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CaSpER identifies and visualizes CNV events
by integrative analysis of single-cell or bulk
RNA-sequencing data
Akdes Serin Harmanci1,5, Arif O. Harmanci2,5 & Xiaobo Zhou1,3,4*

RNA sequencing experiments generate large amounts of information about expression levels

of genes. Although they are mainly used for quantifying expression levels, they contain much

more biologically important information such as copy number variants (CNVs). Here, we

present CaSpER, a signal processing approach for identification, visualization, and integrative

analysis of focal and large-scale CNV events in multiscale resolution using either bulk or

single-cell RNA sequencing data. CaSpER integrates the multiscale smoothing of expression

signal and allelic shift signals for CNV calling. The allelic shift signal measures the loss-of-

heterozygosity (LOH) which is valuable for CNV identification. CaSpER employs an efficient

methodology for the generation of a genome-wide B-allele frequency (BAF) signal profile

from the reads and utilizes it for correction of CNVs calls. CaSpER increases the utility of

RNA-sequencing datasets and complements other tools for complete characterization and

visualization of the genomic and transcriptomic landscape of single cell and bulk RNA

sequencing data.
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Over the past few years, the development and application
of single-cell DNA- and RNA-sequencing methods have
revolutionized cancer research1. Single-cell RNA-

sequencing (scRNA-seq) is a powerful deep molecular profiling
method for detecting different cell types, states, and functions in
cancer2–10. Several previous studies characterized the hetero-
geneity and crosstalk within the tumor microenvironment in
various cancer types using scRNA-seq data2,4,6. Single-cell DNA
sequencing is another powerful approach for understanding the
genomic diversity of tumor clonal architecture1,9. Even though a
number of approaches for simultaneously assaying DNA and
RNA information from the same single cell has been developed, it
still remains technically challenging to assay both the genome and
transcriptome from the same cell10, particularly in terms of cost
and labor.

RNA-seq experiments are predominantly performed for the
purpose of estimating gene activity through quantification of gene
and transcript expression. These datasets, however, contain a
substantial amount of information about the genomic variants in
the samples and are severely underutilized. For example, RNA-
seq data have been used to identify single nucleotide poly-
morphisms (SNPs) and short indels11–13. Identification of these
variants from RNA-seq data increases the utility of RNA-seq
experiments significantly compared to using RNA-seq only for
gene expression quantification because researchers can integrate a
portion of the genomic landscape of the tumor cells (as much as it
is revealed by RNA-seq) with the transcriptomic landscape rather
than studying the transcriptomic landscape of the cells alone.
Identification of other variants can enable an even more complete
characterization and present higher utility for RNA-seq data.
Among these variants, copy number variants (CNVs) are very
important for cancer research because they are a major class of
genetic drivers of cancer. Identification of CNVs from RNA-seq
data, however, is very challenging because the dynamic and
highly non-uniform coverage of the genome by RNA-seq signal
makes it very hard to distinguish between deletion and amplifi-
cation events and the dynamic variation of gene expression levels.
Considering the growing number of RNA-seq studies, especially
with the release of TCGA14, ENCODE15, GTEx16, Human Cell
Atlas (HCA)17, Human Tumor Atlas Network (HTAN), and
Human Biomolecular Atlas Program (HuBMAP) consortium
datasets, there is an increasing need for developing CNV infer-
ence algorithm from RNA-seq data.

Although there are many tools that identify CNVs from
exome- and whole-genome sequencing data18–20, there is much
scarcity of methods for detecting CNVs solely from RNA-seq
data2,21. One relevant method is inferCNV2, which enables only
visual inspection of expression profiles from scRNA-seq data.
Another method is HoneyBADGER21, which detects CNVs from
scRNA-seq data. Another recently published method, clonealign,
performs statistical integration of independent single-cell RNA-
seq and DNA-seq from human cancers22.

In this study, we present CaSpER, a statistical framework for
the detection and visualization of the CNVs using genome-wide
RNA-seq signal profiles. To study CNV events at multiple scales,
CaSpER utilizes a multiscale signal-processing framework. CaS-
pER integrates two types of signals in the multiscale processing.
First is the genome-wide gene expression profile. This profile is a
vector where the entries are the gene expression levels. The
entries are sorted with respect to the location of genes they cor-
respond to. The second signal is the allelic shift signal profile,
which is a vector whose elements represent the allelic shift
measured at numerous single nucleotide variants and the ele-
ments are sorted with respect to the genomic position of the
variants. This profile quantifies the genome-wide loss-of-
heterozygosity (LOH) events, which have been previously

shown to be extremely useful for identifying CNVs20. Unlike
most other tools, CaSpER does not require a high-quality het-
erozygous variant call set to generate the allelic shift profile18,23.
Thus, CaSpER does not require an SNV variant call set as an
input. CaSpER utilizes the multiscale decomposition to smooth
the expression and allelic shift signals in multiple length scales.
This processing removes much of the noise and enhances the
copy number information within the expression and allelic shift
signals. CaSpER also performs a number of downstream analyses
for a comprehensive characterization and visualization of the
CNV information. CaSpER identifies and visualizes mutually
exclusive and co-occurring CNV alterations. For scRNA-seq
experiments, it infers the CNV-based clonal evolution of the cells
using the detected CNVs. CaSpER also identifies the gene
expression signatures of mutually exclusive CNV sub-clones and
performs gene ontology (GO) enrichment analysis. CaSpER
performs well in terms of sensitivity compared to other tools
using numerous datasets and comparison metrics. In summary,
CaSpER broadens the number of potential use cases of RNA-seq
datasets since CaSpER can use RNA-seq data to probe the CNV
landscape of the cells in addition to their transcriptomic
landscapes.

Results
Identification of CNV events from RNA-seq data. The overview
of the CaSpER algorithm is shown in Fig. 1 (see Methods). The
input to CaSpER consists of aligned RNA-seq reads and the
window lengths to be used in multiscale analysis24.

CaSpER uses expression values and B-allele frequencies (BAFs)
from RNA-seq reads to estimate CNV events. The BAF is a
relative normalized measure of the allelic intensity ratio of two
alleles (A and B). The allele A is the reference allele whereas the
allele B is the non-reference allele. The BAF value of 1 and 0
corresponds to the absence of one allele, i.e., BB and AA
consecutively, and the BAF value of 0.5 corresponds to the
presence of both alleles, AB. CaSpER first generates an expression
signal by quantifying the expression values of all the genes from
aligned RNA-seq reads. The expression values for the genes are
treated as a genome-wide signal profile. In order to eliminate the
noise in the initial expression signal profile, CaSpER performs
sliding window-based median filtering and computes the N-level
multiscale decomposition of the expression signal in multiple
window length scales, where N denotes the number of smoothing
scales. The window length is increased between consecutive scales
so that the higher scales correspond to a more extensively
smoothed signal compared to smaller scales. Next, for the
smoothed expression signal at each scale, a 5-state Hidden
Markov Model (HMM) is used to assign copy number states to
regions and segment the signal into regions of similar copy
number states. The states correspond to the CNV states; 1:
homozygous deletion, 2: heterozygous deletion, 3: neutral, 4: one-
copy-amplification, 5: high-copy-amplification. The emission
probabilities of the HMM states are initialized by estimating
them from the data. The HMM is used to segment and assign the
CNV states to the N smoothed expression signal profiles. The
basic motivation for using a 5-state HMM stems from how
expression signal is interpreted and how the B-allele shift signal is
integrated with the HMM states: states 0 and 5 represent deletion
and amplification events that show very high evidence in terms of
expression signal, i.e., very low or very high expression levels. We
do not require an accompanying BAF shift signal for these states
and we assign them deletion and amplification calls, respectively.
The states 2 and 4 represent heterozygous deletion and one-copy-
amplification states that require an accompanying BAF shift to be
assigned final deletion and amplification calls. This is convenient
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because states 2 and 4 generally are associated with not-so-strong
expression signal evidence to be labeled with deletion and
amplification calls. Therefore, they must be corroborated with the
BAF shift signals since the heterozygous deletion and one-copy-
amplifications must be accompanied by allelic shifts. The HMM
segmentation yields N segmentations corresponding to the N
smoothings of the expression signal.

After the assignment of HMM states, CaSpER integrates the
BAF shift signal with the assigned states to generate the final
CNV calls. For this, CaSpER first generates the BAF shift signal.
BAF shift signal is extracted directly from the mapped RNA-seq
reads using an optimized BAF generation algorithm (see
Methods). Unlike other methods, BAF generation does not rely
on an existing set of variant calls and this considerably speeds up
the process of estimating the BAF signal. After the BAF shift
signal is generated, it is smoothed using M-level multiscale
decomposition. CaSpER smooths BAF shift signal atM increasing
window lengths where the window length is increased between
consecutive scales. The next step is the assignment of the CNV
calls by integrating the M smoothed BAF shift signal with the
CNV states assigned to the N sets of HMM segments of the
expression signals. The segments detected in each smoothed
expression signal is compared with all the M smoothed BAF shift
signal profiles.

Given the CNV segments from expression scale n and the
smoothed BAF shift signal m, any segment with HMM state 1 and
HMM state 5 is assigned deletion and amplification call,
respectively. Any segment with HMM state 2 (heterozygous
deletion) or HMM state 4 (one-copy amplification) is assigned
deletion or amplification calls, respectively, if there is an
accompanying BAF shift on the segment. BAF shifts are detected
by thresholding the smoothed BAF signal profile. The BAF shift
threshold is estimated by pooling BAF information across all
samples and fitting a Gaussian mixture model (GMM) on the
distribution of the smoothed BAF values within segmented
regions. For each segment in expression scale n, CaSpER assigns
M CNV calls using the BAF shift signal. The final CNV event
calls for all the pairwise combinations of expression and BAF shift
signals are stored as the output from CaSpER’s CNV calling steps
(Fig. 1). Finally, CaSpER harmonizes the CNV calls on all scales
and identifies the most commonly observed CNV call among all
pairwise comparisons of expression and BAF shift. These
harmonized calls are used to assign the final CNV calls at the
large-scale (chromosome arms level), at the gene level, and at the
segment level.

CaSpER outputs the CNV assignments to all the segments for
all expression and BAF scale pairs. Moreover, it outputs the large-
scale, gene-level, and segment-level CNV calls. For single-cell
RNA-seq datasets, CaSpER infers CNV-based clonal evolution
depicted as a phylogenetic tree and summarizes mutually
exclusive and co-occurring CNV events using graph-based
visualization (Fig. 2).

Accuracy of CNV events detected from bulk RNA-seq. We
validated CaSpER algorithm on two datasets from the TCGA

Project25, namely TCGA-GBM (160 samples), TCGA-BRCA
(150 samples), and another publicly available meningioma cancer
study (17 samples), where both bulk RNA-seq and genotyping
data are available26,27. We explain below the outputs and accu-
racy of CaSpER on these datasets.

We first tested CaSpER on the meningioma dataset26.
Meningioma tumors have relatively stable genomes and represent
simpler cases for testing CNV calling algorithms compared to
many other cancer types. We first quantified the expression
values of all the genes across all meningioma samples. After
quantification, the expression signal is smoothed. Heatmap of
smoothed data clearly shows chromosome arm size deletion
events (Fig. 3a). HMM is applied to the smoothed signal at each
scale to assign CNV states to segmented regions. Concurrently,
the BAF signal is calculated from aligned RNA-seq reads using
the optimized BAF generation method. Similar to expression
signal, the BAF signal is also smoothed using recursive median
filtering (Fig. 3b). Smoothed BAF signal shows accompanying
shifts in chromosomes with deletion events (Fig. 3b). For each
scale, the GMM is fitted to the BAF values and this identified two
sets of events. The first set of copy number events contains no
BAF shifts whereas the second set contains BAF shifts. (Fig. 3c).
We observed negative correlation between BAF and expression
values at chromosomes that are recurrently deleted (chr1p, r2=
−0.43, P= 0.0008; chr6q r2=−0.54, P= 0.0003; chr22q r2=
−0.14, P= 0.43) (Fig. 3d). We validated the accuracy of CaSpER
using an existing genotyping array for the same dataset as the
gold standard. After harmonizing CNV calls for the segments
from all scales, we summarized the CNV calls into large-scale
CNV calls, where the large-scale event is defined as an event that
impacted more than 1/3 of the chromosome arm (see Methods).
We finally computed the true-positive rate (TPR) and false-
positive rate (FPR) of the large-scale CNV calls using the
genotyping array as an independent gold standard (see Methods).
CaSpER achieves 95% TPR and 0.3% FPR for detecting large-
scale deletion events (Fig. 3e, Supplementary Fig. 1) and 69% TPR
and 0.3% FPR for gene-based deletion events. This test case
indicates that CaSpER is potentially effective for detecting large-
scale events in tumor genomes with low complexity.

We next focused on more complex tumors starting with
TCGA-GBM dataset. For TCGA-GBM dataset, expression values
of all the genes are quantified across all samples. The recursive
median filtering effectively removes the fluctuations in the
genome-wide expression introduced by noise and fluctuations
in expression (Fig. 4a). For the smoothed signal at each scale, we
applied HMM to assign CNV states to segmented regions.
Simultaneously, the BAF signal is extracted from RNA-seq bam
files using the BAF generation method and is smoothed using
recursive median filtering. BAF shift threshold is estimated by
fitting the GMM. GMM identified three classes of BAF shift
groups where the first group corresponds to no shift regions
whereas the second and the third groups correspond to BAF shift
regions with loss or amplification events (Supplementary Fig. 2).
We also investigated the correlation of expression values and BAF
values in recurrently amplified chromosome 7q arm and deleted

Fig. 1 Flowchart of CaSpER algorithm. The CaSpER algorithm uses expression values and B-allele frequencies (BAF) from RNA-seq reads to estimate CNV
events. A normalized gene expression matrix is generated (Step 1). Expression signal is smoothed by applying recursive iterative median filtering. Three-
scale resolution of the expression signal is computed. (Step 2). For the smoothed signal at each scale, HMM is used to assign CNV states to regions and
segment the signal into regions of similar copy number states (Step 3). Five CNV states are used in HMMmodel; 1: homozygous deletion, 2: heterozygous
deletion, 3: neutral, 4: one-copy amplification, 5: multi-copy amplification. BAF information incorporated into the segmented CNV events. BAF information
is extracted from mapped RNA-seq reads using an optimized BAF generation algorithm (Step 4). BAF signal is smoothed by applying recursive iterative
median filtering. Three-scale resolution of the allele-based frequency signal is computed (Step 5). BAF shift threshold is estimated using a Gaussian
mixture (Step 6). CNV events are corrected using BAF shifts and final CNV correction is applied to all the CNV and BAF scale pair combinations (Step 7).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13779-x

4 NATURE COMMUNICATIONS |           (2020) 11:89 | https://doi.org/10.1038/s41467-019-13779-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


chromosome 10q arm. We observed a significant correlation
between BAF and expression values (chr7p, r2= 0.17, P= 0.0004;
chr10q, r2=−0.60, P < 2.2E−16) (Fig. 4b). Regions with CNV
states 2 (heterozygous deletion) and 4 (one-copy gain) that are
below the BAF shift threshold are corrected to be neutral
(Fig. 4b).

We next used the CNV calls identified from genotyping arrays
to measure the accuracy of CaSpER in large-scale, gene-, and
segment-level CNV calls (see Methods). For each sample, we
identified the large-scale deletions and amplifications from a
genotyping array. We next calculated the accuracy of the CNV
calls. We used the genotyping array (n= 160) as the gold
standard and computed the appropriate accuracy metrics for the
CNV calls that are harmonized at the large scale, at the gene level,
and at the segment level. CaSpER achieves 79.5% TPR and 2%
FPR for detecting large-scale amplification events, and 88% TPR
and 3.5% FPR for detecting large-scale deletion events (Fig. 4c, d).
At the gene level, CaSpER achieves 77% TPR and 3.6% FPR for
detecting gene-level deletion events, and 61.6% TPR and 3.4%
FPR for detecting gene-level amplification events (Supplementary
Fig. 3). For the segment-level events, CaSpER achieves 70%
positive predictive value (PPV) and 76% TPR for deletion events,
and 68.5% PPV and 66% TPR for amplification events
Supplementary Figs. 4 and 5). We also evaluated the accuracy
of focal segments at different length thresholds (Supplementary
Note 1, Supplementary Fig. 6).

While interpreting the accuracy results, it is important to keep
in mind that there is a certain portion of the genome that is not
accessible for CNV detection by RNA-seq datasets (Supplemen-
tary Figs. 7, 8, Supplementary Note 2). This is because RNA-seq

signal is mainly concentrated on the exons of genes. In fact, the
smallest resolution that we can detect CNVs is at the gene
boundaries. An important implication of this is that CaSpER and
other RNA-seq-based CNV calling methods cannot identify
CNVs that are primarily in the intergenic space. Thus, these
factors may impact the TPR estimates adversely.

We also focused on breast cancer as a representative of a more
complex tumor type. We randomly selected 150 samples from the
TGCA breast cancer cohort, which contains around 1000 breast
cancer RNA-seq samples. After the processing steps similar to the
ones that were detailed in previous datasets, CaSpER achieves
60.3% TPR and 3.8% FPR for detecting large-scale amplification
events, and 79% TPR and 7.7% FPR for detecting large-scale
deletion events (Supplementary Fig. 9). CaSpER achieves 62.8%
TPR and 6% FPR for detecting gene-level deletion events, and
56.6% TPR and 7% FPR for detecting gene-level amplification
events (Supplementary Fig. 10).

Inference of CNV architecture in scRNA-seq. We next used
CaSpER to infer subclonal CNV architecture from single-cell
Glioblastoma Multiforme (GBM) RNA-seq data6. Single-cell
GBM RNA-seq data contain 430 single cells extracted from five
patient samples. The smoothed expression signal in Fig. 5a shows
that chromosome 7 amplification and chromosome 10 deletion is
recurrent across GBM samples. We observed that the BAF shift
signal is much more stable and accurate when the data from all
the cells are pooled. Therefore, for the BAF shift signal generation
step, we pooled the single-cell reads from each patient separately.
We then extracted the BAF shift signal from the pooled patient-
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specific reads instead of single-cell reads since the BAF shift signal
extracted from one single cell is very sparse and is not informa-
tive. The smoothed patient-specific BAF shift signal shows clear
shifts in chromosomes 7 and 10 (Fig. 5b). We next used the large-
scale CNV calls to identify the co-occurring and mutually

exclusive events in all scale pairs (Fig. 5c). Interestingly, MGH31
consists of two mutually exclusive subclones where one subclone
contains chromosome 5q amplification whereas the other sub-
clone contains chromosome 14q deletion (Fig. 5d, e). Addition-
ally, one subclone contains 1p amplification and the other
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subclone contains 13q deletion, which has not been reported
previously. For MGH31, clustering of large-scale CNV calls
stratified the cells harboring 1p and 5q amplification from cells
harboring 13q and 14q deletion (Fig. 5e). A small number of
cells from patient MGH31 was shown in the original publication
to be normal cells (oligodendrocytes) (Supplementary Fig. 11).
These normal cells are clustered separately with a low CNV
profile using large-scale event summary generated by CaSpER
(Fig. 5e).

CaSpER also reports the mutually exclusive and co-occurring
CNV events and plots the significant events as a graph. This is
useful for visually inspecting the co-occurring and mutually
exclusive events that may be otherwise hard to visualize. Similarly,
from the graph, we can clearly see the mutually exclusive 1p:13q
and 5q:13q, 5q:14q event pairs for patient MGH31 (Fig. 5f).
Moreover, we detected mutually exclusive 8q:20p, 5q:19p event
pairs for patient MGH28, 6p:7p event pair for patient MGH30
that was not reported in the previous publications (Supplementary
Figs. 12–14). We next identified the gene expression signatures of
each of the mutually exclusive clones and performed GO
enrichment analysis (Supplementary Note 3).

Performance of CaSpER on CNVs of varying size and clonality.
We observed a slight difference in deletion TPR rates, between
meningioma, TCGA-GBM, and TCGA-BRCA datasets.This
potentially stems from the fact that meningioma tumors exhibit
less intratumor heterogeneity and have lower clonality rates
compared to GBM and breast cancer tumors. Thus, lower clon-
ality rates in meningiomas lead to better deletion CNV event
identification. Similarly, high clonality rates in GBM and breast
cancer tumors lower the detection accuracy of low-level ampli-
fication events, which then lead to a low amplification TPR rate.
We assessed the performance of CaSpER on CNVs of varying size
and clonality using simulated gene expression data (see Methods,
Supplementary Fig. 15, Supplementary Note 4).

Accuracy of CNV events detected from scRNA-seq. An
important benchmark is the accuracy evaluation of CNV detec-
tion from scRNA-seq data. However, this requires known CNVs
for the cells with matching scRNA-seq data. We have been
challenged for finding ground truth data for CNVs in single cells
matching to the scRNA-seq experiments. This is because the
methods for simultaneous measurement of scRNA-seq and
single-cell DNA sequencing (or copy number profiling) are still
very much under development and they do not provide high
number of cells where CNVs and RNA-seq being probed
simultaneously28,29. We used the data from the original DR-Seq29

study, where the simultaneous RNA and copy number mea-
surements are publicly available for seven cells from Breast cancer
cells with many amplification and deletion events.

In the DR-Seq study, the authors used a computational
approach and assigned absolute copy numbers to segments
(Supplementary Note 5). We first evaluated how the copy number
states from CaSpER correlate with the copy number assigned to
each gene (Supplementary Fig. 16). We show below, for each cell,

the distribution of the DR-Seq assigned copy numbers corre-
sponding to the HMM copy number states. We observed a high
consistency between the HMM copy number state and the DR-
Seq assigned copy number within each cell. Higher copy number
states in CaSpER correspond to the amplification and lower copy
number states correspond well to the deletions (Supplementary
Fig. 16).

We first processed the absolute copy numbers from the DR-Seq
study to build the relative copy numbers (i.e., amplification,
deletion, neutral) in each cell (see Methods). We evaluated the
TPR and FPR for the detected large-scale deletion and
amplification events. CaSpER achieves 32% TPR and 1.6% FPR
in deletion events and 49% TPR and 3.8% FPR in amplification
events. If we relax the parameters (with γ= 1), CaSpER achieves
45% TPR and 3% FPR in deletion events and 62.6% TPR and
8.6% FPR in amplification events.

Comparing the performance of CaSpER with existing tools. We
also compared the performance of CaSpER with HoneyBADGER
on bulk and scRNA-seq datasets. We first used the data published
in the DR-Seq29 study, where the simultaneous RNA and copy
number measurements are publicly available for seven cells from
Breast cancer cells. HoneyBADGER could not detect any CNV
events even though the ground truth data have many amplifica-
tion and deletion events. We next used bulk TCGA-GBM and
TCGA-BRCA RNA-seq datasets using genotyping arrays as the
gold standard (Supplementary Figs. 17–20). We show that
HoneyBADGER is very specific and has lower sensitivity in bulk
RNA-seq datasets since it is designed primarily for scRNA-seq
datasets (Supplementary Tables 1–2). InferCNV is primarily for
visualization of the copy number events and does not provide a
set of CNV events. From these comparisons, CaSpER stands out
as a tool that is broadly applicable to detection of CNVs from
single cell and bulk RNA-seq datasets and can be used for
visualization and downstream analysis of the detected CNVs.

Identification of scale-specific CNV regions. CaSpER identifies
CNV regions at different expression scales, which yields scale-
specific CNV (SSCNV) regions. In general, SSCNVs at lower
scales correspond to more focal CNV events compared to
SSCNVs at higher scale, which represent broader CNV events.
Figure 6 shows the scale length characteristics of different CNV
events of TCGA bulk RNA-seq data. Focal amplification of the
PDGFRA gene is identified using small-scale lengths whereas
broad chromosome arm-level deletion in chromosome 22 is
identified using a higher scale length (Fig. 6a–b).

Discussion
We presented an algorithm, CaSpER, for identification, visuali-
zation, and integrative analysis of focal and large-scale CNV
events in multiscale resolution using either bulk or scRNA-seq
data. We demonstrated that CaSpER performs well in identifying
CNV events using both single-cell and bulk RNA-seq data. We
presented several examples where CaSpER can effectively com-
plement the existing set of RNA-seq analysis tools and can give

Fig. 3 CaSpER algorithm applied to bulk meningioma RNA-seq dataset. a Heatmap of normalized expression values of all the genes across all samples
(n= 8 samples) is shown in the top panel. The smoothed expression signal by recursive iterative median filtering is shown on the bottom panel. b Original
and smoothed BAF signal is plotted and shows shifts in chromosomes with deletion events. c BAF shift threshold is estimated by fitting Gaussian mixture
model (GMM). GMM identified two classes of BAF shift groups where the first group corresponds to no shift regions whereas the second group
corresponds to BAF shift regions with loss or amplification events. BAF shift threshold is the median of the BAF values in the second group, which is
calculated to be 0.14. d The correlation of expression values and BAF values in recurrently deleted chromosomes are plotted (chr1p, r2=−0.43, P=
0.0008; chr6q r2=−0.54, P= 0.0003; chr22q r2=−0.14, P= 0.43). Each dot represents one CNV segment. e Heatmap of large-scale CNV events
identified from RNA-seq and genotyping is shown in the plot. The color codes are explained on the right.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13779-x ARTICLE

NATURE COMMUNICATIONS |           (2020) 11:89 | https://doi.org/10.1038/s41467-019-13779-x | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


insight into the analysis of the clonal architecture of cancer
genomics datasets. CaSpER can extend the utility of RNA-seq
datasets beyond just transcriptional profiling.

There are several aspects of CaSpER that we would like to point
out. First, CaSpER combines genomewide allelic shift signal,
which measures the LOH at a nucleotide resolution, and
expression signal to accurately estimate CNV events. While doing
this, CaSpER generates allelic shift signal profile directly from

mapped reads, without the need for variant calls. This is very
useful for two reasons: First, the variant calling (SNVs and indels)
from mapped reads requires high computational resources and
long compute times. This means that before calling CNVs, it is
necessary to complete the arduous process of variant calling.
CaSpER lifts this restriction by computing the allele shift profile
directly from the mapped reads. Our results show that we do not
need a high-quality variant call set to detect the BAF shift signal.
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panel. b The correlation of expression values and BAF values in recurrently amplified chromosome 7q arm and deleted chromosome 10q arm is plotted
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Unlike other tools that depend on each SNV to be of high quality,
CaSpER aims to detect a collective shift in the allele frequencies of
consecutive variants. To do this, CaSpER analyzes many potential
variants at the same time. The multiscale smoothing of the BAF
shift signal of these variants is vital in this process because it
enables CaSpER to clear the noise from the collective shifts in the
allele fractions of these variants. Second, the power of variant
detection can be affected by CNV events. This is especially
important in cancer sequencing experiments where CNVs can

span very long genomic regions and may affect the accuracy of
variant calling. Therefore, identifying CNVs before calling SNVs
can give very useful information for correct identification of
SNVs. Although we did not explore this thoroughly in this paper,
several previous studies have demonstrated this30.

Another aspect of CaSpER is the analysis of CNV events at
multiscale resolution. With the diverse length characteristics of
CNV events, we believe that it is very important to be able to
analyze CNV events in multiple length scales. CaSpER makes
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available the multiscale smoothed genomewide expression signal
and allelic shift signal profiles and the CNV calls that can be used
for downstream analysis and visualization. For smoothing, CaS-
pER utilizes a non-linear median-based filtering of RNA-seq
expression and allele-frequency signal. The median filtering
preserves the edges of the signal much better compared to the
kernel-based linear filters24. We also demonstrated that the signal
profiles that are smoothed at multiple scales are useful for
visualization of the copy number events that are detectable from
the RNA-seq datasets. In addition to identifying CNV events,
CaSpER also visualizes and performs integrative analysis of CNV
events such as inferring clonal evolution, discovering mutual-
exclusive and co-occurring CNV events and identifying gene
expression signatures of the identified clones. The mutual
exclusivity and co-occurrence of variants have been used by many
studies to study bulk sequencing of tumor samples with respect to
different genetic backgrounds and processes31,32. For example,
CBioPortal website is a popular website dedicated to analyzing
large cancer cohorts for analysis of co-occurrence and exclusivity
patterns in somatic variants among multiple tumor samples by
generating OncoPrint plots33. The application of mutual exclu-
sivity and co-occurrence in the context of single-cell RNA and
DNA sequencing has not been studied extensively but it has been
analyzed by different studies. We believe CaSpER fills an
important gap by providing these plots so that single-cell
experiments can be evaluated in terms of co-occurrence and
exclusivity patterns.

There are many technical factors that may impact CaSpER’s
performance. The data normalization is one of the first important
factors. Interestingly, CaSpER does not have a specific require-
ment for the inter-sample distribution of the gene expression
levels, e.g. quantile normalization. This is because multiscale
decomposition works on a sample by sample basis and does not
expect expression levels to be normalized across samples. Sec-
ondly, the BAF shift signal profiles are generated for each sample
independently for bulk sequencing, i.e., the BAF shift is computed
in terms of the fraction of reads that support the B-alleles. Thus,
the BAF shift signal normalizes itself at each SNV location and
does not require a normalization across samples. One issue is that
for single-cell datasets, the BAF shift signal is computed initially
by pooling the reads from all the cells of a sample. If some cells
have a substantially large number of reads, they may dominate
the BAF shift signal and may potentially create biases. As long as
each cell contributes a similar number of reads to the BAF shift
generation, this should not be a major biasing factor.

Another major factor is the underlying sequencing technology
that generated the data. Especially the scRNA-seq technologies
can be classified broadly into two groups. First is full-transcript
sequencing (SMART-Seq34) and second is 3′-only sequencing
(such as DropSeq35). The data used in the analyses are from full
transcript sequencing technologies. The data from 3′-only

technologies are biased such that the reads are enriched along the
3′ end of the genes compared to the 5′ ends of the genes. While
3′-based reads can be used to generate expression levels that are
of fair quality36, the BAF shift signal may be adversely impacted
because BAF shift will be measured for only the variants that are
located close to the 3′ ends of the genes. We, therefore, expect
that the BAF shift signal will be much sparser when data from
these technologies are used (Supplementary Figs. 21 and 22,
Supplementary Note 6). As CaSpER pools all the reads from all
the cells while generating the BAF shift signal. Therefore, we
believe that the pooling will soothe the adverse effects of the 3′
bias as long as a decent number of reads are accumulated along
with the transcripts. We assessed the suitability of CaSpER 3′
transcript sequencing data using the multiple myeloma 10×
RNA-seq data (MM135) (n= 947 single cells) presented in
HONEYBADGER study. Even though the exact ground truth
CNV calls are unknown for this study, we show the concordance
of CaSpER CNV calls with HONEYBADGER (Supplementary
Figs. 23–25, Supplementary Notes 7 and 8).

Having noted these, we believe that CaSpER can benefit a
model for BAF shift generation step where it takes into account
the 3′ bias of the sample preparation assays. It should also be
noted that factors such as RNA editing37, PCR duplication arte-
facts38, and sequencing errors39 may impact and bias detection of
CNVs as they may impact the BAF shift signal in a complex
manner. Among these, RNA editing is specific to the detection of
CNVs from RNA-seq datasets and must be considered carefully
while analyzing RNA-seq data from the tumor (Supplementary
Note 9).

In our analyses, CaSpER discovered ssCNV regions in TCGA
bulk RNA-seq data, which represent both focal and broad CNV
events, and we showed the utility of these events in the analysis of
scale-specific co-occurrence and mutual exclusivity of the CNV
events. Analyzing single-cell GBM RNA-seq data using CaSpER,
unraveled mutual exclusive and co-occurring CNV subclones.
Gene expression signatures of the identified clones gave us insight
into the phenotype of the clones such as invasiveness and sur-
vival. Moreover, we identified potential therapeutic targets for the
clones. In conclusion, our study demonstrates the significance
and feasibility of CNV calling using either single or bulk RNA-
seq data.

Methods
Bulk and scRNA-seq expression quantification. Yale meningioma bulk RNA-seq
data reads were aligned using STAR40. Expression-level quantification was per-
formed using DESeq2 R package41. TCGA-GBM and TCGA-BRCA bulk RNA-seq
normalized expression matrix were downloaded using TCGABiolinks R package42.
The corresponding bam files were downloaded from GDC data portal43.

Single-cell GBM RNA-seq data reads were aligned with Hisat2 using ENCODE
V28 transcriptome annotation44. We pooled single cells from the same patient into
a single bam file using bamtools merge function45. The aligned bam files were later
used for allele-based frequency signal calculation.

Fig. 5 CaSpER algorithm applied to single-cell GBM RNA-seq dataset. a Heatmap of smoothed expression signal of all the genes across all samples is
shown in the top panel. The color codes are explained on the right. b Smoothed BAF signal from the pooled patient-specific reads is shown in the plot. The
smoothed patient-specific BAF signal shows shifts in deleted and amplified chromosomes. c The heatmap of summarized large-scale CNV events using the
common events in all scale pairs is plotted. Columns represent chromosome arms whereas rows represent cells. The color codes represent the patient id.
dMGH31 consists of two mutually exclusive sub-clones where one sub-clone contains chromosome 5q amplification whereas the other sub-clone contains
chromosome 14q deletion. Additionally, one sub-clone contains 1p amplification and the other sub-clone contains 13q deletion. e Clustering of large-scale
events generated by CaSpER in patient MGH31. Normal cells are clustered separately with a different CNV profile. Cells within the red rectangle
correspond to normal cells. Rows correspond to cells whereas columns correspond to chromosome arms. Clustering separates cells harboring 1p and 5q
amplification from cells harboring 13q and 14q deletion. f Mutually exclusive and co-occurring CNV events are plotted as a graph. Red colored events are
amplified whereas blue colored events are deleted. The solid lines represent co-occurring events, whereas dashed lines represent mutually exclusive
events. Edge width increases with event significance, which is assessed using Fisher's Exact test p-value (edge width=−log2(p-value)). The mutually
exclusive 1p:13q and 5q:13q, 5q:14q event pairs for patient MGH31 is significant.
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We used the normalized expression matrix provided in the paper both for GBM
and for the DR-Seq study.

CNV data processing for DR-Seq study. In DR-Seq study, we processed the
absolute copy numbers provided by the authors to build the relative copy numbers
(i.e., amplification, deletion, neutral) in each cell. This is necessary because both
CaSpER and HoneyBADGER assign relative copy numbers to the detected

segments where copy numbers are assigned with respect to the average DNA
content in each cell as we discuss further below.

To generate the ground truth relative CNV calls for each cell, we first computed
the ploidy in each cell using the following:

ploidyi ¼
X

j

Absolute CN of segment j in cell ið Þ ´ Length of segment j in cell ið Þð ÞP
k ðLength of segment k in cell iÞ ;

ð1Þ
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where ploidyi indicates the average DNA content in cell i. We next assigned
amplification and deletion to each cell using ploidyi:

CNVj ¼
Amplification; if absolute CN of segment jð Þ> ploidyi

Deletion; if absolute CN of segment jð Þ< ploidyi
Neutral; if absolute CN of Segment jð Þ¼ ploidyi

8><
>:

ð2Þ

where CNVj denotes the relative copy number value assigned to segment j. We
need to perform the relative copy number assignments because both CaSpER and
HoneyBADGER assign copy numbers relative to the ploidy of the cell. In other
words, these tools do not assign absolute copy numbers. Thus, we needed to
convert the absolute copy numbers to relative copy numbers. We next used the
relative copy numbers to assign the large-scale FPR and TPR to the CNV calls
generated by CaSpER and HoneyBADGER using the scRNA-seq data for
seven cells.

Gene expression data processing. The inputs to the algorithm are the normal-
ized read counts such as FPKM or TPM. Before multiscale decomposition of the
signals, we perform two-step gene expression centering. First, gene centric
expression centering is performed. the gene expression levels are centered around
the mid-point. For each gene, the mid-point of expression level is computed among
all the cells (or samples in bulk RNA-seq), then the mid-point expression level is
subtracted from the expression levels. Next cell-centric expression centering is
performed. For each cell (or sample), we compute the mid-point of the expression
level, then we subtract the mid-point expression from the expression levels of all
the genes for the corresponding cell. This is done to reduce the effect of complexity.
After expression centering steps, the control normalization is performed by sub-
tracting reference expression values from the tumor expression values.

Generation of the allele-based frequency signal. We generate allele-based fre-
quency signals from RNA-seq bam files using our in-house written C++ code,
which can be downloaded at https://github.com/akdess/BAFExtract. Our method
takes a bam file as an input and outputs allelic content estimation through fast SNP
calling. We first perform pileup where we summarize the base calls of aligned reads
to a reference sequence. For each SNP, we report the total count of reads sup-
porting non-reference and reference nucleotide after applying the following filters:
(1) reads should have mapping quality of at least 50, (2) minimum number of total
reads per each SNP position should be 20, (3) minimum number of total reads
supporting SNP should be 4. In bulk tumor RNA-seq, we considered SNPs that are
most likely to be heterozygous with a BAF value more than 0.2 and less than 0.8
whereas in scRNA-seq BAF value more than 0.2 are considered (refer to below for
detailed motivation of the thresholds) (Supplementary Note 10, Supplementary
Fig. 26). Our fast BAF generation method speeds up the process of estimating BAF
shift regions compared to using GATK for calling variants from RNA-seq data.
After generating the allelic content for each SNP, we next apply recursive median
filtering to remove noise from the signal. As explained previously in the Results
section, filtering the reads according to mapping quality is very critical for correctly
estimating BAF shift regions. In addition to estimating BAF shift regions, our
method is also very useful in identifying allele-specific expression. The BAFExtract
method does not use deduplicated reads. This was necessary to ensure that we had
enough reads to generate the BAF shift generation, especially for the scRNA-seq
datasets.

BAF generation, SNV filtering, and related thresholds. The BAF shift signal for
bulk and scRNA-seq data are affected differently by the existence of healthy cells
differently in bulk and single-cell samples.

Bulk RNA-seq SNV filtering and related thresholds: In principle, the BAF shift in
cancer sample must be computed using the SNVs in the matching normal tissue
such as blood or tissue surrounding the tumor. This way, the BAF shift in tumor
samples are computed with respect to exactly the normal tissue’s baseline allele
frequency:

BAFshift SNVið Þ ¼ jBAFtumorðSNViÞ � BAFnormal SNVið Þj; ð3Þ
where SNVi denotes the ith SNV and BAFtumor SNVið Þ denotes the alternate allele
frequency of SNVi for the tumor sample:

BAFtumor SNVið Þ ¼ Number of tumor reads supporting alternate allele of SNVi

Number of all tumor reads at SNVi
:

ð4Þ
This is the ratio of the number of RNA-seq reads that support the alternate allele
divided by the number of total reads that cover the SNV’s locus. For the SNVs that
reside on a copy neutral LOH or a CNV, this value will show deviation from 0.
Otherwise, it will be distributed around 0.

We cannot compute the above quantity directly because we do not have access
to the normal RNA-seq dataset. For whole-exome and whole-genome sequencing
of tumor, the normal tissue is sequenced regularly (almost as a standard protocol)
but RNA-seq of matching normal tissue is currently not established as standard
procedure. Since we do not have the matching normal sample, we focus on the
SNV candidates that are most likely heterozygous hence; BAFnormal SNVið Þ ¼ 0:5ð Þ

in the healthy tissue. We also have to modify the definition of shift as:

BAFshift SNVið Þ ¼ BAFtumor SNVið Þ � 0:5j j: ð5Þ
As it can be seen, without the normal sample, we just subtract 0.5 from the
observed tumor SNV allele frequency (and take absolute value) to compute the
BAF shift signal. The most vital component of this computation is to ensure that
the SNVs we use are most likely heterozygous in the normal tissue.

The thresholds we select aim at ensuring that the selected variants are likely
heterozygous variants in the normal tissue. If we do not apply these thresholds, we
observed that the allele frequency shift signals are non-informative to detect the
LOH and BAF shifts associated with CNVs. We describe the motivation for
selecting these thresholds below:

For bulk samples, there is generally the high concentration of healthy cells in
the tumor tissues (up to 20–30% as shown in the literature46). Therefore, if an SNV
has a high observed allele frequency (>95%) in the tumor, it is very likely that it is a
homozygous SNV in the healthy tissue too. The existence of normal tissue in tumor
samples will cause a shift in the observed allele frequency of SNVs in the bulk
tumor RNA-seq data.

Assume that there is a one-copy deletion of a segment and there is 30% normal
tissue in the bulk RNA-seq sample: 70% of the cells are tumor cells and they
contain only one copy of the segment; 30% of the cells are normal cells and they
contain two copies. For an SNV on this segment who is heterozygous in the normal
cells, the observed allele frequency will be:

70 ´ 1þ 30 ´ 1
70 ´ 1þ 30 ´ 2

¼ 0:769: ð6Þ

In the above equation, if the impurity is smaller than 30%, the observed allele
frequency increases. To be cautious, we choose to act conservatively, and we
assume that there may be around 30% impurity in the tumor samples which is
consisted of TCGA cohort (Supplementary Fig. 27). Thus, we assume that any SNV
with allele frequency higher than around 80% is likely a homozygous variant. We,
therefore, exclude the variants that have higher than 80% allele frequencies (found
by rounding 0.769) and smaller than 20% allele frequencies (the other side of the
AF spectrum) since these are likely homozygous events in the normal matching
tissue (Supplementary Fig. 28). Note that by doing this filtering, we are likely
removing variants that inform us about the existence of important LOH and CNV
events, but we still remove these for being conservative and using only the SNVs
that are likely heterozygous in the matching normal sample.

In the above computation, we assume for simplicity that there is a clonal
deletion of the segment. If the deletion is subclonal (less than 100% of the tumor
cells contain the deletion), the observed allele frequencies will be closer to 50% and
they will still be selected in the thresholding process. Similarly, for uneven
amplification events, the above fraction will decrease. Thus, for these events, the
thresholding will capture the useful SNVs appropriately. In addition, for very high
amplifications events, allele frequency will be close to 50% (i.e. shift close to 0). In
these cases, CaSpER weighs the expression signal much more than the BAF shift
signal. Thus, the thresholding affects these events less.

scRNA-seq SNV filtering and related threshold: SNV selection procedure for
single-cell samples is motivated mainly by technical factors around the detection of
the SNVs. Compared to the bulk RNA-seq samples, there is a much smaller
number of reads from each cell. As described in the text, we tackle this issue by
pooling the reads from all the cells and generate a bulk RNA-seq sample from all
the cells. Even though we pool the samples, BAFExtract still detects a relatively
small number of SNVs that we can use to compute the BAF shift signal.

In addition, for scRNA-seq samples, the impurity of RNA-seq samples, i.e.
fraction of normal cells in the sample, is much smaller (compared to bulk tumor
RNA-seq samples) since the normal cell infiltration can be controlled (using for
example FACS) and it is generally much smaller. Thus, the scRNA-seq data
affected much less from the impurity of the samples. Because the sample is almost
pure, we cannot use the observed SNV allele frequencies directly to infer a
maximum allele frequency threshold (similar to the threshold we derived in the
above equation) for selecting SNVs that are most likely heterozygous in matching
normal cells (Supplementary Fig. 29). We, therefore, include all the SNVs in the
analysis except the SNVs whose alternate allele frequencies are smaller than 20%.
The reasoning for this lower allele frequency threshold is that these SNVs may be
manifestations of technical artifacts such as PCR duplications47. This threshold
value is a conservative value that is selected by trial-and-error to optimize the
quality of the observed BAF shift signal and its consistency with the expression
signal. We illustrated the spectrum of allele frequencies of SNVs that are used for
bulk and scRNA-seq data (Supplementary Fig. 28).

Multiscale smoothing of expression by median filtering. Unlike linear filtering
methods, median filtering preserves the edges while removing noise in smooth
regions of signal24. CaSpER uses recursive median filtering for removing noise
from expression and allele-based frequency signal.

Let X0 ¼ x01 ; x
0
2 ; ¼ ; x0i ; ¼ ; x0n

� �
be the expression signal vector, where x0i is

the original signal value at iteration 0 in position i. Given the window length l, at
scale s median filtering can be formulated as:

xsi ¼ med xs�1
a

� �
a 2 i�ls

2 ; iþ
ls
2½ �

� �
; ð7Þ
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where xsi is the i
th value of the median filtered expression signal at scale s. In xs�1

a , a

is defined as smoothing region of each i formulated as i� ls
2 ; ¼ ; i; ¼ ; iþ ls

2

n o

and the input expression signal Xs�1 is the smoothed expression signal in the
previous iteration, s – 1.

Similar to expression signal, we also apply recursive median filtering to an
allele-based frequency signal. Let Y0 ¼ y01 ; y

0
2 ; ¼ ; y0i ; ¼ ; y0n

� �
be the expression

signal vector, where y is the original allele-based frequency signal value at iteration
0 in position i. Given the window length l, at scale s median filtering can be
formulated as:

ysi ¼ med ys�1
a

� �
a 2 i�ls

2; iþls
2½ �

� �
; ð8Þ

where ysi is the i
th value of the median filtered allele-based frequency signal at scale

s. In ys�1
a , a is defined as smoothing region of each i formulated as

i� ls
2 ; ¼ ; i; ¼ ; iþ ls

2

n o
and the input allele-based frequency signal Ys�1 is the

smoothed allele-based frequency signal in the previous iteration, s – 1.
CaSpER uses filter function in signal R package for median filtering

implementation.

Window length l parameter selection. We used different starting window sizes l
for decompositions. We computed the segment-based accuracy (TPR) of the CNV
calls made by CaSpER using the GBM scRNA-seq data in which we simulated
introduction of deletions at 1 MB and 10MB. To introduce deletions into the
datasets, we first selected target regions where we are sure that there no CNV
events. Next, we sampled the expression signals from the regions with known
deletions and replaced the expression levels of the target regions of length 1 MB
and 10MB with these “deleted” expression signals. We ran CaSpER with varying
window length l parameter; 10, 30, 50, 100, 150, and 200. For small smoothing
window sizes, segments show relatively low concordance with the ground truth
(Supplementary Fig. 30). As the window size increases, the concordance increases
and saturates around 80% at the around window length of 50 for both event
lengths. Another important point to keep in mind is that as the starting window
size increases, it takes longer to process the data. Putting this together, the above
results indicate that the starting window length of 50 enables a fair tradeoff between
computational time and accuracy.

Pairwise comparisons from the multiscale decomposition. Step 1. Integration of
the HMM segment states with Allele Frequency Shift Information. CaSpER algo-
rithm outputs CNV calls using all the pairwise comparisons of expression signal
and BAF signal decompositions. We describe below step-by-step details of the
comparison procedure.

CaSpER uses two sources of information. First is the genomewide expression
signal and the other is the genomewide allelic shift signal. The expression signal
refers to the vector whose elements are the expression levels of all the genes along
the genome; ath element in expression signal corresponds to the ath gene along the
genomic coordinates starting from the beginning of the genome. Similarly, allelic
shift signal refers to the vector whose elements are the absolute value of the BAF
shift of all SNVs identified by CaSpER such that the SNVs are sorted with respect
to genomic coordinates. In bulk RNA-seq data, the BAF shift signal is computed
independently for each sample. For scRNA-seq data, the BAF shift signal is
computed using the reads pooled from all the cells. The reason for the difference in
computation of the BAF shift signal in bulk and scRNA-seq is that the scRNA-seq
is very sparse. In order to increase the power to detect BAF shift events (i.e. LOH
events), we pool the reads and use the pooled reads to compute the BAF shift
signal.

CaSpER starts by computing the multiscale decomposition (smoothing) of the
expression signal and the BAF shift signal. After the smoothing, we get the scale-
by-scale smoothed expression signals and scale-by-scale smoothed BAF shift
signals. For brevity, we refer to the scales in the decomposition of the expression
signal by “expression scale”. We denote the expression scales with n. Similarly, we
refer to the scales in the decomposition of the BAF shift signal by the “BAF scale”
and denote them with m.

The smoothed expression signals are segmented using the HMM. The HMM
detects the segment boundaries in expression signal and assigns one state to each
segment. The segments detected by the HMM-based segmentation of expression
signal (at scale n) are filtered with respect to concordance with the BAF shift signal.
For this, we assign the segments whose HMM states are 1 and 5 the deletion and
amplification calls, respectively. In addition, the segments with assigned states of 2
or 4 are assigned deletion and amplification calls, respectively, given that there are
accompanying BAF shifts. The details of the BAF shift test are explained in the
Methods Section “Calculation of BAF shift threshold using Gaussian mixture
models”.

To be more concrete, we summarize this procedure below:
Let us assume that the HMM segments from the smoothed expression signal at

scale n consist of K segments that are denoted by XðnÞ
i i ¼ 1; ¼ ;Kð Þ. XðnÞ

i is the ith

segment and n is an integer in [1, N], where N denotes the index for the highest
smoothing scale for expression signal. We denote the set of all segments at scale n

with XðnÞ. Each XðnÞ
i is assigned by the HMM one of the 5 integer copy number

states. We denote these states with S XðnÞ
i

� �
2 f1; 2; 3; 4; 5g such that

1: Homozygous deletion,
2: Heterozygous deletion,
3: Neutral,
4: One-copy amplification,
5: Multi-copy amplification.

The deletion/amplification call for the segment XðnÞ
i , denoted by CNVðmÞðXðnÞ

i Þ,
at expression scale n and BAF scale m is computed as:

CNV mð Þ X nð Þ
i

� � 1; if S X nð Þ
i

� �
¼ 5

� �
or S X nð Þ

i

� �
¼ 4 and median BAFm X nð Þ

i

� �� �
> t

� �

�1; if S X nð Þ
i

� �
¼ 1

� �
or S X nð Þ

i

� �
¼ 2 and median BAFm X nð Þ

i

� �� �
> t

� �

0; otherwise

8>>><
>>>:

ð9Þ

where CNVðmÞðXðnÞ
i Þ denotes the CNV call for XðnÞ

i such that −1, 1, 0 stands for
deletion, amplification, and neutral event states, respectively; m denotes the
smoothing scale for BAF shift signal and it is an integer in [1, M]. Finally,

median BAFm X nð Þ
i

� �� �
denotes the median value of the BAF shift signal

(smoothed at scale m) on the segment XðnÞ
i . The median is computed as the median

value of the smoothed B-allele shift signal on all the SNVs within XðnÞ
i . From the

above computation, it can be seen that CaSpER assigns deletion or amplification to
a segment when the HMM state is 1 or 5 without looking at the BAF signal. When
the segment state is 2 or 4, an accompanying BAF shift on the segment is required.
As we indicated above, the calculation of the BAF shift threshold t is explained in
“Calculation of BAF shift threshold using Gaussian mixture models” in the
Methods section. CaSpER also reports the LOH regions where assigned HMM
assigns a neutral state (i.e., state 3) and the BAF shift signal is significantly high, i.e.,
the BAF shift signal is higher than the threshold t.

From the above computation, CaSpER assigns CNV calls to the segments for all
the pairwise comparisons of BAF and expression signal scales, which is in total
(N ×M) comparisons. The final step is the harmonization of the CNV calls from all
the pairwise comparisons.

Step 2. Harmonization and Summarization of CNV call from multiple scales
and from multiple pairwise comparisons of BAF and Expression Signals. The
pairwise comparison and assignment of CNV call generate a large number of per-
scale information that must be summarized such that each position of the genome
is assigned a final call about its CNV status, i.e., deletion/amplification/neutral. We
use a consistency-based approach for harmonizing the pairwise comparisons: the
events are put together and we assign the final CNV for a gene or large-scale event
if the CNV calls are consistent among at least a certain number of pairwise scale
comparisons. CaSpER harmonizes and summarizes the CNV calls by dividing
them into large-scale, gene-based, and segment-based CNV calls as
described below:

1. Large-Scale CNV Summarization. For each pairwise comparison of
expression smoothing scale n and BAF shift signal smoothing scale m,

CNVðmÞðXðnÞ
i Þ, the union of the deletion (and amplification) events in every

chromosome arm are computed. Next, from the union, we identify the
chromosome arms for which the deletions (or amplification) are affecting more
than one-third of the chromosomal arm48. This way we assign a large-scale CNV
call to every chromosome arm for each of the N ×M pairwise scale comparisons.
Each chromosome arm gets assigned N ×M large-scale CNV calls.

Next, for each chromosome arm, we ask whether the large-scale CNV call is
consistent among at least γ of the N ×M large-scale CNV calls. If there is
consistency in more than γ comparisons, we assign the final large-scale CNV call of
the chromosome arm as the consistent call. If there is no consistency, we assign a
neutral CNV call for the chromosome arm. This procedure is repeated for every
sample (or cell). We summarize the consistency-based large-scale CNV calls in a
matrix where rows are the samples (or cells) and columns are the chromosome
arms. The matrix entry of 0 corresponds to no alteration, 1 corresponds to
amplification and −1 corresponds to deletion.

2. Gene-Based Summarization. Similar to the large-scale summarization, we
generate a matrix where rows are the samples (cells) and columns are the genes.
The matrix entry of 0 corresponds to no alteration, 1 corresponds to amplification
and −1 corresponds to deletion. If an alteration is consistent in more than γscale
comparisons (out of N ×M comparisons), we report that alteration event for that
sample.

3. Segment-Based Summarization. The segments-based summarization aims at
generating a final set of CNV calls for a final set of segments that are computed by a
comparison of scales. We first compare the segments from different expression
scales and generate a consistent set of segments. For this, we first identify the final
set of segments. To generate the final set of segments, we first pool the ends of all
the segments, Xð1Þ; ¼ ;XðNÞ from all the scales l to N. We then sort the segment
ends with respect to genomic coordinates, then we generate a new final segments as
the regions between consecutive segment ends (Supplementary Fig. 31). We denote
these final set of segments by Y. Note that there is no scale notation in the final set
of segments since these are identified using segments from all the scales. A
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hypothetical example for detection of Y using segments from three different scales
is shown in (Supplementary Fig. 31).

Note that for any final segment Yj 2 Y, there is exactly one segment in XðnÞ that
intersects with Yj. With this in mind, the next step is the assignment of CNV calls
to the segments in the final segment set. For each segment Yj 2 Y, we assign N ×M

CNV calls using CNVðmÞðXðnÞ
i Þ. For this, we take Yj, identify the N scale-specific

segments, i.e., XðnÞ; n ¼ 1; 2; ::;N , that intersect with it, then pool M CNV calls
from each scale-specific segment. At the end of this procedure, we assign N ×M
CNV calls to each Yj. The final step is assignment of the final CNV call for Yj. This
is performed similar to the consistency-based assignment we used before: For each
Yj, if there are more than γ consistent CNV calls among N ×M CNV calls, we
assign the consistent CNV call to Yj. When there is no consistency among the calls,
we assign a neutral CNV state to Yj.

Selection of γ parameter. γ represents the minimum number of consistent CNV
calls (out of N ×M comparisons of expression scales and BAF scales) while assigning
a final CNV (amp/del/neutral) call to a segment/gene/chromosome arm. To visualize
the effect of changing γ on different datasets, we computed the large-scale and gene-
based event summaries of CNV calls for several datasets and calculated TPR and
FPR using genotyping arrays as the gold standard. We describe TPR and FPR
calculations in “Performance Metrics” in the Methods section. γ parameter tunes the
tradeoff between FPR and TPR rates where low (high) γ implies high (low) TPR and
high (low) FPR. In the manuscript, to balance FPR and TPR rates we used 7 as a γ
threshold. The user can change γ threshold to be more stringent (higher γ) or relaxed
(lower γ) in terms of consistency among the pairwise scale comparisons.

Gaussian mixture models. CaSpER models the allele-based frequencies as a
mixture of Gaussian distributions for identification and classification of genotype
clusters. For example, in a normal chromosomal region with two copies, we expect
to observe three BAF genotype clusters represented as AA, AB, and BB whereas, in
heterozygous deletions, we expect to observe two clusters which can be represented
as A and B.

Let X ¼ x1; x2; ¼ ; xi; ¼ ; xnf g be the allele-based frequency signal vector,
where xi is the signal value at position i. The distribution of every value is specified
by a probability density function through a finite mixture model of G classes:

f xi; zð Þ ¼
XG
k¼l

πkfk xi; θkð Þ; ð10Þ

where z ¼ π1;¼ :;πG�1; θ1;¼ θG

n o
is the parameters of the mixture model and

fk xi; θkð Þ is the kth component density, which assumes to follow Gaussian
distribution fk xi; θkð Þ � N μk; σk

� �
. fπ1; ¼ :;πG�1g is the vector of probabilities,

non-negative values which sum to 1, known as the mixing proportions. Mixing
proportions, π, follows a multinomial distribution.

The model z parameters are estimated by maximizing log-likelihood function
via the EM algorithm. The log-likelihood function is formulated as:

l z; xð Þ ¼
Xn
i¼1

log fk xi; zð Þ: ð11Þ

The number of classes, G, are estimated using the Bayesian Information Criteria
(BIC). The class with the lowest mean value corresponds to alleles without any BAF
shift. We choose the class with second lowest mean value, called ‘class 2’ to identify
the BAF shift threshold. In bulk sequencing data, we set the BAF shift threshold to
mean allele-based frequency signal in ‘class 2’. In scRNA-seq data, we set the BAF
shift threshold to a minimum allele-based frequency signal in ‘class 2’. CaSpER uses
mclust R package for GMM implementation49.

Hidden Markov model. CaSpER uses a modified version of HMMCopy R pack-
age50 for HMM implementation to (1) segment the copy number profile in regions
predicted to be generated by the same copy number event and (2) predict the CNV
event for each segment. In HMM, we use a hierarchical Bayesian model where the
posterior estimates are calculated using an exact likelihood function.

Our HMM model contains 5 CNV states, where the states represent
homozygous deletion, heterozygous deletion, neutral, one-copy gain and multiple-
copy gain. The initial transition matrix is defined as:

1� t t t t t

t 1� t t t t

t t 1� t t t

t t t 1� t t

t t t t 1� t

0
BBBBBB@

1
CCCCCCA
;

where t is equal to 1e−07. While HMM segmentation is performed, the model
performs an expectation–maximization procedure (i.e., Baum–Welch Algorithm)
and iteratively updates the transition probabilities. Consequently, the final
segmentations are computed using the updated transition probabilities that are fit
to the data. The final transition matrices are not symmetric (unlike initial
matrices). It is also worth noting that the final transition matrix is data dependent
as the EM-step fits the transition matrix to the data.

Emission probabilities are represented by a normal distribution with means and
variance derived from normalized expression data. We believe that using more data
by pooling all the samples would give better initial HMM parameter estimates. For
each dataset, we estimate the mean values by pooling all the samples in that dataset.
For each dataset, mean values are calculated using sample quantiles corresponding
to 0.01 (homo-del), 0.05 (het-del), 0.5 (neutral), 0.95 (amp), 0.99 (high-amp)
probabilities. In the segmentation process, the transition and emission parameters
are updated by the HMM model in the segmentation to ensure that the emission
probabilities (and transitions) of the CNV states are tuned exactly to the data.

Single-cell GBM data initial emission probability normal distribution mean
values are much different than bulk RNA-seq datasets (Supplementary Fig. 32).
Moreover, the accuracy of CNV calls increases with the number of cells
(Supplementary Note 11, Supplementary Figs. 33–36).

Assessing the performance of CaSpER on CNVs of varying clonality. In gen-
eral, we denote the clonality of a deletion by c, where

c ¼ Number of cells with deletion
Total number of cells

; ð12Þ

and c denotes the fraction of cells that harbor the deletion.
To study how clonality impacts the detected CNVs, we simulated gene

expression levels of scRNA-seq experiments by controlled introduction of deletions
into a certain set of target regions. To introduce deletions into the datasets, we first
selected target regions where we are sure that there no CNV events. Next, we
sampled the expression signals from the regions with known deletions and replaced
the expression levels of the target regions with these “deleted” expression signals in
P × c cells where P denotes the total number of cells. This way, we simulate deleted
expression signals at the target regions on the c cells that harbor deletions. After the
expression signals are simulated, we added a sample of P × (1–c) normal cells into
the population. These cells represent the fraction of cells that do not harbor the
deletion. We finally created the “bulk” expression signal by taking the averages
among the P × (1 – c) normal and P × c simulated expression signals. This
procedure generates a simulated bulk expression signal data on P cells.

Next, we simulated the BAF shift signal in the target regions. This is
accomplished by using the following formulation:

BAFshift target deletionð Þ ¼ P ´ c ´ 1þ P ´ 1� cð Þ ´ 1
P ´ c ´ 1þ P ´ 1� cð Þ ´ 2� 0:5; ð13Þ

where c denotes the clonal fraction of the deletion. The numerator in the above
formula computes the total amount of major allele at the deletion site: 1 copy that
is originating from the cells with deletion (P × c cells) and the 1 copy that is
originating from the cells that do not have the deletion (P × (1 – c) cells). The
denominator computes the total DNA from all the cells at the deletion site: 1 copy
originating from the cells that harbor the deletion and the 2 total copies that are
originating from the cells that do not harbor the deletion. The shift computed using
the above formula is simply added to the existing BAF shift signal in the target
regions.

Thus, we modified both the expression signal (using expression signals of
regions with known deletions) and the BAF shift signal at the target regions. In the
simulations, we also divided the segments with respect to lengths 1 mb, 10 mb, and
100 mb.

Calculating mutual-exclusive and co-occurring CNV events. We calculated the
distance between cells using the Jaccard distance metric. We next used this distance
matrix to build the phylogenetic tree of the CNV events. A phylogenetic tree is
constructed using the Fitch–Margoliash method implemented in the Rfitch R
package. We finally plotted the tree using phydataplot function in ape R package.
The co-occurrence and mutual exclusivity of CNV events were assessed using one-
sided Fisher’s exact test.

Identifying gene expression signatures and enrichment analysis. Differentially
expressed genes were identified using an empirical Bayesian method ebayes
implemented in limma R package51. Genes were considered differentially expressed
with adjusted P-value < 0.05. GO term enrichment analysis was performed using
the GOStats R package52.

Genotyping data. TCGA-GBM genotyping data were downloaded using TCGA-
Biolinks R package42. CNV segments with a mean log ratio value > 0.3 were defined
as amplification whereas segments with mean log ratio value < 0.3 were defined as
deletion. Large-scale chromosomal deletion or amplification was defined as
affecting more than one-third of the chromosomal arm, whereas focal event
deletion or amplification was defined as affecting less than one-third and more
than one-tenth of the chromosomal arm with accompanying log ratio of signal
intensities <−0.1 or >0.1 and BAFs at heterozygous sites deviating from 0.5 by at
least 0.05 units.

In meningioma genotyping data, CNVs were detected by comparing the
normalized signal intensity between a tumor and matched blood or a tumor and
the average of all blood samples26. Segmentation was performed on log intensity
(R) ratios using DNACopy algorithm53.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13779-x

14 NATURE COMMUNICATIONS |           (2020) 11:89 | https://doi.org/10.1038/s41467-019-13779-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Performance assessment. We assessed the performance of CaSpER by comparing
the CNV calls identified from RNA-seq with genotyping data. Thus, the TPR is the
percentage of large-scale or gene-level CNV events which are correctly identified by
CaSpER, while the FPR is the percentage of falsely rejected true CNV events. To
clarify these definitions, we summarized them in the Supplementary Table 3.

Based on these definitions, the TPR and the FPR are calculated as: TPR= TP/
(TP+ FN), FPR= FP/FP+ TN.

When computing the accuracy at the segment level, we compare the segments
from each method with the segments in the ground truth dataset, i.e. genotyping
array segments. We illustrate the false-negative, false-positive, and true-positive
portions of the segments as in Supplementary Fig. 37. In this figure, X represents
the true CNV segment (from genotyping array) and Y represents the detected
segment by CaSpER.

1. FN denotes the length of the true segment that does not overlap with the
detected segment.

2. TP denotes the length of the detected segment that overlaps with the true
segment.

3. FP denotes the length of the detected segment that does not overlap with the
true segment.

In order to compute the accuracy metrics over all the segments, we take the
weighted average of the TP, FP, and FN computed for each segment by appropriate
length. Let us assume that the final CaSPeR CNV segments are denoted by Yi :
i ¼ 1; ¼ ;N and the genotyping array CNV segments are denoted by
Xj : j ¼ 1; ¼ ;M. We define Precision (or PPV) using the following fractions:

PPV ðprecisionÞ ¼
P

i TPðYiÞP
i Yij j ; ð14Þ

FPR ¼
P

i FPðYiÞP
i Yij j ; ð15Þ

TPRðsensitivityÞ ¼
P

i TPðYiÞP
j Xj

���
���

; ð16Þ

FNR ¼
P

i FNðYiÞP
j Xj

���
���

: ð17Þ

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the data used in this study are from previously published studies. Meningioma data
are downloaded from GEO (accession: GSE85133). Single-cell GBM data are downloaded
from GEO (accession: GSE57872 (https://www.ncbi.nlm.nih.gov/sra?term=SRP042161)).
TCGA-GBM and TCGA-BRCA RNA-seq data are downloaded from TCGA data portal
(https://portal.gdc.cancer.gov/). DR-Seq study is downloaded from GEO (accession:
GSE62952 (https://www.ncbi.nlm.nih.gov/sra?term=SRP049500)). 10x mouse scRNA-
seq is downloaded from GEO (accession: GSE121861 (https://www.ncbi.nlm.nih.gov/sra?
term=SRP166967)). scRNA-seq data for the MM cells are downloaded from GEO
(accession: GSE110499 (https://www.ncbi.nlm.nih.gov/sra?term=SRP132719)).

Code availability
CaSpER source code and documentation are publicly available at https://github.com/
akdess/CaSpER.
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