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Abstract

To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While
some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the
genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq)
has proven to be an efficient method to identify these genomic features and to improve genome annotations. However,
processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming,
and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the
required analyses and simplifies RNA-seg-based bacterial and archaeal genome annotation. It can integrate data from
conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding
RNAs, with high precision. The software is available under an open source license (ISCL) at

https://pypi.org/project/ ANNOgesic/.
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Background

As the number of available genome sequences has rapidly ex-
panded in databases, numerous tools have been developed that
can detect genomic features of interest based on the genome se-
quence. Prominent representatives are Glimmer to identify open
reading frames (ORFs) [1], tRNAscan-SE [2] to spot tRNAs, and
RNAmmer to find rRNAs [3]. Pipelines such as Prokka [4] or Con-
sPred [5] combine such tools and are able to search multiple fea-
tures in bacterial and archaeal genomes. Still, these tools make
their predictions purely based on the genome sequences and
can predict features such as transcriptional start sites and non-
coding RNAs, if at all, only with low confidence.

Recent developments in high-throughput sequencing offer
solutions to this problem. RNA sequencing (RNA-seq) has rev-
olutionized how differential gene expression can be measured
and is widely used for this purpose [6]. In addition, it has
also been applied in numerous cases to improve the genome
annotation of bacteria [7,8,9]archaea [10], and eukaryotes [11].
For the global detection of genomic features, several RNA-
seq-based protocols have been created. For example, differen-
tial RNA-seq (dRNA-seq) [12,13] represents a method for the
system-wide mapping of transcriptional start sites (TSSs). For
the construction of dRNA-seq libraries, a sample is split into
two aliquots: one is digested by terminator exonuclease (the
TEX+ library), which degrades processed RNA molecules with
5’-monophosphate, while the other aliquot remains untreated
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(TEX- library). Both subsamples are then used to generate cDNA
libraries. Based on this method, primary transcripts that have a
5’-triphosphate are enriched in the TEX+ libraries. The digestion
of matured transcript in the TEX+ library leads to a relative en-
richment of primary transcripts. Thus, TSSs can be identified by
comparing normalized coverage values between the TEX+ and
TEX- libraries [12,13]. In addition to dRNA-seq, other RNA-seq-
based protocols such as Term-seq [14] and ribosome profiling
[15,16] have been applied to globally detect terminators, ORFs,
and riboswitches but require dedicated data processing. While
there are tools that can process RNA-seq data in order to predict
genome-wide features such as TSSs based on dRNA-seq data
[17,18,19] or based on conventional RNA-seq data [20,21], there
has been,to date, no solution that combines different predic-
tions of genomic features and compiles them into a consistent
annotation.

Here we present ANNOgesic, a modular, command-line tool
that can integrate data from different RNA-seq protocols such
as dRNA-seq as well as conventional RNA-seq performed af-
ter transcript fragmentation and generate high-quality genome
annotations that include features missing in most bacterial
annotations (e.g., small noncoding RNAs, untranslated regions
[UTRs], TSSs, and operons). The central approach is to detect
transcript boundaries and then subsequently attach additional
information about type as well as function to the predicted
features and also to infer interactions between them. Several
of ANNOgesic’s core functions represent new implementations
that are not found in other programs. Third-party tools embed-
ded into ANNOgesic are accessible via a consistent command-
line interface. Furthermore, their results are improved, e.g., by
dynamic parameter optimizations or by removing false posi-
tives. Numerous visualizations and statistics help the user to
quickly evaluate the feature predictions. The tool is modular and
has been intensively tested with several RNA-seq datasets from
bacterial as well as from archaeal species.

ANNOgesic consists of the following modules, their names indi-
cate their functions: Sequence modification, Annotation trans-
fer, SNP/Mutation, Transcript, TSS, Terminator, UTR, Processing
site (PS), Promoter, Operon, SRNA, sRNA target, small ORF (sORF),
Gene Ontology (GO) term, Protein-protein interaction network,
Subcellular localization, Riboswitch, RNA thermometer, Circu-
lar RNA, and Clustered regularly interspaced short palindromic
repeat (CRISPR). Several potential workflows connecting these
modules are displayed in Supplementary Fig. S1. An overview of
the novelties and improvements of the modules in ANNOgesic
are listed in Supplementary Table S1, and all the dependencies
of ANNOgesic are shown in Supplementary Table S2.
Depending on the task, ANNOgesic requires a specific set of
input information, either as coverage information in wiggle for-
mat or alignments in binary alignment map (BAM) format. This
can be generated by short-read aligners such as STAR [22], sege-
mehl [23], or a full RNA-seq pipeline such as READemption [24].
Certain modules additionally require annotations in GFF3 for-
mat. In case a sufficient genome annotation is not available,
ANNOgesic can perform an annotation transfer from a closely
related strain based on fasta and GFF3 files provided by the user.
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Figure 1: Schema of the genetic algorithm for optimizing the parameters of
TSSpredator. It starts from the default parameters. These parameter sets will
go through three steps: global change (change every parameter randomly),
large change (change two of the parameters randomly), and then small change
(adds/subtracts a small fraction to one of the parameters). It will then select the
best parameter set for reproduction when one step is done. Usually, ANNOgesic
can achieve the optimized parameters within 4,000 runs.
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ANNOgesic’s source code is implemented in Python 3 and
hosted at https://pypi.org/project/ANNOgesic/. The comprehen-
sive documentation can be found at http://annogesic.readthed
ocs.io/, and releases are automatically submitted to Zenodo
(https://zenodo.org/) to guarantee long-term availability. It can
be easily installed using pip (https://pip.pypa.io). In order to pro-
vide a frictionless installation including non-Python dependen-
cies, we additionally offer a Docker image at (https://hub.docker
.com/r/silasysh/annogesic/) [25].

For several parts of ANNOgesic, the selection of parameters has
a strong impact on the final results. Especially the TSS predic-
tion, building on TSSpredator [17], requires a sophisticated fine-
tuning of several parameters (namely, height, height reduction,
factor, factor reduction, enrichment factor, processing site fac-
tor, and base height). To overcome the hard task of manual pa-
rameter selection, ANNOgesic optimizes the parameters by ap-
plying a genetic algorithm, a machine learning approach, [26]
that is trained based on a small user-curated set of TSS pre-
dictions. This approach has the advantage of being able to find
global, not only local, optima. The process of optimization is
composed of three parts: random change, large change, and
small change (Fig. 1). In this context, a global change means a
random allocation of values to all parameters; a large change is
a random allocation of values to two parameters; and a small
change is adding or subtracting a small fraction to or from one
parameter value. The result of each iteration is evaluated by a
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decision statement (Equation 1).
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In Equation 1, TP,, is the number of manually detected TSSs.
TP./TPR. represents the true positive/true positive rate of the cur-
rent parameters. TP,/TPR;, represents the true positive/true pos-
itive rate of the best parameters. FP.//FPR. represents the false-
positive/false-positive rate of the current parameters. FP,/FPR,
represents the false- positive/false-positive rate of the best pa-
rameters. If one of these six situations is true, it will replace the
best parameters with current parameters.

In order to test ANNOgesic’s performance, we applied it to RNA-
seq datasets originating from Helicobacter pylori 26695 [7,13] and
Campylobacter jejuni 81116 [17]. The dRNA-seq datasets were re-
trieved from (National Center for Biotechnology Information
(NCBI) GEO where they are stored under the accession num-
bers GSE67564 and GSE38883, respectively. For H. pylori conven-
tional RNA-seq data, i.e., without TEX treatment (which de-
grades transcripts without a 5'-triphosphate) and with frag-
mentation of the transcript before the library preparation, was
also retrieved from NCBI SRA (accession number SRR031126).
Moreover, for assessing the performance of ANNOgesic, dRNA-
seq, and conventional RNA-seq datasets of Escherichia coli, K-12
MG1655 were downloaded from NCBI GEO (accession numbers
GSE55199 and GSE45443; only the data of the wild-type strain
were retrieved) [21,27]. The ANNOgesic predictions generated
using these datasets of E. coli K-12 MG1655 were compared to
the databases RegulonDB, EcoCyc, and DOOR? [28 -33]

All genomic features that can be detected by ANNOgesic are
listed in Table 1. In order to demonstrate and test ANNOgesic’s
performance, we analyzed RNA-seq data of H. pylori 26695 and
C. jejuni 81116 and discuss the prediction results as examples in
the following sections.

Table 1: Overview of feature predictions for H. pylori 26695 and C. je-
juni 81116

H. pylori 26695 C. jejuni 81116

Gene 1560 1685
Coding Total 1448 1630
sequence (CDS)
Expressed 1406 1513
Transcript 1716 1147
TSS Total 2458 1242
Primary 703 565
Secondary 156 92
Internal 719 360
Antisense 1161 510
Orphan 111 30
Processing site 281 345
Terminator Total 820, (437) 874, (375)
TransTermHP 631, (314) 655, (269)
Convergent genes 229, (151) 276, (145)
UTR 5" UTR 693 560
3’ UTR 325 286
SRNA Total 184 40
Intergenic 60 16
Antisense 85 21
5’ UTR-derived 10 0
3’ UTR-derived 23 2
InterCDS-derived 6 1
Operon Total 554 710
Monocistronic 268 386
Polycistronic 286 324
sORF 150 25
Riboswitch 3 5
RNA 1 1
thermometer
circular RNA 0 1
CRISPR 0 1, (8)

The numbers in parentheses for terminator and CRISPR represent occurrences
of terminators with coverage drop and repeat units of CRISPR, respectively. For
the prediction of terminators, ANNOgesic only keeps the high confidence ones
in case a coding sequence (CDS) is associated with multiple terminators.

Genome sequence improvement and single nucleotide polymor-
phism/mutation calling

Conventionally, differences in the genome sequence of a strain
of interest and the reference strain are determined by DNA se-
quencing. However, RNA-seq reads can also be repurposed to de-
tect such single nucleotide polymorphisms (SNPs) or mutations
that occur in transcribed regions, which can help to save the
resources required for dedicated DNA sequencing or DNA SNP
microarray measurements. The two drawbacks of this method
are that only locations that are expressed can be analyzed and
that, due to RNA editing, changes could be present only in the
RNA level and are not found in the genome. On the other hand,
it has been shown to be a valid approach for eukaryotic species
and that the majority of SNPs are found in the expressed tran-
scripts [34,35]. Such analysis could be useful to generate hy-
potheses that then need to be tested with complementary meth-
ods. ANNOgesic can perform SNPs/mutation calling via SAM-
tools [36] and BCFtools [36] applying read counting-based filter-
ing.

Annotation transfer
ANNOgesic integrates the Rapid Annotation Transfer Tool [37],
which can detect the shared synteny and mutations between a



reference and query genome to transfer annotation (i.e., genes,
CDSs, tRNAs, rRNAs) by applying MUMmer [38]. For the chosen
strains, H. pylori 26695 and C. jejuni 81116 annotation files in GFF3
format were obtained from NCBI RefSeq. Because of this, there
was no need to transfer the annotation from a closely related
strain.

Knowing the exact boundaries and sequence of a transcript is
crucial for a comprehensive understanding of its behavior and
function. For example, UTRs can be the target of regulation by
sRNAs or small molecules (e.g., riboswitches) [39,40] or even
sources of SRNAs [41]. Unfortunately, most bacterial annotations
only cover the protein-coding regions, while the information
about TSSs, terminators, and UTRs is lacking. To address this
issue, ANNOgesic combines several feature predictions for a re-
liable detection of transcripts and their boundaries (Fig. 2).

Coverage-based transcript detection

There are numerous tools available for the detection of tran-
scripts (e.g., [42]), but most of them are optimized for the assem-
bly of eukaryotic transcripts. Because of this, we combined sev-
eral heuristics to perform such predictions. Nucleotide coverage
data are used for defining the expressed regions, and genome
annotations are applied for extending or merging the gene ex-
pressed regions to form complete transcripts. Several parame-
ters such as the threshold of coverage values can be set by the
user to fine-tune the predictions (Fig. 3).

By running ANNOgesic’s subcommand for transcript predic-
tion, we detected 1,716 transcripts in H. pylori 26695 and 1,147
transcripts in C. jejuni 81116. These transcripts cover 1,520 and
1,568 genes, which shows that 97% and 93% of the known genes
are expressed in at least one condition, respectively.

Transcriptional start sites

For the prediction of TSSs, ANNOgesic builds on TSSpredator
[17], which takes dRNA-seq coverage data as input. The outcome
of TSSpredator’s predictions depends strongly on the setting of
numerous parameters, and fine-tuning those can be time con-
suming. Because of this, a parameter optimization was imple-
mented in ANNOgesic that builds on a small, manually curated
set of TSSs to find optimal values.

In order to test the performance of ANNOgesic, we manu-
ally annotated TSSs in the first 200 kb of the genome of H. pylori
26695 and C. jejuni 81116 (Supplementary Tables S5 and S6). This
set was used to perform the predictions of TSSpredator with de-
fault settings as well with the parameters optimized by ANNO-
gesic. For the test set of the benchmarking, we manually anno-
tated TSSs from first 200 kb to 400 kb in the genome of H. pylori
26695 and C. jejuni 81116 (Supplementary Tables S5 and S6). As
displayed in Table 2, the optimization had minor sensitivity im-
provements in H. pylori 26695 (from 96.8% to 99.6%); it strongly
increased the sensitivity for the TSS prediction for C. jejuni 81116
(67.1% to 98.7%) while keeping the same level of specificity. To
underpin those findings, we looked at the overlap of the pre-
dicted TSS and predicted transcripts. This was nearly the same
for H. pylori 26695 (82% for default and 83% for optimized setting)
but also increased significantly for C. jejuni 81116 from 81% for
default parameters to 96% with optimized parameters.

Moreover, TSSs are classified depending on their relative po-
sitions to genes by TSSpredator. Based on these classifications,
Venn diagrams representing the different TSS classes are auto-
matically generated (Supplementary Fig. S2).

Table 2: Comparison of default and optimized parameters of
TSSpredator for TSS and PS prediction

Strain Parameter Sensitivity Specificity
(TP) (FP)

TSS
H. pylori 26695  Default 96.8% (244) 99.98% (32)
Optimization 99.6% (251) 99.98% (32)
C. jejuni 81116 Default 67.1% (104) 99.98% (31)
Optimization 98.7% (153) 99.99% (7)

PS
H. pylori 26695  Default 92.9% (26) 99.99% (7)
Optimization 92.9% (26) 99.99% (7)
C. jejuni 81116 Default 61.3% (19) 99.99% (2)
Optimization 93.5% (29) 99.99% (6)

The numbers in parentheses represent true positive or false positive.

Processing sites

Several transcripts undergo processing, which influences their
biological activity [41,43]. In order to detect PSs based on dRNA-
seq data, ANNOgesic facilitates the same approach as described
for TSS detection but searches for the reverse enrichment pat-
tern, i.e., a relative enrichment in the library not treated with
TEX in comparison to the library treated with TEX. This cover-
age pattern is observed as the TEX enzyme will not degrate pro-
cessed transcripts due to the missing triphosphate at the 5’end,
which leads to a relative enrichment in samples. As done for
the TSSs, we manually annotated the PSs in the first 200 kb of
the genomes by looking for such enrichment patterns. Based on
these manually curated sets, we performed parameter optimiza-
tion on the test set (manually curated from the first 200 kb to
400 kb; Supplementary Tables S7 and S8, Table 2) and could im-
prove the prediction of PSs by TSSpredator [17]. With optimized
parameters 281 and 345, PSs were detected in H. pylori 26695 and
C. jejuni 81116, respectively.

p-independent terminators

While the TSSs are in general clearly defined borders, the 3’-end
of a transcript is often not very sharp. A commonly used tool for
the prediction of the 3’-end of a transcript is TransTermHP [44],
which detects p-independent terminators based on genome se-
quences. Manual inspection showed us that TransTermHP pre-
dictions are not always supported by the RNA-data (Supplemen-
tary Fig. S3E and S3F). This could be due to the lack of expression
in the chosen conditions. Additionally, certain locations in 3’-
ends that may be p-independent were not detected by TransTer-
mHP. Because of this, we extended the prediction by two ad-
ditional approaches based on RNA-seq coverage and the given
genome sequence. At first, terminators predicted by TransTer-
mHP that show a significant decrease of coverage are marked
as high-confidence terminators. For this, the drop of coverage
inside the predicted terminator region plus 30 nucleotides up-
stream and downstream is considered sufficient if the ratio of
the lowest coverage value and the highest coverage value is at
a user-defined value (the default value is 0.5, and the schemes
and examples are shown in Supplementary Fig. S3). In order to
improve the sensitivity, an additional heuristic for the detection
of p-independent terminators was developed. In this approach,
only converging gene pairs (i.e., the 3’-end are facing each other)
are taken into account (Supplementary Fig. S4). In case the re-
gion between the two genes is A/T-rich and a stem-loop can be
predicted in there, the existence of a p-independent termina-
tor is assumed. As a default, the region should consist of 80 or
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Figure 2: Transcript boundary detection. (A) Schema: ANNOgesic can predict TSSs, terminators, transcripts, genes, and UTRs and integrate them into a comprehensive
annotation. (B) Gene HP1342 of H. pylori 26695 as an example. The pink coverage plot represents RNA-seq data of libraries after fragmentation, the blue coverage plots
TEX+ libraries of dRNA-seq, and the green coverage plots TEX- libraries of dRNA-seq. Transcript, TSS, terminator, and CDS are presented as red, blue, orange, and
green bars, respectively. The figure shows how the transcript covers the whole gene location and how UTRs (presented by purple bars) can be detected based on the
TSS, transcript, terminator, and gene annotations.
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Figure 3: Coverage-based transcript detection. If the coverage (blue curve-blocks) is higher than a given coverage cutoff value (dashed line), a transcript will be called.
The user can set a tolerance value (i.e., a number of nucleotides with a coverage below the cutoff) on which basis gapped transcripts are merged or are kept separated.
Information of gene positions can also be used to merge transcripts in case two of them overlap with the same gene.

fewer nucleotides, the T-rich region should contain more than 5 UTRs

thymines, the stem-loop needs to be 4-20 nucleotides, the length Based on the CDS locations and the above-described detection
of the loop needs to be between 3 and 10 nucleotides, and a max- of TSSs, terminators, and transcripts, 5’ UTR and 3’ UTR can be
imum of 25% of the nucleotides in the stem should be unpaired. annotated by ANNOgesic. Additionally, it visualizes the distribu-

tion of UTR lengths in a histogram (as shown in Supplementary
Fig. S5).



Promoters

ANNOgesic integrates MEME [45], which detects ungapped mo-
tifs, and GLAM2 [46], which discovers gapped motifs, for the de-
tection and visualization of promoter motifs. The user can de-
fine the number of nucleotides upstream of TSSs that should be
screened and the length of potential promoter motifs. The mo-
tifs can be generated globally or for the different types of TSSs
(example in Supplementary Fig. S6).

Operons

Based on the TSS and transcript prediction, ANNOgesic can gen-
erate statements regarding the organization of genes in operons
and suboperons as well as report the number of monocistronic
operons and polycistronic operons (Fig. 4).

The detection of sSRNAs based on RNA-seq data is a nontrivial
task. While numerous sRNAs are found in intergenic regions,
several cases of 5’ and 3’ UTR-derived sRNAs are reported [41,47,
48,49]. ANNOgesic offers the detection of all classes combined
with a detailed characterization of the sRNA candidates (Fig. 5).

In order to classify newly detected intergenic transcripts as
sRNAs, ANNOgesic tests several of their features. If a Basic Lo-
cal Alignment Search Tool + [50] search of a transcript finds ho-
mologous sequences in BSRD [51], a database that stores exper-
imentally confirmed sRNAs, the transcript gets the status of an
sRNA. The user can also choose additional databases for search-
ing homologous sequences. In case a search against the NCBI
nonredundant protein database leads to a hit, it is marked as
potentially protein-coding. Otherwise, a transcript must have a
predicted TSS, form a stable secondary structure (i.e., the folding
energy change calculated with RNAfold from Vienna RNA pack-
age [52] must be below a user-defined value), and their length
should be in the range of 30 to 500 nt in order to be tagged as
an sRNA. All these requirements are used per default but can be
modified or removed via ANNOgesic’s command line parame-
ters. ANNOgesic stores the results of all analyses and generates
GFF3 files, fasta files, secondary structural figures, dot plots, as
well as mountain plots based on those predictions.

For sRNAs that share a transcript with CDSs—5’ UTR, inter-
CDS, or 3’ UTR located sRNAs—we implemented several detec-
tion heuristics (Fig. 5B and 5C). The 5’ UTR-derived sSRNAs must
start with a TSS and show a sharp drop of coverage or a PS in
the 3’-end. The requirement for the detection of inter-CDS lo-
cated sRNAs is either a TSS or a PS as well as a coverage drop at
the 3’-end or a PS. Small RNAs derived from the 3’ UTR are ex-
pected to have a TSS or a PS and either end with the transcript
or at a PS. After the detection of a bona fide SRNA, the above-
described quality filters (e.g., length range, secondary structure)
are applied to judge the potential of a candidate (examples are
shown in Supplementary Figs. S7, S8). For the validation of SRNA
candidates in our test case, the described sRNAs of two publica-
tions were chosen. Sharma et al. [7] described 63 sSRNAs of which
4 were not expressed in the condition of the test dataset (re-
moved from the dataset) (Supplementary Fig. S9). Of these 59, 53
(90%) were detected by ANNOgesic. In the C. jejuni 81116 set, 31
sRNAs were described by Dugar et al. [17], and ANNOgesic could
recover 26 (84%). The sRNA ranking system provided by ANNO-
gesic is displayed in Supplementary Fig. S10 and Supplementary
Equation S1.

In order to deduce potential regulatory functions of newly
predicted sRNAs, ANNOgesic performs prediction of interaction
between them and mRNAs using RNAplex [52,53], RNAup [52,54],

and IntaRNA [55]. The user can choose if only interactions sup-
ported by all tools are reported.

All newly detected transcripts that do not contain a previously
described CDS as well all 5’ UTRs and 3’ UTRs are scanned for po-
tential sORFs [56] (Fig. 6). For this, ANNOgesic searches for start
and stop codons (noncanonical start codons are not included but
can be assigned by the user) that constitute potential ORFs of 30
to 150 base-pairs. Furthermore, ribosomal binding sites (based
on the Shine-Dalgarno sequence, but different sequences can
be assigned as well) between the TSS and 3 to 15 bp upstream of
the start codon are required for a bona fide SORFE.

In order to facilitate a better understanding of the biological
function of known and newly detected transcripts, ANNOgesic
predicts several attributes for these features.

This includes the allocation of GO as well as GOslim [57]
terms to CDSs via searching of protein ids in Uniprot [58]. The oc-
currence of groups is visualized for expressed and nonexpressed
CDSs (Supplementary Fig. S11). Furthermore, the subcellular lo-
calization is predicted by PSORTDb [59] for the proteins (Sup-
plementary Fig. S12). Additionally, the protein entries are en-
riched by protein-protein interaction information retrieved from
STRING [60] and PIE [61] (examples in Supplementary Fig. S13).

ANNOgesic integrates the tool "testrealign.x” from the segemehl
package for the detection of circular RNAs [62] and adds a filter
to reduce the number of false positive. Candidates for circular
RNAs must be located in intergenic regions and exceed a given
number of reads.

CRISPR/Cas systems represent a bacterial defense system
against phages and consist of repeat units and spacer sequences
as well as Cas proteins [63]. The CRISPR Recognition Tool [64]
is integrated into ANNOgesic and extended by comparison of
CRISPR/Cas candidates to other annotations to remove false pos-
itive (Supplementary Fig. S14).

Riboswitches and RNA thermometers are regulatory sequences
that are part of transcripts and influence the translation based
on the concentration of selected small molecules and tem-
perature change, respectively. For the prediction of these ri-
boswitches and RNA thermometers, ANNOgesic searches [65]
the sequences that are between TSSs (or starting point of a
transcript if no TSS was detected) and downstream CDSs, as
well as those associated with ribosome binding site in the Rfam
database using Infernal [66].

In order to assess the performance of ANNOgesic, we compared
its predictions based on a dRNA-seq dataset and conventional
RNA-seq of E. coli K-12 MG1655 by Thomason et al. [27] and Mc-
Clure et al. [21] with the entries in several databases [28-33].
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Most of the benchmarking features can be precisely detected
(80% or more) (Supplementary Table S3). Moreover, the predicted
features not found in published databases have the high possi-
bility to be novel features that are strongly supported by RNA-
seq data (Supplementary Fig. S7B, S7D). TSSs represent an ex-
ception with lower success rates, and we assume this is mostly
due to the higher sensitivity of the dRNA-seq method in com-
parison to older protocols. To test this assumption and to in-
vestigate the quality of the TSS entries in RegulonDB, we com-
pared the three deposited TSS datasets (Salgado et al. generated
with Illumina RNA-seq as well as Mendoza-Vargas et al. gener-
ated with Roche 454 high-throughput pyrosequencing and gen-
erated with Roche 5'RACE [67,68]) to each other and found very
small overlap (Supplementary Fig. S15). Additionally, the 50 nu-
cleotides upstream of TSSs were extracted and scanned with
MEME [45] for common motifs that are similar to the ones de-
scribed for promoters. Only for a small number, 0% to 7%, of
TSSs such motifs were found (Supplementary Table S4), while

80% of the TSS predictions from ANNOgesic have such a pro-
moter motif located upstream (Supplementary Figure S6C). The
same analysis could not be performed with EcoCyc [28], which
is lacking TSS information and provides only positions but no
strand information for promoters. Because of these results, we
doubt that the data in those databases represent a solid ground
for benchmarking the accuracy of ANNOgesic’s TSS predictions.

Discussion

While RNA-seq has become a powerful method for annotating
genomes, the integration of its data is usually very laborious
and time consuming. It requires bioinformatic expertise and in-
volves the application of different programs to perform the dif-
ferent required steps. Here, we present ANNOgesic, a modular,
user-friendly annotation tool for the analysis of bacterial RNA-
seq data that integrates several tools, optimizes their parame-
ters, and includes novel prediction methods for several genomic
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features. With the help of this command-line tool, RNA-seq data
can be efficiently used to generate high-resolution annotations
of bacterial genomes with very little manual effort. In addition to
the annotation files in standard formats, it also returns numer-
ous statistics and visualizations that help the user to explore
and to evaluate the results. While it ideally integrates conven-
tional RNA-seq (beneficial for detecting 3’-ends of transcripts) as
well as dRNA-seq (required for the efficient detection of internal
TSSs) as input together (see Supplementary Figs. S16 and S17),
it can also perform sufficient predictions with only one class of
data for the majority of the genomic features (Supplementary
Table S3).

Here, we demonstrated the performance of ANNOgesic by
applying it on two published datasets and comparing the results
to manually conducted annotations. ANNOgesic could detect
90% and 83% of the manually annotated sRNAs H. pylori 26695
and C. jejuni 81116, respectively. The sRNAs missed by ANNO-
gesic can be explained by low coverage, not being associated
with TSSs or lack of expression in the assayed conditions (see
Supplementary Figs. S18 and S19).

In addition to the analyses presented as examples in this
study (H. pylori 26695 and C. jejuni 81116), ANNOgesic was suc-
cessfully applied for detecting transcripts, sRNAs, and TSSs in
additional annotation projects (e.g., Pseudomonas aeruginosa [69]
and Rhodobacter sphaeroides [70]). Despite the fact that the pro-
gram was developed mainly with a focus on bacterial genomes,
it has also been used to annotate archaeal genomes (namely
Methanosarcina mazei [Lutz et al., unpublished]) and eukaryotic
genomes that have no introns (Trypanosoma brucei [Miller et al.,
unpublished]).

ANNOgesic is freely available under the OSI-compliant ISCL
open source license (some of the dependencies are available
under other FLOSS licenses), and extensive documentation has
been produced to guide novice and advanced users.

Conclusions

ANNOgesic is a powerful tool for annotating genome features
based on RNA-seq data from multiple protocols. ANNOgesic not
only integrates several available tools but also improves their
performance by optimizing parameters and removing false pos-
itives. For the genomic features that cannot be detected using
available tools, several novel methods have been developed and
implemented as part of ANNOgesic. Comprehensive documen-
tation and useful statistics as well as visualizations are also pro-
vided by ANNOgesic.

Availability of supporting source code and
requirements

® Project name: ANNNOgesic

® Project home page: GitHub - https://github.com/Sung-Huan
/ANNOgesic.
PyPI - https://pypi.org/project/ANNOgesic/.
DockerHub - https://hub.docker.com/r/silasysh/annogesic/.

® SciCrunch RRID: SCR-016326

® Operating system(s): Linux, Mac OS

* Programming language: Python

® Other requirements: Please check the documentation (http:
//annogesic.readthedocs.io/en/latest/required.html).

* License:ISC (Internet Systems Consortium license, simplified
BSD license).

Availability of supporting data

Snapshots of the code and data are available in the GigaScience
repository, GigaDB [71]. Code and data are also available via the
Code Ocean reproducibility platform [72]. For information on the
supporting files, please check the documentation (http://annoge
sic.readthedocs.io/en/latest/subcommands.html).
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Figure S1: Workflow charts of ANNogesic modules.

Figure S2: Distribution of TSS classes.

Figure S3: Concept and examples for detecting coverage de-
crease of terminators.

Figure S4: Terminator prediction approach based on convergent
genes.

Figure S5: Length distribution of UTRs.

Figure S6: The promoter motifs detected in Helicobacter py-
lori 26695, Campylobacter jejuni 81116, and Escherichia coli K-12
MG1655.

Figure S7: Examples of known and novel intergenic sRNAs that
ANNOgesic can detect.

Figure S8: Examples of detected antisense and UTR derived sR-
NAs.

Figure S9: The coverage plots of the benchmarking sRNA
HPnc4620.

Figure S10: Histograms of ranking number of the sSRNA bench-
marking set.

Figure S11: The distributions of GO term.

Figure S12: The distributions of subcellular localizations.
Figure S13: Visualization of protein-protein interactions.

Figure S14: The example of CRISPR in Campylobacter jejuni 81116.
Figure S15: The overlap of three previously published TSS
datasets in RegulonDB.

Figure S16: The predicted sRNA which can be detected only in
data RNA-seq after transcript fragmentation.

Figure S17: The comparison between dRNA-seq and RNA-seq af-
ter transcript fragmentation for detecting transcript

Figure S18: The lowly expressed sRNA - HPnc4610.

Figure S19: An example of known sRNA - CJnc230 - which is not
associated with a TSS.

Equation S1: The ranking system of sSRNA prediction.

Table S1: The novelties and improvements of genomic feature
detection in ANNOgesic.

Table S2: The dependencies of the modules of ANNOgesic.
Table S3: The comparison between ANNOgesic predictions and
several databases.

Table S4: The number of TSSs and their associated promoter mo-
tifs in RegulonDB.

Table S5: The manually-curated TSS set of Helicobacter pylori
26695 (1-400bp).

Table S6: The manually-curated TSS set of Campylobacter jejuni
81116 (1-400bp).

Table S7: The manually-curated PS set of Helicobacter pylori 26695
(1-400bp).

Table S8: The manually-curated PS set of Campylobacter jejuni
81116 (1-400bp).

CDS: coding sequence; CRISPR: clustered regularly interspaced
short palindromic repeat; dRNA-seq: differential RNA sequenc-
ing; GO: Gene Ontology; nt: nucleotide; PS: processing site;
sORF: small open reading frame; SNP: single nucleotide polymor-
phism; TSS: transcriptional start site; UTR: untranslated region.
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