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a  b  s  t  r  a  c  t

The  increasing  interest  in  the  use  of  magnetic  nanostructures  for biomedical  applications  necessitates
rigorous  studies  to be carried  out  in  order  to determine  their  potential  toxicity.  This  work  attempts  to
elucidate  the  cytotoxic  effects  of  nickel  nanowires  (NWs)  in  human  fibroblasts  WI-38  by a colorimetric
assay  (MTT)  under  two different  parameters:  NW  concentration  and  exposure  time.  This  was  comple-
mented  with  TEM  and  confocal  images  to assess  the  NWs  internalization  and  to  identify  any  changes
in  the  cell  morphology.  Ni NWs  were  fabricated  by  electrodeposition  using  porous  alumina  templates.
Energy  dispersive  X-ray  analysis,  scanning  electron  microscopy  and  transmission  electron  microscopy
imaging  were  used  for NW  characterization.  The  results  showed  decreased  cell  metabolic  activity  for
incubation  times  longer  than  24  h  and  no negative  effects  for  exposure  times  shorter  than  that.  The  cyto-
agnetic
uman fibroblasts

toxicity  effects  for  human  fibroblasts  were  then  compared  with  those  reported  for  HCT 116  cells,  and  the
findings  point  out that  it is  relevant  to  consider  the  cellular  size.  In addition,  the present  study compares
the  toxic  effects  of equivalent  amounts  of nickel  in  the form  of its salt  to those  of  NWs  and  shows  that
the  NWs  are  more  toxic  than  the  salts.  Internalized  NWs  were  found  in  vesicles  inside  of  the  cells where
their  presence  induced  inflammation  of  the  endoplasmic  reticulum.

© 2016  The  Authors.  Published  by Elsevier  Ireland  Ltd.  This  is an open  access  article  under  the CC
. Introduction

Advancements in fabrication and characterization techniques,
s well as the development of new functionalization methods,
ave increased the interest in nanostructures to provide treatments

or certain diseases, to improve our understanding of molecular
iology and as tools for a wide range of medical applications.
anoparticles (NPs) of spherical shape have been the most widely

tudied nanostructures for their use in drug delivery [14,43], diag-
ostic tools [15,25,42] or as contrast agents in medical imaging [41].
ylindrical nanostructures such as NWs  have been shown to pro-

ide improved performance for some biomedical applications. By
djusting the radius and the length, high aspect ratios are achiev-
ble. The composition along the wire can be precisely modulated

∗ Corresponding author at: Division of Computer, Electrical and Mathematical Sci-
nces and Engineering, King Abdullah University of Science and Technology, Thuwal
3955, Saudi Arabia.

E-mail addresses: laura.felixservin@kaust.edu.sa (L.P. Felix),
ose.Perez@kaust.edu.sa (J.E. Perez), Maria.Contreras@kaust.edu.sa
M.F. Contreras), timothy.ravasi@kaust.edu.sa (T. Ravasi),
urgen.kosel@kaust.edu.sa (J. Kosel).

ttp://dx.doi.org/10.1016/j.toxrep.2016.03.004
214-7500/© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access
c-nd/4.0/).
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

to have multiple domains with different properties [38], allowing
single or multiple functionalization using ligands. In addition, mag-
netic NWs  have higher magnetic moment per unit of volume than
NPs, allowing them to exert large forces and torques [16,34]. This
last statement has been supported by two comprehensive stud-
ies that compared the performance of nickel (Ni) NWs  and NPs for
cell separation, with the results showing improved performance
of NWs  over NPs [12,17]. Additionally, the saturation magnetiza-
tion of NWs  is over an order of magnitude higher than that of NPs
[12,13].

Recent studies have elucidated the potential application of sili-
con NWs  and polycaprolactone NW surfaces in tissue engineering
and bone regeneration by showing their capability to support adhe-
sion and proliferation of cells with elongated morphologies [24,37].
Other studies [10] have demonstrated the advantages of NWs  in
magnetic biosensing, where biomolecules of interest are labeled
for their detection and identification. By using NWs, detection can
be achieved in the absence of an external magnetic field due to the
large remanent magnetization. Moreover, Ni NWs  can be internal-

ized by cells such as immortalized fibroblasts [34], HeLa and human
colorectal carcinoma cells (HCT116) [26], rat marrow stroma cells,
osteoblast cells (MC3T3-E1) and osteosarcoma cells (UMR-106)
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30]; a capability that can be exploited for diverse disease treat-
ents such as cancer therapy [5].
Cytotoxicity studies of NWs  have shown a dependence on fac-

ors like material and size. A high concentration of NWs  might
roduce very low toxicity and good biocompatibility in some cell

ines such as HeLa cells [34], 3T3 fibroblasts (CRL-1658) [11] and
929 mouse fibroblast [20], while being highly toxic for other cell
ines including mesenchymal stem cells [35] and human colorectal
arcinoma cells (HCT 116) [28]. These results together with other
ontributions have made Ni NWs  very interesting for biomedical
pplications.

Information about the adverse effects of nanostructures on cells
nd tissues would enable the systematic design of suitable nanos-
ructures for biomedical applications. Cytotoxicity studies provide
ital information about the cellular mechanisms involved in nano-
tructure internalization and toxicity. NWs  interact with the cell
embrane, triggering their internalization mainly through endocy-

osis by enclosing them in membrane vesicles (e.g., late endosomes
r lysosomes) to be degraded, recycled back to the extracel-
ular environment, transported across cells, or to reach other
rganelles such as mitochondria [8,39]. According to some studies,
he endocytosis effectiveness can be influenced by the length of the
anostructures, resulting in the activation of membrane receptors
pecific for a cellular uptake pathway [22,23]. Smaller nanostruc-
ures are internalized more efficiently than longer ones with similar
urface characteristics [36]. Additionally, the surface charge seems
o influence the amount of nanostructures taken up by cells. Non-
hagocytic cells have shown a preference for cationic NPs while
hagocytic cells take up more efficiently anionic NPs [1]. The toxic
ffects of nanostructures inside cells can be driven by their physic-
chemical properties, such as retention time inside the cell, surface
roperties, and toxic metabolites. The adverse effects include mor-
hological and structural changes, genotoxicity, and biochemical
lterations that trigger different cellular responses such as cell-
ycle and proliferation irregularities, diminution of mitochondrial
unction, activation of cell signaling pathways and cell death [8]. It
as been revealed that cells are able to break up iron NWs  aggre-
ates into smaller ones that were later degraded [32]; the NWs  and
he remains of the degradation were found either in vesicular com-
artments or directly dispersed in the cytosol. The resulting ionic
orms due to NW degradation are able to interact with and alter the
ntracellular environment [11].

A review article about Ni carcinogenesis [22] concluded that
i2+ ions released from NPs reached the nucleus in greater amounts

han Ni2+ ions from water-soluble Ni(II) sulfate, resulting in a higher
ytotoxicity. According to the authors, this was due to the relatively
nefficient uptake mechanisms of water-soluble Ni(II) compounds
i.e. diffusion, iron/calcium channels). Some other studies have
hown that the toxicity of a material in a certain form (e.g. NW)
annot be inferred from the toxicity of the same material in a dif-
erent shape (e.g. NP) [34]. A good example is asbestos, a “benign”
ilicate that is highly toxic in its fibrous form [34]. Therefore, cyto-
oxicity studies must be carried out for specific materials in specific
eometries and for specific cell lines.

This work aims to study the viability of human fibroblasts when
rown in the presence of Ni NWs  at different concentrations and
or incubation times of 24, 48 and 72 h. The results are compared
o those obtained for Ni salt to get further insight into the cyto-
oxic mechanisms. In addition, the NW internalization assessment
s approached using TEM and confocal images that as well eluci-
ate any changes in the fibroblasts. To our knowledge, this is the
rst systematic cytotoxicity study done in human fibroblasts WI-

8 using ferromagnetic NWs, where the toxic effects of equivalent
mounts of Ni in its ionic form and in its NW form are com-
ared.
orts 3 (2016) 373–380

2. Materials and methods

2.1. Fabrication and characterization of Ni NWs

Ni NWs  were fabricated by electrodeposition in highly ordered
porous aluminum oxide (PAO) templates. High purity Aluminum
(Al) disks (99.999% purity, Goodfellow) of 2.5 cm in diameter and
0.5 mm in thickness were subjected to cleaning and electropolish-
ing to remove contaminants from the substrate surface. After that,
a two-step anodization process using 0.3 M oxalic acid was used
to obtain a highly ordered PAO template. The first anodization was
carried out by applying a constant voltage of 40 V to the Al disk
for 24 h, maintaining the temperature within 2–4 ◦C and keeping
the solution under constant stirring (∼200 rpm). The result was an
aluminum oxide (alumina) layer on the Al surface with disordered
pores and ordered domains on the Al substrate. The alumina layer
was chemically removed by using a chromium-based solution con-
sisting of 0.2 M CrO3 and 0.4 M H3PO4 in DI water at 30 ◦C for 12 h.
The second anodization was  carried out using the same setup and
under the same conditions of the first anodization process, with
the exception of the anodization time being 20 h. The result was
a membrane with highly ordered nanopores and a narrow diam-
eter distribution. To prepare the sample for the electrodeposition
process, the aluminum on the backside of the Al disk was  removed
using a copper solution 1.67% (w/v) of CuCl2·2H2O and 49.16% (v/v)
of HCl. Afterwards, the pores were opened using 5% (v/v) phospho-
ric acid solution and a gold layer (∼200 nm)  was sputtered on the
backside of the membrane. These three steps were done in order to
establish a good electrical contact between the pore and the base of
the substrate. Finally, the pores were filled with Ni by direct current
electrodeposition using a Ni solution consisting of 46 g/L of Ni(II)
chloride hexahydrate (NiCl2·6H2O), 40 g/L of boric acid (H3BO4) and
300 g/L of Ni(II) sulfate hexahydrate (NiSO4·6H2O). For the elec-
trodeposition process, a reference voltage of −1 V (vs. Ag/AgCl)
was used and the time was adjusted to obtain Ni NWs  of 1 �m
in length. After electrodeposition, the gold layer on the backside of
the sample was  removed using reactive ion etching. The template
pieces were then put in an Eppendorf tube containing 1 ml  of 1 M
sodium hydroxide (NaOH) solution and left for 24 h to selectively
dissolve the alumina. The NaOH solution was replaced with 1 ml
of chrome solution and left for 24 h in a Thermomixer® comfort
(Eppendorf) at 40 ◦C and 300 rpm. The Eppendorf tube was put in a
magnetic holder (DynamagTM-2) to collect the NWs, and then the
chrome solution was  discarded and replaced with ethanol. The NWs
were suspended and shaken for cleaning and disposal of traces of
NaOH, chromium-based solution and aluminum membrane. This
step was  repeated several times to ensure complete removal of the
chromium-based solution.

Energy dispersive X-ray analysis (EDX) was used to obtain
the elemental composition of the Ni NWs. Scanning electron
microscopy (SEM) was  used to visualize the filled pores, the
alumina template and released Ni NWs. Transmission electron
microscopy (TEM) was used to characterize their morphology and
to study the oxide layer formed on their surface. To estimate the
number of NWs  corresponding to each sample, the number of pores
was calculated for a defined area of the alumina template from SEM
images using ImageJ software. This value was  multiplied by the
total area and divided by the area of the alumina template from the
SEM image.

2.2. Cell culture
Human fibroblasts WI-38 (ATCC® CCL-75TM) cells were cultured
in Eagle’s minimum essential medium (EMEM Quality Biological
Inc.) supplemented with Sodium Pyruvate (Gibco®), non-essential
aminoacids solution (MEM NEAA Gibco®), 10% fetal bovine serum
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FBS) and 1% penicillin/streptomycin. The cells were incubated at
7 ◦C in a humidified incubator with 5% carbon dioxide (CO2). Each
ime the cell culture reached a confluence of 70–80%, the cells were
ashed twice with Dulbecco’s phosphate-buffered saline (DPBS)

alcium and magnesium free and detached with 0.05% trypsin. Try-
an blue staining and a hemocytometer were used for cell counting.

.3. Cytotoxicity assay

The 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bro-
ide (MTT) cell proliferation assay (Vibrant®) was  chosen as the
ethod to determine and evaluate NW cytotoxicity in terms of cell
etabolic activity.
In a clear, flat-bottom 96-well plate (Fisher Scientific), cells sus-

ended in 100 �l of EMEM medium were seeded in triplicates for
ach condition tested, as well as a negative control (cells without
Ws). This setup was performed three times; one 96-well plate per
xposure time (24, 48 and 72 h) and a full experiment consisted of
hree independent biological replicas. All plates were placed in the
ncubator for 24 h to achieve proper attachment and cell density.
fter that time, the cells were treated with either NWs  or Ni salts

Ni(II) sulfate hexahydrate and Ni(II) chloride hexahydrate). For the
i salts experiments, the concentration of Ni in �g/ml was calcu-

ated to be equivalent to each of the NW concentration used for Ni
Ws  experiments by:

otalmass = m × (no.ofNWs) × (no.ofcells) × (no.ofwells) . (2)

here m is the mass of a single NW.  The desired concentrations
f NWs  or Ni salts were diluted in EMEM medium and added to
ach well. For the negative control wells medium alone was added.
ll plates were placed in the incubator. After the desired incuba-

ion time, the media was carefully discarded from all wells and the
ells were washed twice with PBS. Then, 100 �l of 10% v/v MTT
olution (5 mg/ml  in PBS) in medium was added. After 3 h of incu-
ation, the MTT  solution was discarded and replaced by 100 �l of
0% (w/v) sodium dodecyl sulfate solution and 0.6% (v/v) 37% HCl

n dimethyl sulfoxide, which acted as a cell lysis buffer, breaking
he cells and allowing the purple crystals to be released in the solu-
ion. The 96 well plates were then shaken in a Multi-Microplate
enie (Scientific Industries) to dissolve the MTT  crystals, resulting

n a homogeneous color of the solution. The concentration of pur-
le crystals was determined by optical density (OD) measurements
sing an xMarkTM microplate absorbance spectrophotometer (Bio-
ad). A 570 nm wavelength and a reference wavelength of 630 nm
ere used. Each OD value was subtracted from the reference wave-

ength to eliminate the background signal. Cell viability at each
ondition was determined using Eq. (3):

ellviability(%) = OD570−630 [Condition]
OD570−630 [Negative control]

× 100% (3)

The data points were presented as a percentage of control cells
nd each one is an average of the respective triplicates.

The Ni salt solution was prepared with NiSO4·6H2O and
iCl2·6H2O and later diluted in EMEM medium. These were the

ame salts used to prepare the Ni solution for electrodeposition
uring NW fabrication. The concentration of Ni in in the solution
�g/ml) was equivalent to the amount of Ni in the NW experi-

ents. The equivalent amount was found by calculating the mass
f a single NW using Eq. (1), which was 2.5 × 10−9 �g.

.4. Confocal microscopy
The cells were seeded in a Lab-TekTM II Chambered cover glass
nd incubated 24 h, reaching a confluence of ∼80%. Later, Ni NWs
here added to the cells at a concentration of 22.5 �g/ml and the
lates were placed in the incubator for 24, 48 and 72 h. After each
orts 3 (2016) 373–380 375

time, the cells were washed with PBS and fixed with 3.7% (v/v)
formaldehyde diluted in PBS, which was  removed after 5 min of
incubation at room temperature. The cells were washed twice with
PBS and then the nuclei of the cells were stained with a 300 nM
solution of 4′,6-diamidino-2-phenylindole (DAPI) stain. The solu-
tion was removed after 8 min  of incubation at room temperature
and the cells were washed three times with PBS. Fluorescence was
observed using a Zeiss LSM 710 Inverted Confocal Microscope with
an excitation and emission wavelength of 360 nm and 460 nm,
respectively.

2.5. TEM internalization studies

Human fibroblasts cells were seeded in 6-well plates and incu-
bated for 24 h. After that the cells were treated with Ni NWs  at a
concentration of 22.5 �g/ml and incubated for 24, 48 and 72 h. After
each exposure time, the medium was discarded and the cells were
fixed with 2.5% [v/v] glutaraldehyde in cacodylate buffer (0.1 M,  pH
7.4). Fixed cells were treated with reduced osmium (1:1 mixture of
2% aqueous potassium ferrocyanide) as described previously [21],
dehydrated in ethanol and embedded in Epoxy resin.

Sections of 100–150 nm thickness were collected on copper
grids and stained with lead citrate. Finally, imaging was  per-
formed using a transmission electron microscope operating at
300 kV (Titan Cryo Twin, FEI Company, Hillsboro, OR). Images were
recorded by a 4k × 4k CCD camera (Gatan Inc., Pleasanton, CA).

2.6. Statistical analysis

Results are presented as mean ± standard deviation (SD). The
statistical significance was  determined by one-way analysis of
variance (ANOVA) using MATLAB software. Differences were con-
sidered significant for p < 0.05.

3. Results

3.1. Elemental and morphological characterization of Ni NWs

Fig. 1A shows the EDX spectrum of the NWs. The copper peak
is the result of using a copper grid to mount the sample. The small
peak of oxygen can be attributed to the ethanol used to wash the
NWs. Fig. 1B shows a close view of a single Ni NW that reveals the
presence of an oxide layer with a thickness of ∼3.1 nm, possibly as
a result of the release process or the NWs  exposition to air.

SEM images were taken to determine the diameter (Fig. 2A) and
length (Fig. 2B) distribution using ImageJ software. In both cases, a
representative sample of 20 NWs  and pores was  used. On average,
the NWs  diameter and length were found to be 31 nm and 1 �m,
respectively (Fig. 2C), resulting in an aspect ratio of about 32.

3.2. Cytotoxicity effects of Ni NWs

The MTT  assay is a colorimetric assay based on the principle that
metabolically active cells are able to reduce the MTT tetrazolium
salt, a yellow water-soluble salt, to formazan, an aqueous purple
insoluble product. The reduction process is carried out mainly at
the mitochondrial level [7] by mitochondrial succinate dehydro-
genase. The formazan is solubilized and then the concentration is
determined by the OD value, which is used as an indicator of cell
viability.

Before conducting the cell viability experiments, it was con-

firmed that the Ni NWs  did not interfere with the MTT  assays. To
this end, Ni NWs  were suspended in 100 �l of EMEM medium and
a control consisting of 100 �l of EMEM medium was  added to 96-
well plate in triplicates. Three exposure times were tested (24, 48
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Fig. 1. Composition analysis and morphology of Ni NWs. A) E

nd 72 h), showing that the OD values were the same for the sample
ith NWs  and for the control (data not shown).

The first cytotoxicity assay was done to evaluate the effects of
i NWs  as a function of NW concentration and incubation time.
he results (Fig. 3A) showed high cell viability (>80%) when the
oncentration was 0.22 �g/ml or 2.25 �g/ml, for any time point. For
he 22.5 �g/ml concentration, the cell viability was high (96%) after
4 h, but further this value decreased up to 75% and 72% after 48 or
2 h, respectively. Overall, cell viability at the mitochondrial level
ecreased while NW concentration and incubation time increased.

One of the challenges of evaluating cytotoxicity after long incu-
ation periods (i.e. 72 h) is cell overconfluence, which might lead
o a decrease of the cells’ metabolic activity. The obtained OD val-
es of untreated cells at different incubation times did not show
ignificant variations for all the MTT  experiments. In contrast, OD
alues showed significant variations when the NW concentration
as modified. These results confirmed that confluence at different

ncubation times did not significantly affect cell metabolic activ-
ty, and any loss of cell viability was caused by the presence of Ni
Ws.

Cytotoxicity studies were done on colon cancer cells (HCT 116)

xposed to 1 �m long Ni NWs  at different concentrations (10:1,
0:1, 100:1, 200:1 and 1000:1 NWs  per cell) and the results showed
igh cell viability ( >80%) up to the 100:1 concentration and 48 h

ig. 2. Characterization of Ni NWs. SEM images of A) the filled pores and the alumina tem
uring  this work.
ectrum of released Ni NWs. B) TEM image of a single Ni NW.

of incubation. For the rest, cell viability was decreasing up to 40%,
depending on concentration and time [29]. Comparing those results
with the ones obtained for WI-38 cells (Fig. 3A) in this work, it
can be concluded that HCT 116 cells showed lower viability than
WI-38 in the presence of Ni NWs. This might be explained by the
difference in cell size (fibroblasts 4831.7 �m2 and colon cancer
cells ∼804.3 �m2 area); meaning that even though the proportion
between NW concentration and estimated number of cells at the
time of the treatment are the same for both cell lines, the NW con-
centration per cell volume is less in the case of fibroblasts. The last
statement refers to the fact that the number of WI-38 cells was
around five times less than the number of HCT 116 at the time of the
treatment with NWs. To confirm this idea, a second MTT  assay using
WI-38 cells exposed to a higher NW concentration was  carried out.
The experiment was  performed using Ni NWs  at concentrations
of 1.18 �g/ml, 11.88 �g/ml and 118.8 �g/ml, which correspond to
those used on HCT 116 cells.

As shown in Fig. 3B, the cells remained more than 80% viable up
to the 11.18 �g/ml concentration and 48 h of incubation. The cell
viability decreased up to 74% at 11.88 �g/ml concentration, after
72 h. Further increasing the concentration to 118.8 �g/ml, led to

abrupt decreases in cell viability: ∼70%, ∼56% and ∼47% after 24,
48 and 72 h, respectively. These values are within the same range as
those reported for HCT 116 cells, confirming the reasoning above

plate, B) released NWs, C) pore sizes and length distributions for the sample used
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Fig. 3. MTT  assay of cell viability on WI-38 cells: A) and B) cell viability after treatment with 1 �m Ni NWs  assessing different concentrations. C) Cell viability after treatment
w o cont
f  72 h 
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ith  Ni salts. NC = negative control. Percent viability of cells was expressed relative t
rom  the respective control. Confocal images of fibroblasts D) after 24, E) 48 and F)
blue)  were stained with DAPI. White arrows indicate some of the NWs.

hat not just the concentration of NWs  and incubation time are
elevant, but that the cellular size and volume play an indirect role
n the NWs  metabolism and therefore in their cytotoxicity.

.3. Cytotoxicity effects of Ni salts

In order to elucidate whether the side products of Ni NWs  degra-
ation are the reason for or contribute to their toxicity, MTT  assays
ere performed using Ni salts dissolved in EMEM medium. The cell

iability for Ni salts with a concentration equivalent to the amount
f Ni NWs, after 24 and 48 h was above 90% and approximately 88%
fter 72 h (Fig. 3C). Surprisingly, the results showed no significant

ifference between the treated cells and their respective controls,
ith exception of the mean value for 2.25 �g/ml concentration after

2 h. Overall, the cell viability seems to be independent of the Ni
alts concentration and exposure time.
rol cells. The data show mean values ± standard deviation, n = 3, *p < 0.05, ** p < 0.01
of incubation with 1 �m long Ni NWs  with a 22.5 �g/ml concentration. The nuclei

These results show that Ni NWs  are more toxic than the Ni salts.
A possible explanation for the higher cytotoxicity of the NWs  can
be attributed to a different cytotoxicity mechanism tied to their
morphology (cylindrical shape).

3.4. Internalization of Ni NWs

Fluorescence images of cells with DAPI stained nucleus were
taken using confocal microscopy. As shown in the images
(Fig. 3D–F), the NWs  are interacting with the cells; however, the
nuclei’s morphology seems to be unaffected.

In order to assess internalization of Ni NWs  by WI-38 cells,

TEM images were taken at different exposure times (Fig. 4). After
24 h, NWs  were already found inside the cells. They were mainly
observed as dark dense aggregates inside cellular vesicles, possibly
lysosomes. Some of the images (Fig. 4, 24 h) showed notorious alter-
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tion of the normal size of the endoplasmic reticulum (ER) when
ompared to the untreated cells. A closer view on the TEM images
onfirms that the Ni NWs  are typically agglomerated in a random
hape (Fig. 5).

. Discussion

The results show that human fibroblasts are capable of inter-
alizing and encapsulating Ni NWs  in vesicles. The internalized Ni
Ws do not seem to affect the cell viability of the human fibroblasts
uring the first 24 h. However, their toxic effects become notori-
us for longer exposure times and at higher concentrations. These
esults are in agreement with previous studies of Fe NWs  in HeLa
ells [34]; Ni NWs  in colon cancer cells (HCT 116) [29] and mono-
ytic cells (THP-1) [2]; gold NPs in human fetal lung (MRC-5) [18]
nd primary human dermal fibroblasts (CF-31) [27].

In general, the cell viability behavior is similar among different
ell lines regardless of the nanostructure materials (higher con-
entrations and longer exposure times result in more severe toxic
ffects); however, different cell lines show different cell viability
or the same conditions. The cytotoxic effects of Ni NWs  on human
broblasts (WI-38) reported in the present study differ from those
eported in the past for Ni NWs  on colon cancer cells [29].

Moreover, the data shows that Ni salts are less toxic than Ni
Ws. The higher cytotoxicity of the NWs  suggests that the shape
lays an important role. Previous studies reported a similar con-
lusion when comparing the toxic effects of Ni NPs with those for
oluble Ni at equivalent concentrations [6] and Ag NPs with its ionic

orm [33].

Previous studies reported that Ni NWs  are stable in different
iological solutions [31], with a passivation oxide layer forming
round the NW core. Therefore, the amount of NW material that
Ws  (right column) after (A) 24, (B) 48 and (C) 72 h. The Ni NWs  were found inside
al size of the endoplasmic reticulum was observed (black narrows). Their respective

gets dissolved in cell culture medium is minimal. Once internalized,
the cells try to break down the NWs. The thin oxide layer formed
around the Ni core gets easily dissolved inside the cells, resulting
in the release of Ni2+ and further oxidation of the Ni core [28]. This
elucidates the important role that the oxide and Ni2+ play in the
cytotoxic effect of the Ni NWs, as supported by previous studies
[3,22,28].

TEM images show changes in the size of the ER, suggesting that
Ni NWs  might cause ER stress under certain conditions. An indi-
cation of ER stress is the accumulation of unfolded proteins in the
ER that overload it, resulting in ER swelling [4,9,19]. ER stress has
previously been identified as a cellular response to the cytotoxicity
of Ni NWs  [44]. The data presented in this study shows ER swelling
only after 24 h of exposure.

5. Conclusions

This study showed the cytotoxicity of Ni NWs  on WI-38 cells
(human fibroblasts) by measuring cell viability at different incu-
bation times and NW concentrations. Significant toxic effects were
found for NWs  mostly after 48 h at high concentrations with cell
viability decreasing as incubation time increased, results that con-
firmed previous findings with Fe and gold NWs, as well as with NPs.
In addition, the comparison of the toxic effects of NWs  among dif-
ferent cell lines suggested that the size of the cell and the cell type
also play a crucial role in the toxic effects of the NWs, and a nor-
malization of the nanoparticle concentration to the cell size should
be considered for such comparisons.
The toxic effects of Ni in the form of its salts were compared
with those of Ni NWs. The results showed that the Ni salts are less
toxic than Ni NWs, which is similar to previous findings for Ag NPs
and ions. The results indicate that there are effects related to the
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aterial and effects related to the morphology. It is also important
o consider the thin oxide layer surrounding the Ni core of the NW.
his layer gets easily dissolved inside of the cells and acts as a source
or Ni2+, contributing to the toxic effects.

TEM images showed that some of the NWs  were internalized
nd encapsulated in vesicles within 24 h. The presence of NWs
nside the cell induced alterations of the size of the endoplasmic
eticulum, which could be an ER stress indicator in the cells. Such
esponse has been previously reported but no TEM images of ER
lterations had been shown.
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