 1).
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where ω = e2π i/3 , and u0 ≈ −t(Kξ ) ≈ 0.152 eV is the in-plane Fourier transformation of the transfer integral 
between two pz orbitals (Eq. 7)

at q near the Dirac  point5,38. We will discuss more about u0 later. By using VC = 0 , VN = −1.40 eV , and 
VB = 3.34 eV , as the on-site potential of carbon, nitrogen, and boron atoms,  respectively40, we get V0 ≈ 0.0289 eV , 
V1 ≈ 0.0210 eV , and ψ ≈ −0.29 (rad). If we replace the top and bottom hBN layers by a material having the same 
types of atoms in both sublattices, i.e., if VN = VB , then ψ ≡ π/3 (mod π) . The symmetry of such a structure 
increases to D6 , and the reduced Hamiltonian H̃ gains the inversion symmetry

It is straightforward to show that the reduced Hamiltonian H̃ spans the subspace

for any k0 in the momentum space. To investigate the electronic structures near k0 , for any practical calculation, 
we only need a limited number of bases around k0 inside a certain cut-off circle kc , because the interaction with 
the states far from k0 is very weak due to multiple scattering. We can, then, obtain the energy eigenvalues at all 
the wave vectors in Eq. (13) by diagonalizing the Hamiltonian matrix within the finite bases, and the quasiband 
dispersion of the system by plotting the energy levels against k0 . Here the wave number k0 works like the crystal 
momentum for the periodic system, and so it can be called the quasicrystal momentum.

Quasicrystalline resonant interaction by two moiré superlattice potentials. In addition to the 
typical 2- and 3-wave interaction by each moiré superlattice (Fig. 2c)13, the 12-fold rotational symmetry of the 
wave vectors which couple the monolayer states (Eq. 2) as well as the translational symmetries of the two moiré 
superlattices enables a unique interaction between twelve degenerate monolayer states. Such a resonant coupling 
occurs at the twelve symmetric points

shown in Fig. 4b, where θn = 5π
12 + 7nπ

6 − φi ( n = 0, 1, 2, · · · , 11 ). While the twelve waves which constitute the 
resonant states in quasicrystalline twisted bilayer graphene are centered around the Ŵ  point28, the waves involved 
in the resonant interaction in BN/G/BN are centered around the Dirac point Kξ . These twelve states are degener-
ate if we ignore the small trigonal warping in this low energy regime. We see that the states at Ci strongly interact 
with the states at Ci−1 and Ci+1 by the reciprocal lattice vectors of the top and bottom moiré superlattices. The 
interaction with states at any other k can be safely neglected since the interaction strength is much less or the 
two states are not degenerate in most cases. Hence, these states form one-dimensional monatomic chain with 
twelve sites and two pseudospins whose interaction is described by the moiré potential (Eq. 5).

It should be noted that this is not the only resonant coupling in this system. As shown in previous work on 
quasicrystalline twisted bilayer graphene (e.g., Appendix A in Ref.28), there are more sets of states, with differ-
ent wave numbers, that show the resonant interaction between the constituent monolayer states. However, the 
set in Fig. 4b is associated with the strongest interaction |t(q)| and, hence, gives the largest energy separation 
between the hybridized states.

Results and discussion
By using the Bloch bases ( |k(0)� , |k(1)� , · · · , |k(11)� ) near the twelve wave vectors k(n) = Cn + k0 , where |k(n)� 
is (|k(n),A�, η|k(n),B�) with η = ωξ×floor(n/4) , we can express the Hamiltonian of the resonant ring Hξ

ring by a 
24× 24 matrix

Here

(11)t(q) =
1

S

∫

T(r + zX̃Xez)e
−iq·rdr
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∑
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m
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i G
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and

for θ1 , θ2 , and both θ3 and θ4 , respectively.
Obviously, Eq. (15) is symmetric under rotation by four span of the ring (i.e., moving Cn to Cn+4 ), which actu-

ally corresponds to the [R(7π/6)]4 ( 120◦ rotation) of the entire system. This means that the resonant states of the 
BN/G/BN have a three-fold rotational symmetry, which is much lower than the 12-fold rotational symmetry of 
the double moiré patterns of the system. This Hamiltonian cannot obtain a six-fold rotational symmetry, even if 
we replace the top and bottom hBN layers by a material having the same types of atoms in both sublattices (e.g., 
VN = VB ), since (i) atomic structure lacks 12-fold rotational symmetry and (ii) the 12 wave vectors involved are 
centered at Kξ which has three-fold rotational symmetry (Fig. 2b). Thus, the relevant terms cannot be gauged out 
by a similarity transformation. There is, however, an exception in the systems with VN = VB ; the wave functions 
at k0 = 0 , and only at this k0 , show a six-fold rotational symmetry (Fig. 6d–f).

The interlayer interaction strength u0 (Eq. 10) deviates from −t(Kξ ) as the distance between k(n) and Kξ 
increases. This effect becomes obvious in the system with a longer |GM,(l)

i | , e.g., in BN/G/BN with θ4 . However, 
what is more important is that, the u0 associated with the interaction between the neighboring Bloch states |k(n)� 
( n = 0, 1, · · · , 11 ) [dashed lines in Fig. 4b] are not the same. Since the Fourier transformation of the transfer 
integral between pz orbitals, t(q) (Eq. 11), are isotropic along the in-plane direction, t(q) depends only on |q| . If 
any electronic state is mainly comprised of three monolayer states of which waves vectors are arranged in a three-
fold rotationally symmetric way around Kξ , e.g., Kξ + k , Kξ + R(2π/3)k , Kξ + R(4π/3)k , then the |q| associated 
with the interaction between the monolayer states are identical since we can freely choose one among the three 
equivalent Kξ , i.e., Kξ , R(2π/3)Kξ , R(4π/3)Kξ , for each state. This is the case that happens at the mini Dirac point 
(the hexagonal Brillouin zone corners) of graphene on  hBN13. On the contrary, t(q) for each interaction of the 
resonant coupling in BN/G/BN are not identical, since there are more than three states involved. As a result, u20 
in Eq. (10) varies ±2, 3% for θ1 , θ2 , θ3 , and ±11% for θ4 . Nevertheless, since the twelve wave vectors are arranged 
in a 12-fold rotationally symmetric way, equally spaced triplets (i.e., n ∈ {0, 4, 8} , n ∈ {1, 5, 9} , n ∈ {2, 6, 10} , 
n ∈ {3, 7, 11} ) satisfy the three-fold rotational symmetry with Kξ . As a result, the oscillation of u20 is consistent 
with the rotational symmetry of Hξ

ring and does not reduce the three-fold symmetry further. Hereafter, we will 
consider the structures with θ1 , θ2 , θ3 only, and use u0 = −t(Kξ ) ≈ 0.152 eV , i.e., ignore the variation of u0.

Since a hBN layer lacks the inversion symmetry, it is natural to ask whether the band structure changes if 
we rotate one of the hBN layers by 180◦ (We label this structure BN/G/NB). The BN/G/NB also belongs to the 
symmetry group D3 , while the three C2 axes are 60◦ rotated from those of BN/G/BN. It is well known that twisted 
double bilayer  graphene41–44 and BN/G/BN at general  angles31 show the change of electronic structures with 
respect to such a change. The 180◦ rotation of hBN corresponds to the swap of the boron and nitrogen atoms. 
Thus, we can get the effective potential Eq. (8) of the moiré superlattice from such a layer by replacing ψ by 
−ψ + 2π/3 (Eq. 10), while keeping that of the other moiré superlattice unchanged. However, we can reduce the 
Hamiltonian of BN/G/NB to that of BN/G/BN (Eq. 15) by a similarity transformation that multiplies e2iξψω−ξ 
( e−2iξψωξ ) to the Bloch bases |k(n)� with n ≡ 2, 3 (mod 4) for θ1 , θ3 , θ4 ( θ2 ). As a result, the resonant states are 
invariant with respect to the replacement of BN to NB.

Figure 5a shows the valence band structures of BN/G/BN at θ1 near the resonant states at Cn plotted as a 
function of k0 . The twelve Dirac cones are arranged on a circle with a radius �k = 2|GM,(l)

i | sin(π/12) and they 
are strongly hybridized near k0 = 0 to exhibit the characteristic dispersion including parabolic bottoms, a frilled 
band edge, and new Dirac points at −0.164 eV and −0.203 eV . We have similar resonant states also in the con-
duction band, while the energy spacing between the resonant states is much smaller than in the valence band, 
just like the cases of graphene on  hBN13 and quasicrystalline twisted bilayer  graphene22. As predicted by the 
symmetry of Hξ

ring , the band structures exhibit three-fold rotational symmetry around k0 = 0 , as we can clearly 
see from the energy contours in Fig. 5b. The structures with the other angles, θi ( i = 2, 3, 4 ), also show similar 
band dispersion, except that the resonant states are formed at the energies far from the charge neutrality point 
of graphene, since they have longer |Kξ − Cn| . The energy splitting between the resonant states in BN/G/BN, 
O(|V1|) , is much smaller than that in the quasicrystalline twisted bilayer graphene, O(|u0|) , since the interac-
tion here involves a second order scattering through the hBN layer. Nevertheless, the resonant states of BN/G/
BN appear at the energies much closer to the charge neutrality point of graphene than those of quasicrystal-
line twisted bilayer graphene (about ±1.7 eV) , since the wave vectors responsible for the interaction in BN/G/
BN ( O(|GM,(l)

i |) ) are much shorter than those in quasicrystalline twisted bilayer graphene ( O(|a∗i |) ). Thus, the 
resonant states of BN/G/BN appear at much smaller, experimentally feasible, electron densities.

At k0 = 0 , we can reduce Hξ
ring to an 8× 8 form,

(16)
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by using the Bloch condition along the one-dimensional chain. Here, Hi = H
(0)
i (k0 = 0) ( i = 0, 1, 2, 3 ) and 

m = −1, 0, 1 is the quantized angular momentum respecting the three-fold rotational symmetry. The Hamilto-
nian H(ξ ,m)

ring  exhibits a symmetry

for m and m′ satisfying m+m′ ≡ −ξ (mod 3) . Here, � is diag(σxχ , σx, σxχ∗, σx) for θ1 , θ3 , θ4 and 
diag(σx, σxχ

∗, σx, σxχ) for θ2 , where χ is e2iξψω−ξ , and K stands for complex conjugation. Thus, the states with 
(m,m′) = (0,−ξ) form twofold doublets, and belong to two-dimensional E irreducible representation of D3 point 
group, while the states m = ξ is non-degenerate, and belong to either of A1 or A2.

Figure 6 shows the quasicrystalline wave functions of the third resonant state ( m = ξ ) in the hole side at 
k0 = 0 on the graphene lattice. Figure 6a–c show the wave functions in a system in the absence of the inversion 
symmetry, i.e., VN  = VB and ψ  = π/3 (mod π) , such as graphene encapsulated by hBN layers, and Fig. 6d–f show 
those in a system with the inversion symmetry, i.e., VN = VB and ψ ≡ π/3 (mod π) , such as graphene encapsu-
lated by a material having the same types of atoms in both sublattices. In both systems, the wave amplitude show 
the quasicrystalline order which is distributed on a limited number of sites in a pattern which is incompatible 
with the periodicity. Unlike the rotational symmetry of the double moiré pattern (12-fold), however, the wave 
functions in the absence of the inversion symmetry show a three-fold rotational symmetry, while those in the 
presence of the inversion symmetry show a six-fold rotational symmetry, which slightly resembles the probability 
distribution of the system with a true 12-fold rotational  symmetry22. It should be noted that, however, the wave 
functions of the system with the inversion symmetry lose the six-fold rotational symmetry at k0  = 0 . Figure 6a 
and d, b and e, c and f show the wave functions at θ1,θ2,θ3 , respectively. The length scale of the patterns is much 
larger than that of the quasicrystalline wave functions in quasicrystalline twisted bilayer  graphene22, since the 
difference between wave vectors involved is on the order of |GM,(l)

i | in the dual moiré superlattice and on the 
order of |a∗i | in the twisted bilayer graphene ( |GM,(l)

i | ≪ |a∗i | ). In addition, the systems with θ1 and θ2 show larger 
scale, since |GM,(l)

i | is almost proportional to θ (Fig. 3c). Such an electron distribution would be prominent at the 
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Figure 5.  (a) Electronic structure in the valence band side of the 30◦ rotated double moiré superlattice at θ1 . 
(b) Energy contours of the third (top panel) and the sixth (bottom panel) valence bands which clearly show the 
three-fold rotational symmetry.
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energies where the band curvature of the resonant states are large enough to give high density of states. At the 
energies away from the resonant states, on the contrary, we will mainly see the simple overlap of the periodic 
wave functions of the two typical graphene on hBN superlattice with a twist angle of 30◦.

Finally, we discuss several factors that may affect the results in this work. (i) Effects of the theoretical model 
and parameters: In this work, we described the quasicrystalline resonant states by the effective model in the 
framework of a tight-binding Hamiltonian. Then, it is natural to ask how more accurate models, such as first-
principle methods, affect the results. In our effective model, we describe the electronic states by using a few 
monolayer Bloch states which contribute significantly to the states. In first-principle methods, we get fully 
coupled wave functions of the states, and may analyze the contributions of each monolayer Bloch state by the 
projection of the wave functions to the Bloch states. The difference between the two models mainly comes from 
(1) the interaction between the resonant chain (Eq. 15) and the ignored monolayer Bloch states, and (2) the inac-
curate parameters used in the tight-binding model (Eq. 7). Since (1) originate from the truncation of the bases, 
we can easily minimize the difference from (1) by using more bases in our model. However, since the energies 
of such truncated Bloch states are usually very different from the energy of the states which form the resonant 
chain, they make little change to the band dispersion. In quasicrystalline twisted bilayer graphene, for example, 
increasing the number of bases from the minimum 12–182 merely gives the replicas of the same bands at other 
wave vectors and make almost no change to the band dispersion (Fig. 6  in22). For (2), on the other hand, we 
agree that the parameters used in this work might not be accurate. The difference in the interlayer interaction 
strength u0 will make a difference in the interaction strength within the resonant chain (Eq. 15), which affects 
the energy scale of the band dispersion, e.g., the energy spacing between the bands in Fig. 5a. The inaccuracy in 
VB and VN will make a difference in ψ (Eq. 10), which affects the slope and the degree of anisotropy of the band 
dispersion. Nevertheless, the wave functions still keep the D3 symmetry, and the quasicrystalline states of any 
similar systems, which have the same lattice symmetry and the same type of the dominant atomic orbitals, are 
described by the universal form Eq. (15) with slightly different parameters.

(ii) Effects of using TMDC as encapsulating materials: We can get similar quasicrystalline resonant states in 
the system composed of a monolayer graphene encapsulated by two TMDC layers at suitable angle. Since the 
metal atom in a TMDC layer is far from the interface, the dominant interlayer interaction comes from the orbital 
hybridization between the pz orbital of the chalcogen atom in TMDC and the pz orbital of the carbon atom in 
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Figure 6.  The electron probability distribution of the wave functions at k0 = 0 of the double moiré superlattice 
(a)–(c) in the absence of the inversion symmetry, i.e., VN  = VB and ψ  = π/3 (mod π) , and (d)–(f) in the 
presence of the inversion symmetry, i.e., VN = VB and ψ ≡ π/3 (mod π) . (a) and (d) are for θ1 , (b) and (e) are 
for θ2 , and (c) and (f) are for θ3 . We show the third state ( m = ξ ) in the valence band, since the first two states 
( m = 0,−ξ ) are degenerate.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11548  | https://doi.org/10.1038/s41598-021-91044-2

www.nature.com/scientificreports/

graphene. The resonant interaction in this work couples many monolayer states at various points in the Brillouin 
zone. Thus, to make the magnitude of every interaction which forms the resonant chain identical, so that every 
Bloch states can contribute with an equal footing, t(q) (Eq. 11) should be isotropic, or has a rotational symmetry 
the same as Cn . Since t(q) between the atomic orbitals with the same magnetic quantum number is  isotropic28, 
the graphene encapsulated by TMDC layers will also exhibit the resonant states respecting the quasicrystalline 
rotational symmetry. The difference between the lattice symmetry of the hBN layer (honeycomb lattice) and 
the chalcogen layer (hexagonal or triangular lattice) makes a phase difference between the A-to-A and A-to-B 
interaction in Eq. (9).

(iii) Effects of lattice relaxation: Incommensurately stacked atomic layers tend to exhibit local lattice relaxa-
tion, especially when the moiré pattern is sufficiently  large30,34,35. Thus, our systems, especially the structure with 
an angle of θ1 , will also exhibit such a relaxation. In this work, however, we did not consider such effects, since 
the lattice relaxation mainly influences the band opening at the main Dirac point and Brillouin zone boundaries. 
In more detail, the lattice relaxation changes the parameters used (e.g., the u0 for A-to-A and A-to-B in Eq. (9) 
would become different), so there will be some differences in the details of the band dispersion [see (i) above]. 
However, such a difference does not change the overall symmetry and the universal equation describing the 
energies and wave functions of the resonant states.

(iv) Tuning conductivity by gating: It is well-known that the conventional quasicrystals are poor conduc-
tors at the energies where the quasicrystalline states are dominant (i.e., at pseudogaps). And the van der Waals 
quasicrystals would be also likely poor conductors at the energies where the quasicrystalline states are dominant 
(i.e., where there is less decoupled states), as we can expect from the large band curvatures and the wave functions 
distributed selectively on a limited number of sites. Thus, if we tune the Fermi energies near the quasicrystalline 
states by gating, which is possible only when the states are within a feasible range from the charge neutrality point 
as in the current system, then we will be able to tune conductivity significantly by gating.

Conclusions
We investigated the lattice configuration and electronic structures of a double moiré superlattice of which two 
hexagonal moiré patterns are arranged in a dodecagonal quasicrystalline configuration. We first find the condi-
tion which gives a 30◦ stack of the two moiré patterns in graphene encapsulated by another layers, and show that 
there are 0 to 4 such configurations depending on the lattice mismatch between graphene and the encapsulating 
layer. And we show that, although the moiré patterns satisfy a 12-fold rotational symmetry, the actual atomic 
lattice has only a three-fold rotational symmetry ( D3 ) if the encapsulating layers have different atomic species 
in the sublattices (e.g., hBN).

We then reveal the resonant interaction which brings together and hybridize twelve degenerate Bloch states 
of monolayer graphene as well as the band dispersion around the resonant states. Compared to the resonant 
states of quasicrystalline twisted bilayer graphene, of which atomic lattices are arranged in a dodecagonal con-
figuration, the resonant states of double moiré superlattice lack the 12-fold rotational symmetry; they hexagonal 
quasicrystalline order at a specific point k0 = 0 in the Brillouin zone if the encapsulating layers the same types 
of atoms in both sublattices, and trigonal quasicrystalline order otherwise. These unique states appear at the 
energies much closer to the charge neutrality point of graphene and experimentally feasible electron densities.
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