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Characterization of the CpG
island methylator phenotype
subclass in papillary
thyroid carcinoma

Pengfei Gu1†, Yu Zeng1†, Weike Ma1, Wei Zhang1, Yu Liu1,
Fengli Guo1, Xianhui Ruan1, Jiadong Chi1*,
Xiangqian Zheng1* and Ming Gao1,2,3*

1Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital,
National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy,
Tianjin’s Clinical Research Center for Cancer, Tianjin, China, 2Department of Thyroid and Breast
Surgery, Tianjin Union Medical Center, Tianjin, China, 3Tianjin Key Laboratory of General Surgery in
Construction, Tianjin Union Medical Center, Tianjin, China
CpG island methylator phenotype (CIMP), characterized by the concurrent and

widespread hypermethylation of a cluster of CpGs, has been reported to play an

important role in carcinogenesis. Limited studies have explored the role of CIMP

in papillary thyroid carcinomas (PTCs). Here, in genome-wide DNA methylation

analysis of 350 primary PTCs from the Cancer Genome Atlas database that were

assessed using the Illumina HumanMethylation450K platform, our study helps to

identify two subtypes displayed markedly distinct DNA methylation levels,

termed CIMP (high levels of DNA methylation) and nCIMP subgroup (low

levels of DNA methylation). Interestingly, PTCs with CIMP tend to have a

higher degree of malignancy, since this subtype was tightly associated with

older age, advanced pathological stage, and lymph nodemetastasis (all P < 0.05).

Differential methylation analysis showed a broad methylation gain in CIMP and

subsequent generalized gene set testing analysis based on the significantly

methylated probes in CIMP showed remarkable enrichment in epithelial

mesenchymal transition and angiogenesis hallmark pathways, confirming that

the CIMP phenotype may promote the tumor progression from another

perspective. Analysis of tumor microenvironment showed that CIMP PTCs are

in an immune-depletion status, which may affect the effectiveness of

immunotherapy. Genetically, the significantly higher tumor mutation burden

and copy number alteration both at the genome and focal level confirmed the

genomic heterogeneity and chromosomal instability of CIMP. tumor

Corresponding to the above findings, PTC patients with CIMP showed

remarkable poor clinical outcome as compared to nCIMP regarding overall

survival and progression-free survival. More importantly, CIMP was associated

with worse survival independent of known prognostic factors.

KEYWORDS

CpG island methylator phenotype, papillary thyroid carcinoma, immune-depletion,
prognosis, epigenetic
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Introduction

Papillary thyroid carcinoma (PTC) is the most common

pathologic type of thyroid carcinoma (TC), accounting for about

85% of all cases. In recent years, the incidence and recurrence

rate of PTC is gradually increasing throughout the world (1, 2).

Although PTC has always been regarded as an indolent

malignancy, with a 10-year relative survival rate of 98% in

cases with localized disease (3), a subset of them show poor

outcomes (4). A great number of patients with PTC develop

locoregional recurrences or even radioiodine-resistant distant

metastases (5, 6). Furthermore, PTC occasionally give rise to less

differentiated and more aggressive TCs (5). It is indeed a

challenge for clinicians to provide the most effective but least

aggressive treatment (7). Considering the high and still rising

incidence of PTC whose adverse outcomes may sometimes be

ignored, it is necessary to perform more precise therapies, or to

search for novel prognostic markers to perfect the risk

stratification process.

DNA methylation is the most well-known epigenetic

modification, occurring from the addition of a methyl group

to the 5’-position of the cytosine of cytosine-guanine

dinucleotides. Previous studies have outlined the genome-wide

landscape of cancer-specific DNA methylation changes, which is

characteristic of global hypomethylation and a regional

hypermethylation in CpG islands (CGIs) (8–10). The former is

considered to favour chromosomal instability and inappropriate

activation of oncogenes, the latter may lead to the - silencing of

tumor-suppressor genes (8, 11). Changes in DNAmethylation in

cancer have been regarded as promising targets for the

development of powerful diagnostic, prognostic, and predictive

biomarkers (12, 13). Although DNA methylation in PTC has

been intensively studied and several markers have been

described, most of the research are mainly based on the

analysis of candidate genes (14, 15), only a limited number of

genome-wide methylation studies have been reported in PTC

(16, 17).

The CpG island methylator phenotype (CIMP) was first

discovered and validated in colorectal cancer, as cancer-specific

CGIs hypermethylation of a subset of genes in a subset of tumor

(18). Occurrence of CIMP is associated with a range of genetic

and environmental factors, although the molecular causes are

not well-understood (19). So far, the CIMP phenotype has been
Abbreviations: CIMP, CpG island methylator phenotype; PTCs, papillary

thyroid carcinomas; TC, thyroid carcinoma; CGIs, CpG islands; TCGA, the

Cancer Genome Atlas; FPKM, fragments per kilobase million; OS, overall

survival; PFS, progression-free survival; SD, standard deviation; MeTIL,

methylation of tumor-infiltrating lymphocyte; FDR, false discovery rate;

GGST, generalized gene set testing; GSEA, gene set enrichment analysis;

CNA, copy number-altered; CNAs, copy number alterations; IC50, 50%

inhibiting concentration; TME, tumor microenvironment; TMB, tumor

mutation burden.
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identified in many kinds of tumors, including glioma (20), renal

cell carcinoma (21), gastric cancer (22), Pancreatic Cancer (23),

and so on. Subtypes with different CIMP patterns showed

distinct clinical-pathological, genomic, and immune-related

characteristics (24, 25). However, whether CIMP presents a

biological subtype and whether this phenotype is relevant to

tumorigenesis and progression of PTC has not been reported.

In this study, we identified and validated two distinct

methylation subgroups of PTC patients, termed the CIMP

subgroup (High levels of DNA methylation) and nCIMP

subgroup (Low levels of DNA methylation), with data

downloaded from the Cancer Genome Atlas (TCGA) and further

investigated their impact on the patient prognosis, immune

profiles, epigenetic alterations and response to immune therapy

or chemotherapeutic drugs. As identification of clinically relevant

cancer subtypes based onDNAmethylation patterns, CIMPmight

serve as a tool for precisely risk stratification and help to make

medication guide for patients of different subtypes.
Methods

Multi-omics data sets of TCGA-THCA

DNA methylation profi le quantified by Il lumina

HumanMethylation 450K-array platform was downloaded from

the UCSC Xena (https://xenabrowser.net/) under the project of

TCGA-THCA (17), including 502 primary TC and 54 adjacent

normal samples. Within these cases, we identified 353 PTC cases

according to the record of histology. For transcriptome profile, we

downloaded the gene expression data for 497 primary TC and 56

adjacentnormal samplesquantifiedby thenumberoffragmentsper

kilobase million (FPKM); FPKM values were subsequently

converted into transcripts per kilobase million, which showed

more similarity to the numbers obtained from microarray

analysis and improved comparability between samples (26). In

these 497 primary tumors with available transcriptome profile, a

total of 350 PTCs were identified which also had matched DNA

methylation profile. In addition, 48 adjacent normal samples were

shared between DNA methylation and gene expression profiles.

Additionally, copy number segment data were collected from

FireBrowse (http://firebrowse.org/). Somatic mutations,

clinicopathological features, overall survival (OS) and

progression-free survival (PFS) rate data were downloaded from

cBioPortal (https://www.cbioportal.org/).
External transcriptome datasets

According to the literature (27), we collected a total of five

PTC datasets from Gene Expression Omnibus that were

sequenced by Affymetrix genechip, including GSE33630,

GSE60542, GSE3467, GSE3678 and GSE27155. Considering
frontiersin.org

https://xenabrowser.net/
http://firebrowse.org/
https://www.cbioportal.org/
https://doi.org/10.3389/fendo.2022.1008301
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gu et al. 10.3389/fendo.2022.1008301
the stability and robustness of the validation analysis, those

datasets with tumor sample size greater than 30 were kept,

including GSE33630 (n = 49) (28), GSE60542 (n = 33) (29), and

GSE27155 (n = 51) (30, 31). For microarray data, the median

value was considered if the gene symbol was annotated with

multiple probe IDs.
Pre-processing of DNA
methylation profile

For DNA methylation profile, we used the R package

“ChAMP” to performed comprehensive filtering procedures

and the following filtering criteria were adopted: removal of

probes with detection P value > 0.01 and probes with < 3 beads

in at least 5% of samples per probe, all non-CpG probes, all

single nucleotide polymorphism-related probes, all multi-hit

probes, and probes locating in chromosome X and Y (32, 33).
Unsupervised clustering of DNA
methylation profile

Probes that were unmethylated in the 48 normal samples

(mean b-value < 0.3) and that had a standard deviation (SD) of

greater than 0.15 in the tumor samples were chosen for the

clustering. In addition to b-values, we used M-values in this

study (M-value = log2(b/1 b) because of the stronger signals for
quantifying methylation levels (34). Unsupervised hierarchical

clustering with Ward’s method and Euclidean distance

measurement was used to cluster the 350 primary tumor

samples based on methylation M-values, and the clustering

dendrogram was cut at k = 2 to yield two clusters.
Calculation of microenvironment cell
abundance and pathway enrichment

We used the R package “ESTIMATE” (35) to estimate the

presence of infiltrating immune/stromal cells in tumor tissue.

Furthermore, the score of DNA methylation of tumor-

infiltrating lymphocyte (MeTIL) in the TCGA-PTC cohort was

calculated individually according to the protocols outlined in the

literature (36). We also quantified the absolute abundance of

eight immune cell populations and two stromal cell populations

in heterogeneous tissues by the R package “MCPcounter” (37).
Differential analysis and
functional enrichment

The differential methylation probes were obtained through

the standard process of ChAMP based on the following criteria.
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We determined probe as the probe that significantly gained

methylation if its corresponding mean b value was greater than

0.4 in the specific subtype but less than 0.3 in the reference group

with P < 0.05 and false discovery rate (FDR) < 0.25; vice versa for

probes that significantly lost methylation. Functional

enrichment analysis through generalized gene set testing

(GGST) was performed for CpG level of DNA methylation by

using the R package “missMethyl” with the Hallmark gene set

background retrieved from Molecular Signatures Database (38,

39). Differential expression analyses were conducted using the R

package “limma” (40). For gene set enrichment analysis (GSEA)

based on gene expression data, pre-ranked gene list was

prepared according to the descending ordered log2FoldChange

value derived from differential expression analysis; we then

harnessed R package “clusterProfiler” to determine functional

enrichment based on Hallmark pathway (41). Functional

enrichment analysis based on gene list was performed by

Enrichr (https://maayanlab.cloud/Enrichr/) (42).
Characterization of cancer subtype

Cancer subtypes we identified were basically characterised

by the R package “MOVICS”, including mutational frequency,

fraction of copy number-altered genome, and clinical

characteristics using all parameters by default (43).

Additionally, we analysed the mutation landscape by the R

package “maftools” using the potential driver mutation

according to the literature (44, 45). Recurrent focal somatic

copy number alterations(CNAs) were detected and localized by

GISTIC2.0 through GenePattern (https://www.genepattern.org/)

with all parameters by default (46). Arm-level chromosome

CNA status were retrieved from the previous literature (47).
Integrative analysis of promoter
DNA methylation and
transcriptome expression

To investigate the crosstalk between DNA methylation and

transcriptome expression, we performed integrative analysis

combining DNA methylation and gene expression by using

the R package “ELMER” (48). First, we identified probes that

located in promoters from the annotation of Infinium

HumanMethylation450K BeadChip. Secondly, we identified

putative genes that were significantly downregulated due to

the hypermethylation of promoter probes. Thirdly, the closest

20 upstream and downstream genes were collected for each

probe, and for each candidate probe-gene pair, the Mann-

Whitney U test was harnessed to test the null hypothesis that

overall gene expression in the specific group was less than or

equal than that in the reference group.
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https://maayanlab.cloud/Enrichr/
https://www.genepattern.org/
https://doi.org/10.3389/fendo.2022.1008301
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gu et al. 10.3389/fendo.2022.1008301
Prediction of the benefit from immune
checkpoint blockade therapy and
drug sensitivity

The MD Anderson melanoma cohort that received anti

CTLA-4 or anti-PD-1 therapy was considered for the

prediction of immunotherapy response (49). In addition, based

on the drug sensitivity and phenotype data from GDSC 2016

(https://www.cancerrxgene.org/), the R package “pRRophetic”

was employed to predict the chemotherapeutic sensitivity for

each PTC sample using the expression profiles of 727 human

cancer cell lines as the training cohort; the 50% inhibiting

concentration (IC50) (lower IC50 indicates increased sensitivity

to treatment) of each sample treated with a specific

chemotherapeutic agent was estimated by ridge regression, and

10-fold cross-validation was used to measure the prediction

accuracy (50).
Statistical analyses

All statistical analyses including Fisher’s exact test for

categorical data, a two-sample Mann-Whitney U test for

continuous data, a log-rank test Kaplan-Meier curve, and

hazard ratio with 95% confidence interval for Cox

proportional hazards regression, and unsupervised hierarchical

clustering with Ward’s method and Euclidean distance

measurement based on methylation M-values (M-value = log2

(b/1 b), were performed by R4.0.2. A two-sided P<0.05 was

considered statistically significant in all unadjusted methods

of comparison.
Results

Identification of a CpG island methylator
phenotype in PTC associated with
patient outcome

WeanalysedDNAmethylation profile of 350primaryPTCs from

TCGA database accessed by the Illumina HumanMethylation450K

platform.After a comprehensivefilteringofChAMPprocedure, a total

of 340,864 probes remained for the analysis. We then excluded totally

191,341 probes with average b-value > 0.3 in 48 normal thyroid

samples. After that, the probes with high variability (SD > 0.15) were

selected, leading to a total of 6,541 probes used for the clustering

analysis. Consequently, unsupervised hierarchical clustering based on

these probes revealed two subtypes, one of which displayed markedly

high DNA methylation levels and thus be labelled as having a CIMP

phenotype (n = 57, 16.3%). Another subclass exhibited low

methylation levels and was therefore termed nCIMP (n = 293,

83.7%) (Figure 1A).
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Next, we aimed to assess whether PTCs belong to different

CIMP phenotypes exhibited distinct clinicopathologic features.

Interestingly, the results showed that CIMP tumors were tightly

associated with several adverse prognostic factors, such as older age

(P < 0.001), advanced T stage (P < 0.001), severer pathological stage

(P < 0.001), and lymph node metastasis (P = 0.039) (Supplementary

Table S1). The distribution between the CIMP/nCIMP phenotype

and clinicopathological features were shown in Supplementary

Figure S1. Furthermore, Kaplan-Meier analysis was used to

investigate the association between the above two phenotypes and

patients’ clinical outcome. Surprisingly, we found that PTC patients

with CIMP showed significantly poor clinical outcome as compared

to nCIMP regarding OS (P < 0.001; Figure 1B) and PFS (P < 0.001;

Figure 1C), which suggested an interplay between DNA

methylation and known prognostic features in PTC.
Broad methylation gain in CIMP

After that, we performed differential methylation analysis

between CIMP and nCIMP and identified differentially methylated

probes for each phenotype. Specifically, a total of 929 probes were

identified as significantly methylated in CIMP compared to only 13

probes innCIMP(AllP<0.05, SupplementaryTableS2), indicatinga

significant increase of DNA methylation in CIMP. Simultaneously,

GGST analysis based on these 929 probes showed significantly

enrichment in epithelial mesenchymal transition and angiogenesis

Hallmark pathways (both P < 0.05; Supplementary Table S3,

Supplementary Figure S2).
Differential immune profiles between
two epigenetic phenotypes

To investigate the transcriptional changes between the two

epigenetic phenotypes, differential expression analysis and

GSEA were conducted. The results showed significant

inactivation of inflammatory response and interferon-g
Hallmark pathways in CIMP as compared to nCIMP (both

FDR < 0.001; Figure 2A, Supplementary Table 4).

Since cancer immunity plays a critical role in tumor progression,

we suspected that the tumormicroenvironment (TME) of the CIMP

may be different from that of the nCIMP subtype. Thus, we

investigated the specific TME cell infiltration status of samples

from TCGA; the infiltration levels of eight immune and two

stromal cell populations were quantified and the expression of

immune checkpoints in PTC samples were investigated (Figure 2B).

As expected, the expression of genes representing potential

targets of immunotherapy, including PDCD1 (PD1), CD247

(CD3), CD274 (PDL1), PDCD1LG2 (PDL2), CTLA4 (CD152),

TNFRSF9 (CD137) and TLR9 (all, P < 0.05), was in CIMP

significantly lower than that of nCIMP (Figure 2C). The analysis

of TME suggested that CIMP was dramatically immune-depleted
frontiersin.org

https://www.cancerrxgene.org/
https://doi.org/10.3389/fendo.2022.1008301
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gu et al. 10.3389/fendo.2022.1008301
because all eight quantified level of immune cells were significantly

lower than that of nCIMP (all, P < 0.05; Figure 2D). Using the

ESTIMATE algorithm,we found that CIMPpresentedwith overall

lower enrichment level regarding immune and stromal cells (both,
Frontiers in Endocrinology 05
P < 0.001; Figures 2E, F). Additionally, theMeTIL score ofCIMP in

TCGA cohort was significantly lower than that of nCIMP,

indicating a lower proportion of tumor-infiltrating leukocytes

(P < 0.001, Figure 2G).
A

B C

FIGURE 1

Identification of CIMP and its association with clinical outcome. (A) Heatmap showing the DNA methylation pattern between CIMP (high-
methylation) and nCIMP(low-methylation) using DNA methylation M-values. Kaplan-Meier curves between two epigenetic phenotypes regarding
(B) OS (Overall survival) and (C) PFS (Progression free survival).
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Epigenetically silence of
immune-related pathways

Given the immune-depleted TME in CIMP, we then decided

to investigate if such transcriptional change could mirror to

epigenetic DNA methylation. In this context, we performed

integrative analysis combining both gene expression and DNA
Frontiers in Endocrinology 06
methylation profiles using ELMER pipeline. Due to the well-

known epigenetic effect of promoter methylation in silencing

corresponding gene expression, we extracted promoter probes

from the Illumina HumanMethylation 450K-array platform, and

performed differential methylation analysis in probe level.

Probes with difference of b-value greater than 0.1 (FDR <

0.05) between CIMP and nCIMP were identified, ending up
G

A

B

D

E F

C

FIGURE 2

Tumor microenvironment landscape of CIMP. (A) GSEA plot showing inactivation of inflammatory response and interferon-g. (B) Heatmap
showing the immune profile in the TCGA-PTC cohort, with the top panel showing the expression of genes involved in immune checkpoint
targets, the middle panel showing the enrichment level of 10 microenvironment cell types, and the bottom panel showing the DNA methylation
of tumor-infiltrating lymphocytes (MeTILs). The immune enrichment score and stromal enrichment score were annotated at the top of the
heatmap. (C) Boxplot showing the distribution of expression of immune checkpoint target genes between two epigenetic phenotypes. (D)
Boxplot showing the distribution of enrichment score of 10 microenvironment cell types between two epigenetic phenotypes. Distribution of
immune enrichment scores, stromal enrichment scores and MeTIL scores between two epigenetic phenotypes were shown in (E–G),
respectively (ns stands for no significance, *p < 0.05, **p < 0.01, ***p < 0.001).
frontiersin.org

https://doi.org/10.3389/fendo.2022.1008301
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gu et al. 10.3389/fendo.2022.1008301
with a total of 2,404 promoter probes (Supplementary Table S5).

Next, ELMER was employed to search for 20 adjacent genes

corresponding to these probes (Supplementary Table S6), and

further predicted promoter-gene linkages using associations

between DNA methylation at promoter CpG sites and

expression of 20 adjacent genes of the CpG sites (Figure 3A);

such analysis identified to a total of 3,272 gene pairs,

corresponding to 1,467 different genes (Supplementary Table

S7). To understand the biologic relevance of these genes that

were epigenetically silenced, Enrichr was employed and found

that these genes were significantly enriched in inflammatory

response and interferon-g Hallmark pathways (both, FDR <

0.001; Figure 3B, Supplementary Table S8).
CIMP may not benefit
from immunotherapy

Considering the dramatical diversity of TME, we next

investigated whether there is a difference among the two

phenotypes in the likelihood of responding to immune

checkpoint blockade. To this end, we performed subclass

mapping in TCGA cohort and revealed that the nCIMP

showed high transcriptional similarity with a subgroup of

melanoma patients who responded to anti-PD1 blockade

(adjusted P < 0.05; Figure 3C), which indicated that patients in

the nCIMP subgroup can profit more from anti-PD-1 treatment.
Validation of TME in external
PTC cohorts

Due to the lack of public PTC cohorts with available DNA

methylation data, we retrieved three PTC cohorts with available

RNA-seq gene expression profile to test the reproducibility of the

immune-depleted phenotype using the 1,467 genes that may be

silenced by promoter hypermethylation. To this end, we

performed supervised hierarchical clustering and revealed two

subtypes in each of the external cohort. Of note, all three cohorts

existed a “cold” TME phenotype that showed immune-depleted

landscape (Figures 4A-I).
Genomic heterogeneity and
chromosomal instability of CIMP

To investigate the genomic heterogeneity of PTC, we

analysed the mutational landscape and identified seven genes

across the entire cohort that showed differential mutational

frequency between two phenotypes (P < 0.05) with overall

mutational rate greater than 1%. These genes included NRAS,

TG, MUC5B, ATM, BDP1, PCNXL2 and USP9X (Figure 5A,

Supplementary Table S9). Among genes that were previously
Frontiers in Endocrinology 07
identified as driver mutations for TC (44), we found that CIMP

contained significantly more NRAS mutations comparing to

nCIMP. Additionally, CIMP had significantly higher tumor

mutat ion burden (TMB, P < 0.001) than that of

nCIMP (Figure 5B).

We then estimated the chromosomal instability by

calculating the fraction genome alteration scores and found

that nCIMP had better chromosomal stability than CIMP with

significantly lower copy number loss or gain (both, P < 0.001;

Figure 5C). Consistently, the landscape of focal CNA

demonstrated highly instability of chromosome in CIMP

against nCIMP (Figure 5D). Specifically, CIMP had more gain

of chr1q, 5p, and loss of chr 9q, and 11q (all, FDR < 0.001;

Figure 5E, Supplementary Table S10).
Independent prognostic value of CIMP

We then surveyed that whether CIMP was an independent

prognostic factor in PTC from TCGA cohort. In this manner,

univariate Cox regression model was first conducted to filter out

prognostic clinical characterizations concerning OS and PFS;

multivariate Cox regression was subsequently performed based

on those prognosis-relevant features. Using such strategy, we

found that age, T stage, M stage, pathological stage and CIMP

were prognostic using univariate analysis, and only CIMP

remained the independent prognostic factor after adjusting

these clinical prognostic features with respect to OS (P <

0.001) and PFS (P = 0.018) (Figure 6).
Potential therapeutic strategy for CIMP

Considering the significantly poor clinical outcome of CIMP

in PTC, we decided to infer potential anti-PTC drugs that were

associated with CIMP using an in-sillico drug screening

approach. To this end, we constructed ridge regression model

between cell lines and corresponding drug sensitivity and

applied the predictive model to each of the PTC cases

(Supplementary Table S11). A lower estimated IC50 value was

obtained in the CIMP group compared to the nCIMP group.

This result suggests that in PTC patients, the higher the degree of

methylation of CPGs, then the more sensitive the patients may

be to certain therapeutic agents and their therapeutic outcome is

better, including GW.441756, KIN001.135, JNK Inhibitor VIII,

PF.4708671, Elesclomol, and AKT Inhibitor VII (all, P <

0.05; Figure 7)
Discussion

Alterations in DNA methylation have been shown to play a

vital role in tumorigenesis and disease progression in many
frontiersin.org
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malignancies, including TC (51, 52). Several studies have

reported that specific genes exhibit differential methylation in

TC, suggesting that these alterations may be useful in

differentiating benign and malignant thyroid nodules (17, 53–

55). Also, methylation status has been previously reported to

affect the progression of thyroid cancer. Klein et al. have

reported that distant metastatic differentiated thyroid cancer,

poorly differentiated thyroid cancer, and anaplastic thyroid

cancer (ATC) were increasingly affected by global

hypomethylation, suggesting that this epigenetic entity may be
Frontiers in Endocrinology 08
involved in thyroid cancer progression and dedifferentiation

(56). The most aggressive type of thyroid tumor, ATC, had

been reported to show a global hypomethylation of the genome

but with hypermethylation of CpG islands. Aberrant DNA

methylation is common in ATC and likely contributes to

tumorigenesis in this disease (57). Identification of clinically

relevant cancer subtypes based on the DNA methylation pattern

is of great significance in medicine, which may be helpful to

provide specific and effective treatment options for patients with

different subtypes. Here, in genome-wide DNA methylation
A

B

C

FIGURE 3

Integrated analysis of DNA methylation and transcriptome gene expression, and prediction of sensitivity of methylation phenotypes to immune
checkpoint therapy. (A) Heatmap showing the association between DNA methylation and gene expression, presenting with an epigenetic
silencing pattern. (B) Dotplot showing the Enrichr functional enrichment of 1,467 adjacent genes. (C) Heatmap of subclass analysis result
showing the differences of sensitivity to several immune checkpoint inhibitors between the CIMP and nCIMP groups.
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FIGURE 4

Validation of TME using supervised clustering based on 1,467 epigenetically silenced genes. The heat map showed the expression of these
genes (top panel), genes representing immune checkpoint targets (middle panel), and immune and stromal cells (bottom panel) in three
validation cohorts, including (A) GSE60542, (B) GSE27155, and (C) GSE33630. (D, F, H) Expression level (normalized transcripts per million) of
different immune checkpoint genes in different methylation phenotypes of three validation cohorts. (E, G, I) The boxplot showed the
accumulation of immune and stromal cell populations distinguished by different methylation phenotypes in the three validation cohorts. The
difference was verified statistically through the Kruskal–Wallis test, and the p-values are noted with asterisks at the top of each boxplot (ns
stands for no significance, *p < 0.05, **p < 0.01, ***p < 0.001).
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analysis of 350 primary PTCs from TCGA database using the

Illumina HumanMethylation450K platform, our study helped to

identify two subtypes displayed markedly distinct DNA

methylation levels, termed CIMP and nCIMP group. The

CIMP tumors tend to have a higher degree of malignancy,

since this subtype is tightly associated with older age,

advanced pathological stage, and lymph node metastasis.

Furthermore, differential methylation analysis showed a broad

methylation gain in CIMP. Subsequent GGST analysis based on

the significantly methylated probes in CIMP showed remarkable
Frontiers in Endocrinology 10
enrichment in epithelial mesenchymal transition and

angiogenesis Hallmark pathways (Supplementary Table S3),

confirming that the CIMP phenotype may promote the tumor

progression from another perspective.

New discoveries in the field of tumor epigenetics have

highlighted the critical role of DNA methylation in

carcinogenesis, creating new opportunities to identify

biomarkers for early cancer screening and personalized

treatment. In recent years, many studies have shown that

novel cancer biomarkers of DNA methylation could contribute
A

B

D

E

C

FIGURE 5

Genomic heterogeneity and chromosomal instability of CIMP. (A) OncoPrint showing the distribution of genes that were differentially mutated between
two epigenetic phenotypes. (B) Distribution of TMB and TiTv (transition to transversion) between two epigenetic phenotypes. (C) Barplot showing the
distribution of FGA and fraction genome gain/loss (FGG/FGL). Bar charts are presented as the mean ± standard error of the mean. (D) Comparison of
focal-level CNA across entire cohort and in different epigenetic phenotypes, respectively. (E) Heatmap showing the distribution of arm-level CNA
between two epigenetic phenotypes (***p < 0.001).
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to the early diagnosis and precise treatment of cancer, especially

bowel and lung cancer (58). Meanwhile, there are increasing

studies on the effect of increased methylation levels on the

prognosis of PTC patients (59). Some studies have shown that

demethylation agents are more promising in the treatment of

aggressive thyroid cancer than traditional therapies (59).

Researchers have made attempts in many aspects to achieve

the clinical translation. For example, in clinical PTC biopsies,

appropriate molecular markers can be found with the help of

methylation microarray and bisulfite sequencing to detect early

cancer or precancerous lesions and improve the understanding

of tumorigenesis (60).

The CIMP phenotype was firstly described by Toyota et al. as

an epigenetic phenotype in colorectal tumors characterized by

significant hypermethylation in the promoter regions of tumor

suppressor genes (18). Soon afterwards, the CIMP phenotype
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has been identified in many kinds of tumors, including glioma

(20), renal cell carcinoma (21), gastric cancer (22), Pancreatic

Cancer (23), and so forth. According to the researches, the CIMP

tumor subset exhibits distinct clinicopathological, genomic/

epigenomic, tumor-related immunity, and molecular features

in relation to its nCIMP counterparts (19, 24, 61). Considering

that CIMP may be a universal feature across different tumors,

researchers applied a genome-wide unbiased and unsupervised

hierarchical clustering of cancer-specific methylated CGI genes

across 15 tumor types; however, PTC were not included in the

cohort (62). To the best of our knowledge, this is the first study

about the CIMP phenotype in PTC.

Recently, through the use of immunogenomics methods based

on the transcriptomic and genomic data available in TCGA

database, PTCs have been categorized as “inflammatory” tumors

(63, 64). However, PTC are not tumors with high mutational
FIGURE 6

Independent prognostic value of CIMP. Forest plot showing the hazard ratio (95% CI) in univariate and multivariate Cox regressions with the
corresponding P values.
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FIGURE 7

Identification of potential therapeutic drugs for CIMP. Boxplot showing the distribution of estimated IC50 between two epigenetic phenotypes
based on GDSC database.
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burden, it is the substantial immune infiltrate that can account for

the “inflammatory” immunoscore (64). A prominent feature of the

CIMP subclass of PTC is a deficiency in antitumor immunity as

evidenced by the significant inactivation of inflammatory response

and interferon-g Hallmark pathways (Figure 2A). Findings about

the TME cell infiltration status also verified the view that CIMP

subgroup was dramatically immune-depleted. All eight quantified

infiltrating immune cells and two stromal cells were found to be

significantly lower in CIMP than that of nCIMP (Figure 2D).

Coincidentally, the TME has been implicated to play a critical

role in cancerprogression among several cancers (65, 66), including

TC (67). Moreover, using independent external cohorts for

validation, all three cohorts exhibited a “cold” TME phenotype

that showed immune-depleted landscape (Figures 4A–C).

Accumulation of somatic mutations in oncogenes and tumor

suppressor genes is common in the development and progression

of cancer (68). Based on the mutation analysis, significantly higher

somatic mutation burdens in specific genes were observed in

patients of the CIMP subgroup, especially in NRAS, which have

been shown to be major driver genes in PTC (44) (Figure 5A). The

NRASgene is themost frequentmutant gene of theRAS family and

has been reported to be associated with an increased risk of distant

metastasis (5). Additionally, CIMP had significantly higher TMB

than that of nCIMP (Figure 5B). It is of great importance since that

TMB is associated with immunotherapy response (69–71). TMB,

defined as the total number of somatic coding errors, base

substitutions, and indel mutations per million bases, can

effectively estimate both overall mutational and neoantigen load

(72, 73). Moreover, TMB can be used to predict immune

checkpoint inhibitor therapy, acting as a biomarker of response

to immunotherapy (74). Correspondingly, specific genes that

represent potential targets for immunotherapy, such as PDCD1

(PD1), CD247 (CD3), CD274 (PDL1), were all at low expression

level in CIMP (Figure 2C). As is known to all, current

immunotherapy and particularly immune checkpoint blockers

will be only effective for tumors with a pre-existing active

immune response (75). In our study, we found CIMP presented

with a lower enrichment level regarding immune and stromal cells

(Figures 2E, F), as well as a lower fraction of tumor-infiltrating

leukocytes (Figure 2G). These finds suggested that CIMP may not

benefit from immunotherapy, as validated by the subclassmapping

that the nCIMP showed high transcriptional similarity with a

subgroup of melanoma patients who responded to anti-PD1

blockade. In contrast, there was no transcriptional similarity

between CIMP PTCs and these melanoma patients (Figure 3C).

CNAs, refer to the gains and losses of DNA, are prevalent in

cancer and may lead to chromosomal instability and aneuploidy

(76, 77). These alterations havebeen implicated in cancer initiation,

progression and therapeutic resistance (78, 79). In our study, we

found the nCIMP subclass had significantly lower copy number

loss or gain (Figure 5C), which indicated a better chromosomal

stability. Consistently, analysis of focal level CNA landscape also
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supported the above views (Figure 5D). These findings, along with

the discovery that CIMPhad significantly higher TMB (Figure 5B),

confirmed that there existeda close relationshipbetweenCIMPand

genomic/epigenomic regulations.

The prognosis of PTC patients is still difficult to define, owing

to the heterogeneity of the disease (80). The primary cause

affecting the prognosis of PTC include age (81), tumor size (82,

83), extrathyroidal extension (84, 85), lymph node metastasis (86–

88), distant metastasis (89–91), BRAF mutation (92, 93), TERT

mutation (94, 95), and so on. Currently, there are no reliable

biomarkers to accurately differentiate indolent thyroid tumors

from more aggressive TCs. Therefore, identifying biomarkers for

risk stratification of thyroid tumors may provide tools to reduce

medical overtreatment and provide more effective therapies for

the aggressive group. Researches have reported that CIMP may

have prognostic significance (favourable or unfavourable) in terms

of the OS/PFS or predictive value of therapeutic response in

certain tumors (96–98). In our study, PTC patients with CIMP

showed significantly poor clinical outcome as compared to

nCIMP regarding OS (Figure 1B) and PFS (Figure 1C).

Considering that PTC is a kind of well-differentiated

malignancy with excellent prognosis, the significance of CIMP

has been further highlighted. This finding, along with the results

of COX regression analysis that CIMP remains an independent

prognostic factor with respect to OS and PFS (Figure 6), rendering

the CIMP a potential prognostic indicator for PTC.
Conclusion

In summary, our data indicate that CIMP status stratify PTC

patients into two distinct subgroups with distinct molecular and

clinical phenotypes. The CIMP may modulate the immune

response of the tumor microenvironment, influence the

genomic heterogeneity and chromosomal instability,

epigenetically silence the immune-related pathways, and thus

affect the prognosis of PTC patients, which may help to make an

assertion to provide specific and efficient treatment options for

patients of different subtypes.
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SUPPLEMENTARY FIGURE 1

Bar plots showing the distribution between the CIMP/nCIMP phenotype
and clinicopathological features: (A) pTNM stage; (B)pT stage and (C)
pN stage.

SUPPLEMENTARY FIGURE 2

Scatter plot showing the generalized gene set testing (GGST) analysis
between the the CIMP and nCIMP. The size of the dot represents the level

of the differential expression (DE) of Hallmark pathways between the the
CIMP and nCIMP.
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