
Au modified PrFeO3 with
hollow tubular structure can be
efficient sensing material for
H2S detection

Heng Zhang1, Jing Xiao1*, Jun Chen1, Lian Zhang1, Yi Zhang1

and Pan Jin2,3*
1College of Physics and Electronic Engineering, Taishan University, Taian, Shandong, China, 2Health
Science Center, Yangtze University, Jingzhou, Hubei, China, 3Collaborative Innovation Centre of
Regenerative Medicine and Medical BioResource Development and Application Co-constructed by
the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China

The H2S concentration in exhaled breath increasesmarginally with the progress

of periodontal disease, and H2S is considered to be one of the most important

gases related to meat and seafood decomposition; however, the concentration

of H2S is low and difficult to detect in such scenarios. In this study, Au–PrFeO3

nanocrystalline powders with high specific surface areas and porosities were

prepared using an electrospinning method. Our experimental results show that

loading Au on the material provides an effective way to increase its gas

sensitivity. Au doping can decrease the material’s resistance by adjusting its

energy band, allowing more oxygen ions to be adsorbed onto the material’s

surface due to a spillover effect. Compared with pure PrFeO3, the response of

3 wt% Au–PrFeO3 is improved by more than 10 times, and the response time is

more than 10 s shorter. In addition, the concentration of H2S due to the

decomposition of shrimp was detected using the designed gas sensor,

where the error was less than 15%, compared with that obtained using a

GC-MS method. This study fully demonstrates the potential of Au–PrFeO3

for H2S concentration detection.

KEYWORDS

gas sensor, Au-PrFeO3, H2S, moss, gas-sensing

Introduction

H2S is a colorless, highly toxic, and acidic gas. It has a particular rotten egg smell, and

even low concentrations of H2S can impair the human sense of smell. In high

concentrations, it has no smell (as high concentrations paralyze the olfactory nerve).

In addition, H2S is flammable and is typically considered a dangerous gas (Ethiraj et al.,

2015; Wu et al., 2019; Kumar et al., 2021; Liu et al., 2021; Priya et al., 2021; Zheng et al.,

2021; Zuo et al., 2021; Li et al., 2022a). H2S gas is released during the breakdown of food,

and is also responsible for the bad breath caused by periodontitis (Chen et al., 2017; Wu

et al., 2019; Hsu et al., 2021; Lopez et al., 2021): about 0.195 ppm H2S can be detected in

the exhaled breath of periodontitis patients, while 0.105 ppm is a typical concentration in
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the exhaled breath of healthy individuals (Yaegaki and Sanada,

1992). Using the nose as a means of detecting H2S can be fatal.

Therefore, the timely detection of very low concentrations of H2S

gas is very necessary and important.

In recent years, the use of MOS (metal oxide semiconductor)

gas sensors to detect the concentration of target gases has become

increasingly popular, such as smoke sensors in hotels, natural gas

alarms in homes, and so on. It has been reported that some

MOSs, as gas-sensing materials, show excellent response to gases,

such as LaFeO3 (Xiangfeng and Siciliano, 2003; Song et al., 2014;

Jaouali et al., 2018; Ma et al., 2021), SmFeO3 (Tomoda et al., 2004;

Hosoya et al., 2005; Huang et al., 2018; Han et al., 2020), PrFeO3

(Ma et al., 2018), HoFeO3 (Song et al., 2020), NdFeO3 (Sheng

et al., 2022), YCoO3 (Addabbo et al., 2015), BaSnO3 (Cerdà et al.,

2002), ZnSnO3 (Yin et al., 2020), and YMnO3 (Balamurugan and

Lee, 2015). For H2S, commonly used gas-sensing materials

include Pt–ZnO (Zhou et al., 2022), Pd–ZnO (Bae et al.,

2022), CuO/SnO2 (Fan et al., 2019), Pt–WO3 (Yao et al.,

2022), WO3 (Wang et al., 2018; Akamatsu et al., 2021; Li

et al., 2022b), Pt–Fe2O3 (Guo et al., 2018), CuO/CuFe2O4(Lim

et al., 2021), Ag–SnO2 (Senapati and Sahu, 2020), LaFeO3

(Xiangfeng and Siciliano, 2003), YMnO3 (Balamurugan and

Lee, 2015), and Sn–NiO (Gao et al., 2017), among others.

MOSs—especially ABO3 perovskite materials—have the

unique advantages of large specific surface area and abundant

active sites, which can promote the diffusion path and increase

the adsorption of target gas molecules, thus enhancing the

sensing ability. There are other ways to detect a target gas,

such as Tamm plasmon resonance (Mehaney et al., 2021) and

photonic crystal (Ahmed et al., 2021; Ameen et al., 2021;

Alrowaili et al., 2022). In particular, these two methods have

high accuracy in detecting the gases in exhaled breath, and have

good development prospect.

In recent years, sensors based on Graphene and MWCNT

have been widely reported, especially for gases in exhaled breath

or aromatic gases (Behi et al., 2020, 2022; Thamri et al., 2021).

Such sensors display high response and selectivity to target gases;

moreover, they have good development prospect due to their low

preparation costs.

The aim of this study is to obtain a gas-sensing material with

high response, high selectivity, low detection limit, and high

long-term stability. PrFeO3 with different Au doping levels was

synthesized using an electrospinning method and sintered at

800°C. It has high specific surface area and high porosity, which

are two important factors for improving the gas response of gas-

sensing materials. Compared with PrFeO3, Au–PrFeO3 shows a

higher response and high selectivity for H2S. In addition, Au

doping, as a catalyst, can greatly enhance the surface activity of

gas-sensing materials, thus shortening the response-recovery

time. Finally, the H2S concentration in the air around shrimp

is detected using the gas sensor designed in this study, which was

compared with the data obtained by GC-MS, showing that the

error was within 15%. The experimental results prove that Au

doping can greatly improve the response of PrFeO3 to H2S gas,

providing a feasible and effective way to detect H2S gas using a

gas sensor.

Materials and methods

Preparation of nanocrystalline Au–PrFeO3

First, samarium oxide, ferric nitrate, palladium chloride,

DMF (99.5%), PVP (Mw = 1,300,000), C2H5OH (99.7%), and

HNO3 in a stoichiometric ratio were weighed and mixed in

deionized water (Figure 1A). The mixed solution was heated in

the water bath at 60°C with magnetic stirring until it became

transparent, in order to obtain the electrospinning precursor

solution (Figure 1B). Then, the as-prepared precursor solution

was transferred into a 10 mL syringe. The voltage was maintained

at 12 kV during the spinning process, the distance between

needle tip and the collector was about 20 cm, and the

injection rate of the syringe was 0.4 mL/h (Figure 1C). The

obtained nanofibers were sintered at 800°C for 6 h in a muffle

furnace (Figure 1D). Finally, the X (0, 1, 3, 5) wt% Au–PrFeO3

powder was obtained.

Fabrication and measurement of sensor

The Au–PrFeO3 powder was mixed with deionized

water to make a paste, which was then placed on gas-

sensing film (Figure 1E). The as-prepared plane electrode

plate was aged on an aging platform for 48 h, in order to dry

it out. At this time, a qualified sensor was ready. The front

side of the electrode plate has two electrodes, which are used

to detect the resistance value of the gas-sensing material. On

the back of electrode plate is a heating plate, which enables

the gas-sensing material to reach a higher operating

temperature.

Ready-made sensor

The gas sensor structure diagram is shown in Figure 1E. The

Au–PrFeO3 is coated onto the sensing film. The VC is the supply

voltage, which was kept constant at 5 V. The Rg is calculated by

the following formula:

Rg � U

I
� Vl/Rl (1)

The gas-sensing response, S, is defined as Rg/Ra, where Ra is

the resistance of the sensor in air and Rg is that when in the

tested gas. The response time is defined as the time taken to

attain 90% of the maximum value in ascending phase, while the

recovery time is the time taken to regain 10% of the base value
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in the descent phase. For the experimental environment, the RH

was 20% and the temperature was 20°C.

Gas concentration control

The whole experiment was carried out in a closed glass

chamber, into which H2S gas was injected with a microinjector.

The injection amount of H2S liquid was calculated as follows

(Deng et al., 2013):

Vliquid � VsCgasM

22.4ρd
(2)

where Vliquid is the volume of the injected H2S liquid; Vs is the

volume of the test chamber; Cgas (ppm) is the concentration of

the target gas; and M, ρ, and d are the molecular weight,

density, and purity of the injected liquid, respectively. When a

gas with PPM concentration is obtained, the gas with PPB

concentration can be obtained by diluting it ten times using a

microinjector.

Results

Material characterization

Figure 2A shows the X-ray diffraction analysis (XRD;

Bruker D8 ADVANCE with the CuKα amount of 1.5405 Å at

40 kV and 40 mA) results of X (0, 1, 3, 5) wt% Au–PrFeO3.

Compared with the standard card (PDF card: 37-1493), it

shows a single-phase. The average particle size can be

calculated using the Scherrer method. The Scherrer

equation is as follows:

D � kλ

βcosθ
(3)

where λ is the X-ray wavelength, β is the integral width of

diffraction peaks, and θ is the Bragg diffraction angle. The

average particle size of 3 wt% Au–PrFeO3 is about 73.8 nm.

Due to the low Au doping amount, its characteristic peak

could not be reflected in the XRD pattern; therefore, X-ray

Photoelectron Spectroscopy (XPS; Thermo Scientific™
K-Alpha™

+ spectrometer equipped with a monochromatic Al

KαX-ray source at 1486.6 eV operating at 100 W) was performed

on 3 wt% Au–PrFeO3 to confirm the presence of Au. As can be

seen from Figure 2B, the Au element was doped in the material.

Figures 2C–F show the fine spectra obtained by XPS analysis for

each element. In Figure 2C, the peaks located at about 84.0 and

88.3 eV can be assigned to Au 4f7/2 and Au 4f5/2; in Figure 2D, the

peaks located at about 932.2 and 953.1 eV can be assigned to Pr

3d5 and 3d3; in Figure 2E, the peaks located at about 708.6 and

724.1 eV can be assigned to 2p3/2 and 2p1/2 of Fe3+; and, in

Figure 2F, the peaks located at about 528.6 and 530.8 eV can be

assigned to lattice O1s and adsorbed O1s.

Figures 3A,B shows the Scanning ElectronMicroscope (SEM;

Japan HITACHI SU8010, 8.0 kV) images of 3 wt% Au–PrFeO3

under different magnifications (PrFeO3 was synthesized by a sol-

gel method and sintered at 800°C; Supplementary Figure S1). The

FIGURE 1
(A–D) The flow chart of Au-PrFeO3 preparation; (E) The gas sensor structure diagram.
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pure PrFeO3 presented a common perovskite structure, while

3 wt% Au–PrFeO3 presented a nanotube-like microstructure. In

the material preparation stage, after sintering, the surface of the

material becomes rough and the nanotubes become hollow as the

PVP decomposes at high temperature.

In order to understand which microstructure provides

more favorable properties to the gas-sensing material, it is

necessary to figure out which structure has higher specific

surface area and porosity. The specific surface area and

porosity of the 3 wt% Au–PrFeO3 hollow nanofibers were

further analyzed by nitrogen adsorption–desorption analysis.

Figure 3C shows the BET curves for 3 wt% Au–PrFeO3 and

the corresponding Barrett–Joyner–Halenda (BJH) pore size

distribution (inset). The specific surface area of 3 wt%

Au–PrFeO3 was 23.67 m2/g and the average pore size was

10.2 nm. The specific surface areas of PrFeO3 with different

amounts of Au element doping are shown in Figure 3D. It can

be seen that, when the doping amount of Au element was 3 wt

%, the composite powder presented the largest specific

surface area. This occurred as Au doping can inhibit the

growth of MOS grains (the smaller the grain size, the larger

the specific surface area); however, when the Au doping

amount is too high, the particles will appear in a small

range of agglomeration, and the specific surface area of

the material will decreased. Considering the sensing

properties of materials, the specific surface area is an

important factor. A high specific surface area can provide

more adsorption sites, which can enhance the reactions

between the sensing material and gas molecules, leading to

a high response to the test gas.

Gas sensing performance

Figure 4A and Supplementary Figure S2 show the response

curves of PrFeO3 with different amount of Au doping to

1 ppm H2S at various operating temperatures. For all samples,

the highest responses were obtained at 120°C. The highest

responses to 1 ppm H2S were 6.93 (0 wt% Au), 38.16 (1 wt%

Au), 72.86 (3 wt% Au), and 56.29 (5 wt% Au). It can be seen that

the response was more than 10 times higher when using the best

Au-doped sample, compared with the pure sample. Moreover,

Table 1 shows the H2S sensing properties of some typical gas-

sensing materials for reference. By comparison, 3 wt%

Au–PrFeO3 exhibited an extremely high response value while

ensuring a short response–recovery time.

The relationship between the material’s sensitivity and the

gas concentration is very important, and a good fitting

relationship can be used to predict the response value at a given

gas concentration. Figure 4B and Supplementary Figure S3 show

the relationship between the response of Au–PrFeO3 and multiple

H2S concentrations. It can be seen that, for both undoped and

Au–dopedPrFeO3, the response had a good linear relationship with

the gas concentration, with all R2 values greater than 96%.

FIGURE 2
(A) The XRD pattern of X (0–5) wt% Au-PrFeO3; (B) The XPS survey of 3 wt% Au-PrFeO3; (C–F) The fine spectra of XPS analysis for each element
(Au, Pr, Fe, O).
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Additionally, the response values of Au–doped PrFeO3 to H2S are

given in Table 2. It can be seen that the detection limit of pure

PrFeO3 was 50 ppb; meanwhile, after Au doping, the Au–PrFeO3

could detect a much lower concentration (10 ppb) of H2S.

Repeatability is another important property that determines

whether a gas-sensing material is excellent or not. For

Au–PrFeO3, the repeatability of responses to different

concentrations of H2S gas are shown in Figures 5A–C and

FIGURE 3
(A,B) The SEM of 3 wt% Au-PrFeO3; (C) N2 adsorption–desorption isotherms and pore size distributions (the inset) for Au-PrFeO3

nanocomposite; (D) The surface area of PrFeO3 with different amount of Au doping.

FIGURE 4
(A) The response of PrFeO3 with Au doping; (B) The relationship between the response of Au-PrFeO3 and multiple H2S concentration.
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Supplementary Figure S4. The repeated processes were carried

out as follows: when the resistance value of the gas-sensing

material had stabilized, the H2S gas was injected into the

reaction chamber, and the resistance of the material increased

immediately. After a period of time, the resistance stabilized,

following which the H2S gas is removed and the resistance of the

material decreased immediately, restoring it to the initial state. It

can be seen that, for H2S gas at different concentrations, the

resistance of the gas-sensing material could be restored to the

initial value every time after the H2S gas was removed, indicating

that the material has excellent repeatability. Additionally, the

response of all samples changed upon exposure to 1 ppm H2S

gas, as shown in Figures 5D–F. It can be seen that the gas

response of samples had no obvious change after a 3-cycle

response–recovery test, indicating the high operating stability

of the designed Au–PrFeO3 sensor. Additionally, the gas-sensing

reproducibility of Au-PrFeO3 is about 38.16 ± 4% (1 wt%),

72.86 ± 2% (3 wt%), 56.29 ± 3.6% (5 wt%).

The response–recovery time of all samples differed at

different operating temperatures, indicating that the operating

temperature affects the chemical reaction on the material’s

surface. The response–recovery times of all samples are shown

in Supplementary Table S1, Figures 5G–I, and Supplementary

Figure S5. It can be seen that the response–recovery time

increased with the operating temperature up to 120°C; then,

after 120°C, the response–recovery time decreased with any

further increase in the operating temperature. This may be

due to the fact that, before the optimum operating

temperature, the adsorption rate of gas molecules is higher

than the desorption rate, and the number of oxygen ions and

H2S gas molecules adsorbed on the material’s surface are

increased, leading to an increased reaction time. With an

increase in the operating temperature, the adsorption and

desorption rates are balanced at the optimum operating

temperature, and the number of H2S gas molecules and

adsorbed oxygen ions on the material’s surface reach a

maximum. At this operating temperature, the reaction time

also reaches its maximum. With a further increase in

operating temperature, the desorption rate of gas molecules is

higher than the adsorption rate, the reaction reactants become

less, and the reaction time is shortened. In addition, Au doping

can increase the surface activity of the material and improve the

reaction rate; therefore, the response–recovery time of

Au–PrFeO3 was shorter than that of pure PrFeO3.

In practical application, it is very common to detect a certain

gas in a mixture, such as H2S gas in an individual’s exhaled

breath. Therefore, the selectivity of a gas-sensing material to a

certain gas determines its practical application value. The

selectivity comparison of Au–PrFeO3 to 1 ppm H2S and

several other common gases in a person’s exhaled breath is

shown in Figures 6A–C and Supplementary Figure S6. It can

be seen that, compared with other gases, Au–PrFeO3 presented

high selectivity for H2S gas. In particular, for N2, O2, NO, CO2,

CO, and other common gases present in exhaled breath, the

response was negligible, such that the H2S in the exhaled breath

can be detected more accurately.

The relative humidity (RH) in the environment is also a

factor that cannot be ignored in the application of gas sensors.

Figures 7A and Supplementary Figure S7 show the responses of

Au–PrFeO3 to 1 ppm H2S with varying RH. It can be seen that

the response decreased with increasing RH: before 50% RH, the

response was little affected by it; however, above 50% RH, the

TABLE 1 The H2S sensing performance of materials in the literature and this work.

Materials T (°C) S (ppm) Tres/Trec (s) Detection limit (ppm) Ref

rGO/WO3 300 22.9 (100) 23/75 1 Mehta et al. (2021)

Fe2O3/MoSe2 25 42.5 (10) 50/53 1 Pan et al. (2021)

WO3/Bi2W2O9 92 84.18 (100) 2/582 0.01 Zhang et al. (2020)

CuO/WO3-x 99 171.5 (10) 45/60 0.1 Peng et al. (2020)

Pt–Co3O4@NiO 200 250.0 (100) 213/135 20 Wang et al. (2021)

Pt–WO3 200 1638.2 (10) 42/37 0.005 Yao et al. (2022)

3 wt% Au–PrFeO3 120 72.86 (1) 28/18 0.01 This work

TABLE 2 The response of Au–PrFeO3 to H2S gas.

Con (ppm) Doping amount 0.01 0.02 0.05 0.1 0.2 0.5 1 Detection limit (ppm)

0 wt% 1.21 1.62 2.38 4.06 6.93 0.05

1 wt% 1.18 1.58 2.94 5.45 9.93 20.85 38.16 0.01

3 wt% 1.26 2.43 4.78 9.32 17.9 39.38 72.86 0.01

5 wt% 1.21 1.98 3.68 7.56 13.56 30.59 56.29 0.01
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responses decreased sharply. This means that the gas sensor in

this study can be used in a low-RH environment without

considering the influence of RH. This will greatly expand its

practical application field. Figures 7B and Supplementary Figure

S8 show the resistance change of Au–PrFeO3 with RH. For

Au–PrFeO3, the resistance decreased with RH, but the

proportion of decrease differed. In the 20–90% RH range, the

proportion of decreases were 53.21% (0 wt% Au), 48.6% (1 wt%

Au), 41.8% (3 wt% Au), and 47.09% (5 wt% Au). Thus, the

resistance of 3 wt% Au–PrFeO3 presented the highest RH

adaptability.

Long-term stability is another important property for gas-

sensing materials. The higher the long-term stability, the longer

the replacement cycle of the gas-sensing material and, so, the

more economic and energy advantages it has. Figures 7C–F show

the long-term stability of Au–PrFeO3 under different RH over

30 days. The experimental data were obtained every 2 days. It can

be seen that all of the responses decreased slightly with time, but

the proportion of decrease was lowest when the sensor was kept

at under 20% RH. The proportions of decrease when the sensor

was kept at under 20% RHwere 34.9% (0 wt% Au), 13.3% (1 wt%

Au), 3.7% (3 wt% Au), and 5.7% (5 wt% Au). It can be seen that

the long-term stability of 3 wt% Au–PrFeO3 was more than

9 times that of pure PrFeO3. Therefore,Au-doped PrFeO3

demonstrated advantages, in terms of long-term stability.

Other types of sensors, such as MOX (Pashami et al., 2012; Li

FIGURE 5
(A–C) The repeatability of responses of PrFeO3 with Au doping to different concentration of H2S gas; (D–F); The repeatability of responses of
PrFeO3 with Au doping to 1 ppm H2S gas; (G–I) The response-recovery time of Au-PrFeO3 to 1 ppm H2S.
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et al., 2021) and MWCNT (Pistone et al., 2013; Barthwal and

Singh, 2020) have been shown to have good stability under high

RH environments. However, MOS, MOX, and MWCNT gas

sensors are affected by RH in practical applications; therefore,

improving their RH adaptability is a keyway to broaden their

application field.

Sensing mechanism analysis

Figure 8 shows the reaction mechanism for the experiment

conducted in this work. At room temperature (20°C), for a p-type

semiconductor, the main carrier of Au–PrFeO3 is the hole (h•;

Figure 8A). According to Kröger–Vink defect notation, the holes

FIGURE 6
(A–C) The selectivity comparison of Au-PrFeO3 to 1 ppm H2S and several other common gases.

FIGURE 7
(A) The response changing of Au-PrFeO3 with RH; (B) The resistance changing of Au-PrFeO3 with RH; (C–F) The long-term stability of
responses of Au-PrFeO3 under different RH.
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are mainly produced by the ionization of [Vx
Pr], the reaction may

like this:

Vx
Pr → V′ ′ ′

Pr +3h• (4)

Before Au doping, few oxygen molecules capture the free

electrons from the material, resulting in the formation of oxygen

ions on thematerial’s surface and few holes are created in this process

at the same time. As the work function of Au is larger than that of

PrFeO3, electrons will transfer from PrFeO3 to the surrounding Au

nanoparticles after Au doping, resulting in an increase in the number

of holes in PrFeO3 (Figure 8B). This reaction may look like:

O2 + e− →O−
2(ads) + h+ (5)

O−
2(ads) + e− → 2O−(ads) + h+ (6)

where ads denote the state where oxygen is adsorbed on the

material surface.

In order to verify this theoretical assumption, the resistances

of pure PrFeO3 and 3 wt% Au–PrFeO3 were tested, and the

results are shown in Figure 8C. It can be seen that the resistance

of 3 wt% Au–PrFeO3 was lower than that of PrFeO3 at any

operating temperature, consistent with the above theoretical

assumption.

When the H2S gas molecule is introduced, it will be adsorbed

onto the surface of the PrFeO3 to react with the oxygen ions

(Figure 8D). The adsorption and desorption on the surface of

Au–PrFeO3 of H2S gas molecules exist simultaneously. The rates

of adsorption and desorption increase with the operating

temperature, where the rate of adsorption is greater than the

rate of desorption before the operating temperature reaches the

optimum temperature. Therefore, the count of adsorbed H2S

molecules on the surface of the material increases, and the

reaction between H2S molecules and oxygen ions is more

intense, resulting in an increased response. When the

operating temperature exceeds the optimum temperature, the

rate of adsorption of Au–PrFeO3 with respect to H2S molecules is

lower than the rate of desorption and the intensity of the reaction

between H2S molecule and oxygen ions is reduced, causing the

response to decrease. Furthermore, at the optimum temperature,

as the concentration of H2S gas molecule increases, the number

of H2S molecules adsorbed on the surface of the Au–PrFeO3 will

increase, causing the response to increase (Figure 8E). However,

the number of free electrons on the surface of the Au–PrFeO3 is

not infinite, and the energy required to make an electronic

transition within Au–PrFeO3 is also increasing. Therefore, the

response (Rg/Ra) increases with the concentration of H2S gas

molecules, but the rate of increase declines. In addition, when the

free electron is released from oxygen ions adsorbed onto the

Au–PrFeO3, the PrFeO3 in the depletion layer width narrowing

caused by Au, resulting in a greater resistance change.

FIGURE 8
The reaction mechanism of the whole experiment in this work. (A) The hole is the main carriers in Au-PrFeO3; (B) At high operating
temperatures, the oxygen molecules capture electrons from the surface of the Au-PrFeO3; (C) The resistance changing of Au-PrFeO3 at any
operating temperature; (D) At high operating temperatures, the H2S gas molecules react with oxygen ions on the surface of the Au-PrFeO3; (E) At
high operating temperatures, the response increase with the concentration of H2S gas molecules.
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The reaction between H2S molecules and oxygen ions may as

follows:

2H2S + 3O−
2 (ad)→ 2SO2 + 2H2O + 3e− (7)
e− + h+ → null (8)

Additionally, it is well-known that the oxygen in air can be

adsorbed onto the surface of semiconductor metal oxides to

become oxygen ions, for which Au is a good catalyst. In this work,

with the assistance of Au, oxygen molecules can more easily be

adsorbed onto the surface of PrFeO3, due to the spillover effect

(Kung et al., 2007; Wang et al., 2013). For this reason, more

oxygen gets adsorbed and captures free electrons to form oxygen

ionic species (Liu et al., 2011). This process increases both the

quantity of adsorbed oxygen and the molecule–ion conversion

rate, resulting in a high gas response (Wang et al., 2012).

Application in the detection of H2S

Accurately and quickly assessing whether meat and seafood

have decomposed or not is very important. H2S is thought to be

one of the most important gases released in the decomposition of

food. The H2S concentration around shrimp with time was

detected using the gas sensor designed in this study and GC-

MS, as shown in Figure 9. Eight shrimps were placed in the

experimental apparatus, each about 10–16 cm in length. It can be

seen that the concentration of H2S increased with death-time,

and the concentration of H2S measured by the designed gas

sensor was greater than that measured by GC-MS at any time,

which indicates that there were other gases in the surrounding air

of the shrimp, which can have an effect on the gas sensor;

however, this effect was very small. By comparing the H2S

concentrations measured by the two methods, the error was

within 10%. The results are provided in Table 3.

Conclusion

In this study, Au-modified PrFeO3 was synthesized using an

electrospinning method. It has a large specific surface area and

high porosity, which improved the response to a certain extent.

Our experimental results demonstrated that the optimum Au

doping content was 3 wt%. The response of 3 wt% Au–PrFeO3 to

H2S was more than 10 times higher, and its long-term stability

was more than 9 times that of pure PrFeO3. Moreover, the

response–recovery time of 3 wt% Au–PrFeO3 was more than

10 s shorter than that of the pure PrFeO3. In addition, the doping

of Au, as a catalyst, greatly improved the RH adaptability and

selectivity of the material. Finally, the designed Au–PrFeO3 was

shown to be very accurate for detecting the concentration of H2S

gas in the air around shrimp, with an error of less than 15%, when

compared to the results obtained by GC-MS. Our experimental

results fully demonstrate the advantages of noble metal doping in

improving the performance of gas-sensing materials and the

great potential of Au–PrFeO3 in H2S detection.
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