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Rab11 as a modulator of synaptic transmission
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Many neurodegenerative disorders 
are characterized by synaptic dys-

function preceding general neuronal loss 
and subsequent cognitive or behavioral 
anomalies. Much recent research has been 
aimed at understanding the early underly-
ing processes leading to dysfunction at the 
synapse, as this knowledge would likely 
inform interventions that could poten-
tially slow progression and delay onset of 
disease. We have recently reported that 
synaptic dysfunction in a Drosophila 
melanogaster model of Huntington’s dis-
ease (HD) can be prevented by enhanced 
neuronal expression of Rab11, a Rab fam-
ily GTPase involved in endosomal recy-
cling, which complements studies that 
have found disrupted Rab11 activity in 
several models of this disorder. Indeed, 
inhibition of Rab11 function in fibro-
blasts of HD patients has been observed 
to perturb vesicle formation from recy-
cling endosomes. Therefore, our study 
investigated a potential role of Rab11 in 
synaptic dysfunction prior to the onset 
of HD symptoms, with the aim of find-
ing a possible early intervention to disease 
progression. We found that Rab11 amelio-
rates synaptic dysfunction due to expres-
sion of mutant huntingtin—the causative 
protein in HD—by normalizing synaptic 
vesicle size, which consequently amelio-
rates locomotor deficits in Drosophila lar-
vae. Here we further consider these results 
and the implications this work has on 
potential therapeutic intervention in HD 
and other neurodegenerative disorders.

Many, if not all, neurodegenerative dis-
eases manifest themselves with early synap-
tic dysfunction before any neuronal loss or 
behavioral abnormalities can be detected.1-4 

Much research is now focused on unravel-
ling the molecular mechanisms that lead to 
dysregulation of synaptic transmission by 
studying several synaptic proteins involved 
in neurotransmission. The neuronal net-
work relies on plasticity mechanisms where 
reversible formation and disassembling 
of synaptic connections occurs in a con-
trolled manner. It is generally accepted that 
in neurodegenerative conditions an early 
decline of genes responsible for expression 
of synaptic proteins occurs, opening the 
possibility of intervention to manipulate 
neuroprotective pathways that balance 
between degenerative and survival signal-
ing. In our studies, we have employed fruit 
fly models of Huntington’s disease (HD) to 
explore the potential of Rab11 for modulat-
ing synaptic dysfunction in neurodegenera-
tive disease.

HD is caused by the expansion of a 
polyglutamine stretch near the N-terminus 
of the huntingtin (HTT) protein, which 
exerts cellular toxicity by perturbing a 
number of cellular processes, including 
vesicle trafficking and transcription, as well 
as by overwhelming antioxidant systems.5 
Rab family GTPases play critical roles in 
intracellular membrane trafficking and 
it is clear that alterations in these cellular 
processes contribute to impaired neuronal 
trafficking in HD, as well as other neuro-
degenerative diseases.6

Over 60 Rab proteins are expressed in 
mammals,7 most of which are involved 
with the transport and tethering of vesicles 
to target membranes.8,9 Much recent data 
suggests that modulation of Rab family 
GTPases may be therapeutically relevant 
in HD. For example, Rab11, which plays 
a key role in endosomal recycling,10-12 is 
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functionally perturbed in models of HD.13-

17 We have also found that Rab11 abrogates 
loss of dendritic spines in primary neurons 
expressing mutant HTT, and ameliorates 
neuron loss and shortened lifespan in adult 
HD flies.17

Rab5 and Rab8 have also been impli-
cated in HD pathogenesis. Mutant HTT 
alters the localization of the Rab8/optineu-
ron complex from the Golgi apparatus, per-
turbing post-Golgi trafficking and thereby 
impairing lysosomal function.18 Further-
more, overexpression of Rab5 reduces 
mutant HTT toxicity—while Rab5 inhi-
bition exacerbates this phenotype—appar-
ently via regulation of macroautophagy.19 
In related work, we have found an enrich-
ment in vesicle trafficking genes in genetic 
screens for both gene deletion and overex-
pression suppressors of mutant HTT tox-
icity in yeast.20,21 These data support the 
notion of interrogating the therapeutic 
promise of Rab GTPases and other vesicle 
trafficking genes in neurodegenerative 
disease.

Drosophila is a robust model system for 
studying HD and other disease patholo-
gies and has been widely used to identify 
novel mechanisms and potential therapeu-
tic strategies.22 Expression of mutant HTT 

constructs in different neuronal popula-
tions leads to a number of disease-relevant 
phenotypes, including degeneration of 
photoreceptor neurons, reduced lifespan, 
and impaired locomotion.21,23,24

Work in Drosophila has demonstrated 
that mutant HTT can exert pathology in 
the absence of nuclear localization, provid-
ing evidence for cytoplasmic dysfunction.25 
This study found that mutant HTT is dif-
ferentially distributed in neurons, implying 
that HTT aggregates may associate with 
cytoskeletal machinery to undergo directed 
transport, a process highly relevant for axo-
nal function. A particularly striking feature 
of HD pathology and genetic models is the 
aggregation of mutant HTT protein, but 
it remains unknown how aggregates con-
tribute to toxicity in this disease. Indeed, 
it is likely that these aggregates, as well as 
soluble oligomeric forms of mutant HTT, 
contribute to disease pathogenesis in a 
combinatorial fashion.26

A great amount of data supports the role 
of mutant HTT in disrupting axonal trans-
port. Drosophila larval motor neurons trans-
port mutant HTT along axons, leading to 
accumulations in axon termini at NMJs.25 
Visualizing mutant HTT in motor neu-
rons showed that large aggregates caused 

axons to swell, indicating that they might 
physically compromise axonal transport. In 
this context, it was found that synaptic ves-
icle proteins accumulate in large amounts 
at sites of mutant HTT aggregation, sug-
gesting a role for cytoplasmic toxicity in 
HD pathogenesis that might be mediated 
through alterations in axonal transport.27,28

We recently showed that mutant HTT is 
linked to synaptic pathology in Drosophila 
models of HD, in particular affecting syn-
aptic vesicle homeostasis,29 which could rep-
resent an early physiological deficit before 
onset of disease pathology. The reduction 
in presynaptic quantal size detected at the 
Drosophila neuromuscular junction (NMJ) 
was due to smaller vesicular size as observed 
by electron microscopy. As a result, evoked 
synaptic transmission was compromised by 
the presynaptic expression of mutant HTT, 
leading to behavioral deficits. We found 
that two different mutant HTT transgenes 
(Htt93Q, which expresses an exon 1 frag-
ment of human HTT,23 and Htt128QFL, 
which expresses full-length HTT4) have 
similar defects on synaptic physiology. 
Interestingly, of these models only the 
Htt93Q flies exhibit mutant HTT aggre-
gation, while the Htt128QFL flies do not. 
This suggests that toxic oligomeric species 

Figure 1. model of impaired neurotransmission caused by mutant Htt. mutant Htt leads to reduced synaptic vesicle size (right) via impaired rab11 
activity and altered interactions with HiP1, causing reduced neurotransmitter release and synaptic dysfunction. Overexpression of rab11 may reverse 
these defects by several mechanisms: 1) rab11 modulates vesicle size via enhancing proton (H+) AtPase trafficking. rab11 has been shown to interact 
with the ε subunit of the vacuolar-type H+-AtPase and a possible enhanced interaction with the vesicular H+-AtPase could alleviate the mutant Htt-
induced synaptic deficiency. 2) Huntington’s disease (Hd) has been associated with lower cell surface expression of the glutamate/cysteine transporter 
eAAc141 that regulates glutamate uptake, potentially leaving the neuron with limited glutamate resources. expression of a dominant-active rab11 
mutant in primary Hd mouse neurons rectified this deficit. 3) rab3, rab5, and rab11 are present at synaptic vesicles, providing a potential mechanism for 
direct interaction with the vesicle recycling machinery. rab GtPases also participate in vesicle tethering, docking, and fusion events via association with 
v-SnAre and/or t-SnAre proteins forming trans-SnAre complexes, thereby organizing fusion competent microdomains. eAAc, glutamate/cysteine 
transporter; HiP, Huntingtin interacting Protein; Glut, Glutamate; Synt, Syntaxin; rab/rab11, possible functions of various rab proteins
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of mutant HTT may play a critical role in 
synaptic dysfunction in HD. Indeed, toxic 
oligomers of additional amyloidogenic pro-
teins may similarly impair synaptic func-
tion in other neurodegenerative disorders, 
such as Alzheimer’s and Parkinson’s.30

In our study we asked the ques-
tion whether the Rab11 subfamily of 
GTPases—which is crucially involved in 
cellular trafficking, cytoskeletal regula-
tion, and endosomal recycling—could 
counteract the synaptic deficits induced 
by mutant HTT. Strikingly, we found that 
overexpression of Rab11 reversed the syn-
aptic neurotransmission and vesicle deficits, 
and restored normal locomotor behavior. 
Several GTPases have been implicated in 
mammalian systems to regulate neuro-
transmission,31,32 and Rab11, an evolution-
arily conserved, ubiquitously expressed 
subfamily of GTPases regulates diverse 
cellular and developmental events such 
as exocytotic and transcytotic events.33 
In Drosophila, Rab11 has been shown to 
be involved in embryonic nervous system 
development34 or post-Golgi trafficking.35 
Furthermore, at the Drosophila NMJ, pre-
synaptic Rab3 [and its interaction partner 
Rab3 GTPase Activating Protein (Rab3-
GAP)] is required for synaptic homeosta-
sis,36 illustrating the broad and conserved 
functions of Rab-GTPase signaling.

But how can Rab activities modulate 
transmission or even reverse early mutant 
HTT-induced synaptic deficits? Rab11 has 
been shown not only to regulate dendritic 
morphology,37 but more importantly sev-
eral Rab isoforms are also present at the 
synaptic vesicle, pointing toward direct 
interactions between Rabs and vesicular 
signaling. In particular, Rab3, Rab5, and 
Rab11 are present at synaptic vesicles,31 
providing a potential mechanism for 
direct interaction with the vesicle recy-
cling machinery (see Fig. 1). Rab GTPases 

also participate in vesicle tethering, dock-
ing, and fusion events via association with 
v-SNARE and/or t-SNARE proteins form-
ing trans-SNARE complexes, thereby orga-
nizing fusion competent microdomains.38 
However, as we detected Rab11-mediated 
rescue of synaptic vesicles sizes prior to 
fusion, it is unlikely that Rab11 modulates 
vesicle fusion in our model.

Alternatively, enhanced Rab11 activity 
could increase the endosomal recycling rate 
and thereby deliver more vesicle-required 
proteins to the membrane, ultimately lead-
ing to improved Rab-regulated trafficking 
and endosomal signaling. One tempting 
speculation of how Rab11 modulates vesicle 
size is via enhancing proton (H+) ATPase 
trafficking. Rab11 has been shown to inter-
act with the ε subunit of the vacuolar-type 
H+-ATPase39,40 and a possible enhanced 
interaction with the vesicular H+-ATPase 
could alleviate the mutant HTT-induced 
synaptic deficiency (Fig. 1). In addition, 
HD has been associated with lower cell 
surface expression of the glutamate/cyste-
ine transporter EAAC1,41 which regulates 
glutamate uptake, potentially leaving the 
neuron with limited glutamate resources. 
Expression of a dominant-active Rab11 
mutant in primary HD mouse neurons rec-
tified this deficit,41 highlighting Rab11 as a 
promising candidate for modulating HD 
pathologies. Both these mechanisms are 
potentially involved in regulating vesicular 
glutamate content and may thereby indi-
rectly modulate vesicular size.

Finally, other members of the Rab fam-
ily have been reported to be involved in 
increased secretion of α-synuclein,42 likely 
reflecting the reported role of Rabs in 
autophagy initiation. A similar mechanism 
could explain our observations whereby 
mutant HTT is secreted in an enhanced 
manner leading to reduced toxicity. As 
mutant HTT has been implicated in 

disrupting axonal transport in Drosophila 
neurons,27 enhanced extrusion/secretion 
of mutant HTT could improve axonal 
transport of proteins necessary for vesicle 
formation. In this context, it would be 
interesting to explore whether Rab11 as 
a recycling endosomal marker molecule 
co-localizes with mutant HTT protein, or 
perhaps even directly interacts with HTT.

In conclusion, with the known involve-
ment of Rab11 in neurodegenerative disor-
ders such as Alzheimer and HD,41,43,44 we 
propose a new potential use of Rab11 as 
a therapeutic strategy in neurodegenera-
tion. Supporting this concept, approaches 
aimed at increasing Rab11 activity are 
already being developed for targeting dis-
ease.45 Reduction in synapse number is a 
consistent early feature of neurodegenera-
tive diseases, preceding neuronal loss, and 
correlating with cognitive deficits. As this 
is a reversible stage of disease, it permits 
intervention prior to neuron loss, making 
an attractive therapeutic strategy in neu-
rodegenerative disorders.
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