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Abstract: The Fc portion of immunoglobulin G (IgG) is a horseshoe-shaped homodimer, which
interacts with various effector proteins, including Fcγ receptors (FcγRs). These interactions are
critically dependent on the pair of N-glycans packed between the two CH2 domains. Fucosylation of
these N-glycans negatively affects human IgG1-FcγRIIIa interaction. The IgG1-Fc crystal structures
mostly exhibit asymmetric quaternary conformations with divergent orientations of CH2 with
respect to CH3. We aimed to provide dynamic views of IgG1-Fc by performing long-timescale
molecular dynamics (MD) simulations, which were experimentally validated by small-angle X-ray
scattering and nuclear magnetic resonance spectroscopy. Our simulation results indicated that
the dynamic conformational ensembles of Fc encompass most of the previously reported crystal
structures determined in both free and complex forms, although the major Fc conformers in solution
exhibited almost symmetric, stouter quaternary structures, unlike the crystal structures. Furthermore,
the MD simulations suggested that the N-glycans restrict the motional freedom of CH2 and endow
quaternary-structure plasticity through multiple intramolecular interaction networks. Moreover,
the fucosylation of these N-glycans restricts the conformational freedom of the proximal tyrosine
residue of functional importance, thereby precluding its interaction with FcγRIIIa. The dynamic views
of Fc will provide opportunities to control the IgG interactions for developing therapeutic antibodies.

Keywords: Immunoglobulin G; Fc; conformational dynamics; molecular dynamics simulation;
small-angle X-ray scattering; nuclear magnetic resonance; N-glycan; core fucosylation

1. Introduction

Antibodies play pivotal roles in the immune system as multifunctional glycoproteins, coupling
between antigen recognition and effector functions, as typified by immunoglobulin G (IgG). The Fab
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region of each IgG binds to its specific antigen while the Fc region interacts with effector proteins,
including the complement component C1q and a series of Fcγ receptors (FcγRs) [1–4]. Further, the Fc
portion of IgG interacts with various proteins other than the effector proteins, such as staphylococcal
protein A and streptococcal protein G [5]. This versatile functionality of IgG and the other classes of
antibodies is believed to be attributed to their structural flexibility and plasticity [6,7].

Antibodies have modular structures, in which the Ig-fold domains as building blocks are connected
through flexible linkers. In IgG, the two identical light chains are each divided into the VL and CL

domains, whilst the two identical heavy chains are each composed of the VH, CH1, CH2, and CH3
domains. The CH1 and CH2 domains are separated by the hinge region, which possesses significant
degrees of freedom for internal flexibility.

Each Ig domain is structurally characterized by nine or seven β strands (in the V and C
domains, respectively) connected by turn or loop segments. The hypervariable loops in the VL

and VH domains are directly involved in antigen binding. In particular, the third hypervariable
loop in the VH domain (H3 loop) is extremely divergent in amino acid sequence and it exhibits
dynamic conformational multiplicity [8–10]. Antigen binding generally renders the hypervariable
loops less mobile. The conformational plasticity of the hypervariable loops is the key property
for the antigen recognition mechanism. Kinetic data have shown that the antibody combining site
undergoes conformational changes upon interacting with the antigen, thereby involving conformational
selection as well as induced-fit processes [11]. Antigen binding often induces non-local conformational
rearrangements of the VL and VH domains, thereby altering their orientation relative to each other
and with respect to the CL and CH1 domains [4,12]. It has been speculated that such allosteric effects
are involved in functional cooperativity between antigen binding and interaction with the effector
proteins [4].

Dynamic views of antibody structures thus offer deep insights into their functional mechanisms.
Dynamic structures of antibodies in solution have recently been characterized by sophisticated
experimental techniques, including nuclear magnetic resonance (NMR) spectroscopy [13,14], solution
scattering [15–19], cryo-electron microscopy [7,20], and high-speed atomic force microscopy [21].
In addition, computational approaches offer powerful tools for providing dynamic views of antibody
structures [22]. These techniques highlight considerable variability in the spatial arrangements of the
two Fab arms with respect to the Fc stem in IgG, which is provided by the conformational freedom of
the hinge region, facilitating IgG’s bivalent binding to antigens with various spatial arrangements,
such as bacterial surfaces.

By contrast to the extensively characterized Fab and hinge dynamics, the dynamic properties of
the IgG-Fc structure in solution remain to be fully understood, although the crystal structures of Fc
exhibit significant conformational variability [23–25]. In addition, the IgG-Fc possesses a conserved
glycosylation site at Asn297 in each CH2 domain, at which a bi-antennary complex-type oligosaccharide
is present with heterogeneity in sequence and conformation [26,27]. This N-glycosylation is critically
important for IgG interactions with the effector proteins and the consequent effector functions [3,28,29].
Deglycosylation of IgG-Fc impairs its binding to C1q and FcγRs. In contrast, the removal of the
core fucose residue from the N-glycan of human IgG1-Fc results in enhancement of its interaction
with FcγRIIIa, thereby dramatically improving the antibody-dependent cell-mediated cytotoxicity
(ADCC) [30–32]. Therefore, in this study, we have attempted to provide dynamic views of the Fc region
of human IgG1 by computational approaches with experimental validation to discuss their functional
significance. In particular, we will shed light on intramolecular interaction networks involving the
N-glycans, providing mechanistic insights into the improved efficacy of the therapeutic antibodies by
the glycan remodeling.
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2. Materials and Methods

2.1. Molecular Dynamics Simulation

The starting structures were built on the basis of the crystal structure Protein Data Bank (PDB)
entry 3AVE, 5IW3, and 2DTS, supplemented with crystallographically unobserved segments in
each structure as follows: In 3AVE and 2DTS, N-terminal segments (T224–E233 in chain A and
T224–G236 in chain B), C-terminal segments (P445–K447), and the terminal galactose residues of the
α1-6Man branches; and in 5IW3, N-terminal segments (T224–L235), C-terminal segments (S444–K447),
and the core fucose residue. The crystallographically unobserved galactose residues of 3AVE and
2DTS were modeled by superposition of their GlcNAc residues of the α1-6Man branches and the
corresponding Gal-β1,4-GlcNAc disaccharide moieties of an sFcγRIIIa-bound Fc crystal structure
(3AY4). The core fucose residues of 5IW3 were modeled by superposition of its reducing terminal
GlcNAc residues and the corresponding Fuc-α1,6-GlcNAc disaccharide moieties of 3AVE. In the
5IW3-based model, E379 and M381 were substituted in silico with aspartate and leucine, respectively,
by using PyMOL (https://www.pymol.org). The AMBER14 [33] program package was used with the
force fields AMBER ff14SB [34] and GLYCAM06 [35] for proteins and glycans, respectively, along with
the TIP3P water model [36]. The IgG1-Fc models derived from 3AVE, 5IW3, and 2DTS were placed
in boxes containing 28,135, 24,372, and 28,243 water molecules, respectively. After the preparation
of the initial conformations, we performed equilibrium simulations for 4 ns with NPT ensemble
with periodic boundary conditions. The system was heated from 5 to 310 K for 100 ps at a constant
pressure of 1 atm. Eight simulations were then performed with different velocities. Each simulation
time period was 400 ns. All production simulations were done at 300 K with the weak-coupling
algorithm in the NPT ensemble. The bonds involving hydrogen atoms were constrained by the SHAKE
algorithm [37]. The electrostatic interactions were treated with the particle mesh Ewald method and
the cutoff distance for the non-bonded interactions was 8.0 Å. The first 80 ns were removed considering
the time needed for the initial structure to reach equilibrium. Molecular dynamics (MD) simulations
for the Fc fragments without the hinge and without the N-glycans were performed using the same
protocol and initial models based on 3AVE (with 19,410 water molecules) and 5IW3 (with 24,551 water
molecules), respectively. Ensemble models were created from 25,600 conformers extracted every 100 ps
from the 320 ns simulation results of the eight production runs. The root mean square fluctuation
(RMSF) for each amino acid Cα atom of IgG1-Fc was calculated from 3,200 conformers extracted from
each of the eight production runs, which were superimposed by the Cα atoms, yielding an average
structure. The RMSF was derived on the average structure.

2.2. Sample Preparation

For the small-angle X-ray scattering (SAXS) measurements, the Fc fragment with core fucosylation
was cleaved from commercially available IgG1 antibodies (Chugai Pharmaceutical, Tokyo, Japan).
For the NMR measurements, the fucosyl Fc fragment was cleaved from IgG1 metabolically labeled
with [CO, α, β, γ, ε1, ε2-13C6; β2, δ1, δ2-2H3; 15N] tyrosine (Taiyo Nippon Sanso, Tokyo, Japan).
The metabolic isotope labeling, proteolytic digestion, and purification of the Fc fragments were
performed according to previously reported protocols [13,38].

2.3. Small-Angle X-Ray Scattering

SAXS experiments were performed using Fc dissolved in 50 mM Tris-HCl, pH.8.0, 150 mM NaCl
at a protein concentration of 5.0 mg/mL with NANOPIX (Rigaku, Tokyo, Japan) at 25 ◦C. X-rays from a
high-brilliance point-focused X-ray generator (MicroMAX-007HF, Rigaku, Tokyo, Japan) were focused
with a confocal mirror (OptiSAXS) and collimated with a confocal multilayer mirror and two pinholes
collimation system with the lower parasitic scattering, “ClearPinhole”, supplied for the X-rays with the
flux of 2.0 × 108 cps at the sample position (high flux mode). The scattered X-rays were detected using
a two-dimensional semiconductor detector (HyPix-6000, Rigaku, Tokyo, Japan) having the spatial

https://www.pymol.org
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resolution of 100 µm. By measuring SAXS profiles in two sample-to-detector distance (SDD) conditions,
1320 mm and 300 mm, the wide Q-range (0.015 Å−1–0.5 Å−1) were covered. In addition, for removal of
unfavorable aggregates from the sample solution, the laboratory-based SEC-SAXS System (LA-SSS) was
employed to measure the SAXS profile in the lower-Q range (0.015 Å−1–0.08 Å−1, SDD = 1320 mm).

The theoretical SAXS profiles were independently calculated from the atomic coordinates of the
ensemble model containing 25,600 conformers. Finally, an MD-derived SAXS profile was obtained
by averaging the 25,600 calculating SAXS profiles. The χ2 values for the-goodness-of-fit is defined
as follows:

χ2 =
1

N − 1

∑
j

 Iexp
(
q j
)
− cIcalc

(
q j
)

σ
(
q j
) 

2

where N, Iexp(q), σ(q), Icalc(q), c is the number of experimental data points, the experimental scattering
intensity, its error, the calculated scattering intensity and the scaling factor, respectively.

2.4. NMR Measurement

Two-dimensional heteronuclear single-quantum correlation nuclear Overhauser effect spectroscopy
(HSQC-NOESY) spectra were acquired for fucosylated IgG1-Fc labeled with [CO, α, β, γ, ε1, ε2-13C6;
β2, δ1, δ2-2H3; 15N] tyrosine and dissolved in 5 mM sodium phosphate buffer, pH 6.0, containing
50 mM NaCl and 10% D2O at a protein concentration of 10 mg/mL by using an AVANCEIII 950
spectrometer (Bruker BioSpin) equipped with a TCI cryogenic probe at 300 K. The NMR spectral data
were recorded at a proton observation frequency of 950.3 MHz with 128(t1) × 2048(t2) complex points
and 512 scans per t1 increment, with a mixing time of 300 ms.

3. Results and Discussion

3.1. Overall Conformation of IgG-Fc

The Fc portion of IgG has a horseshoe-shape, harboring a pair of N-glycans packed between the
two CH2 domains, which consequently make no direct contacts, while the CH3 domains extensively
contact each other (Figure 1a). This domain arrangement renders the CH2 domains more mobile
than the CH3 domains as implicated by the crystallographic data [23–25]. The B factors of the CH2
domains are generally higher than those of the CH3 domains [39]. Moreover, the CH2 domains exhibit
divergent orientations in crystal structures in free and liganded states and in various glycoforms.
Indeed, the great majority of the IgG1-Fc crystal structures deposited in Protein Data Bank (PDB) exhibit
asymmetric quaternary structures even in uncomplexed states, with few exceptions, for example,
5IW3 with a crystallographic two-fold axis. However, these conformational deformations might be,
at least partially, ascribed to non-physiological crystal contacts. Frank et al. have performed a 200 ns
MD simulation of human IgG1-Fc with fully galactosylated glycans and demonstrated that the CH2
domains showed significant degrees of motional freedom [24]. In general, MD simulation results
depend on the calculation protocol, including the initial structure and simulation time as well as the
force field.

We performed long-timescale MD simulations in explicit water, using our determined crystal
structure of human IgG1-Fc (3AVE) [40] as the initial model. We attempt to deal with a major
glycoform of Fc, in which two complex-type N-glycans are mono-galactosylated at the α1-6Man
branch. The crystal structure was supplemented with models of the hinge and the C-terminal regions
along with the non-reducing terminal galactose residues in the α1-6Man branches, because these parts
gave no interpretable electron density in this crystal structure (Figure 1a). From the MD trajectories
(2.56 µs in total for each Fc glycoform), 25,600 conformers were extracted to create an ensemble model
reproducing possible conformational spaces of the Fc glycoproteins.



Antibodies 2019, 8, 39 5 of 13
Antibodies 2018, 7, x FOR PEER REVIEW  5 of 14 

 

 

Figure 1. MD simulation of IgG1-Fc. (a) The starting structure of the MD simulation, based on the 

crystal structure of fucosyl IgG1-Fc (3AVE) supplemented with the hinge (green; T224–E233 in chain 

A and T224–G236 in chain B) and C-terminal (cyan; P445–K447) segments along with the terminal 

galactose residues (magenta) of the α1-6Man branches. The N-glycans are colored blue except for the 

terminal galactose. The intra-chain domain-orientation angle between CH2 and CH3 defined by Cα 

atoms of Y300, M428, and Q362 are shown in chain A. (b) The superposition of 256 structures 

extracted every 100 ns from the MD trajectory. The structures were visualized by PyMOL 

(https://www.pymol.org). (c) The RMSF for each amino-acid Cα atom of IgG1-Fc, which was 

calculated as described in Materials and Methods. White, hinge; light green, CH2; light orange, CH3. 
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Figure 1. MD simulation of IgG1-Fc. (a) The starting structure of the MD simulation, based on the crystal
structure of fucosyl IgG1-Fc (3AVE) supplemented with the hinge (green; T224–E233 in chain A and
T224–G236 in chain B) and C-terminal (cyan; P445–K447) segments along with the terminal galactose
residues (magenta) of the α1-6Man branches. The N-glycans are colored blue except for the terminal
galactose. The intra-chain domain-orientation angle between CH2 and CH3 defined by Cα atoms of
Y300, M428, and Q362 are shown in chain A. (b) The superposition of 256 structures extracted every
100 ns from the MD trajectory. The structures were visualized by PyMOL (https://www.pymol.org).
(c) The RMSF for each amino-acid Cα atom of IgG1-Fc, which was calculated as described in Materials
and Methods. White, hinge; light green, CH2; light orange, CH3.

For experimental validation of the simulation results, we measured SAXS of the Fc region, which
has been applied for the characterization of Fc structures in solution [41–43]. The SAXS profile
computed from the Fc ensemble model was in good agreement with the experimentally obtained
SAXS profile (Figure 2). The MD-derived SAXS profile reproduced the experimental data (χ2 = 6.8)
better than did a profile computed from the crystal structure used for building the initial model
(χ2 = 13.6). The smallest χ2 value, 6.8, was achieved with the ensemble model created from the total
2.56 µs MD simulation, while the χ2 value calculated for each of the eight production runs were
larger (range 7.3–32.2), suggesting that a shorter MD simulation was not enough for exploring the Fc
conformational space.

Although our simulation results confirmed that, besides the hinge and the C-terminal segments,
the CH2 domains exhibit considerable motion in comparison with the CH3 domains (Figure 1b,c),
the major conformers exhibited almost symmetric structures with CH2-CH3 angles (approximately
90 degrees) that were more acute in comparison with that of the uncomplexed Fc crystal structures,
including those used as the initial structures in the simulations (Figure 3). We performed an additional
MD simulation by using a two-fold symmetrical Fc model (based on the crystal structure 5IW3) as
the initial model. Despite the remarkably different starting model, the MD result showed a similar
tendency: The MD-derived conformers still exhibited symmetrical but significantly stouter quaternary
structures (Figure 3). These results were quantitatively consistent with the previously reported MD
simulation of the fully galactosylated Fc [24], suggesting that the Fc packed in crystal lattices is apt to
adopt asymmetric slim quaternary structures as compared with those in solution.

https://www.pymol.org
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Figure 2. SAXS-based experimental validation of the MD-derived ensemble model. SAXS profile of
fucosyl IgG1-Fc (open circle) shown with theoretical profiles computed from the MD-derived ensemble
model (red) and the crystal structure (3AVE) (blue).
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Figure 3. Distribution of intra-chain domain-orientation angles between CH2 and CH3 for the ensemble
models of IgG1-Fc and various crystal structures of IgG1-Fc. The angles between the CH2 and CH3
domains of chain A and chain B were plotted on the X axis and Y axis, respectively, for the ensemble
models derived from MD simulations starting from the initial structures based on (a) asymmetric crystal
structure (3AVE) supplemented with the crystallographically unobserved N- and C-terminal segments,
(b) symmetric crystal structure (5IW3) supplemented with crystallographically unobserved N- and
C-terminal segments, (c) crystallographically observed parts of 3AVE, and (d) 5WI3 supplemented
with the crystallographically unobserved N- and C-terminal segments with deletion of the N-glycans.
In A, B, and C, the N-glycans of each initial structure were modeled to have the core fucose residue and
the terminal galactose residue of the α1-6Man branch. The angles observed in the crystal structures
are represented as circles for uncomplexed Fc structures (red, the starting structures used for the
corresponding MD simulations; black, Fc with native N-glycans; white, Fc with enzymatically trimmed
N-glycans; yellow, aglycosylated Fc), rectangles for complexed Fc structures (white, complex with
sFcγRs; green, complex with other ligands).

The experimentally validated conformational ensembles of IgG1-Fc encompassed most of the
previously reported crystal structures because of the variability of the CH2 domains with respect
to the CH3 domains (Figure 3). The conformational ensemble included the crystal structures of
human IgG1-Fc in complex with Fc-binding proteins such as protein A domains, though they are
minor conformational species. The Cα RMSD was 1.1 Å between the protein A B domain-bound Fc
crystal structure (IL6X) [44] and its most resembling conformer found in the MD-derived ensemble.
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These findings imply that interactions of Fc with these proteins involve conformational selection
mechanisms. However, the asymmetrically deformed Fc structures bound to sFcγRIIa were obviously
far from the MD-derived conformational cluster and very rarely found in the corresponding ensemble
model: The Cα RMSD was 3.2 Å between the sFcγRIIa-bound Fc crystal structure (3RY6) [45] and
its most resembling conformer found in the MD-derived ensemble (excluding the Asn286–Gln295
segments because of inconsistent interpretation of their electron densities). This finding suggested that
induced-fit mechanisms are involved in the binding process.

The two CH2 domains are tethered at their N-termini through the disulfide-linked hinge region
and they bracket the pair of N-linked oligosaccharides. Therefore, it was highly plausible that the
hinge and the glycans critically affect the conformational space of the Fc region. Indeed, the Fc
crystal structures of IgG1-Fc with different glycoforms showed different quaternary conformations [23].
We performed MD simulations of IgG1-Fc without the hinge region and that of IgG1-Fc without the
N-glycans. Elimination of these parts resulted in greater degrees of motional freedom of the CH2
domains with increases in the population of extremely asymmetric quaternary conformations. This is
seemingly inconsistent with a crystal structure of aglycosyl Fc reported by Borrok et al., which adopted
a more closed conformation [41]. However, in that study, they suggested that aglycosyl Fc assumes a
more open CH2 orientation based on their SAXS observation, which was apparently consistent with
our MD simulation results. The asymmetrically distorted quaternary conformation was found in the
previously reported MD simulation of a hinge-truncated Fc [24], which is also qualitatively consistent
with our data.

It has been reported that either disulfide cleavage at the hinge or deglycosylation of Fc impairs the
interactions of IgG1 with the effector proteins [2,3]. In addition to the local conformational perturbations
suggested by NMR studies [14,46,47], the increased mobility of the CH2 domains may negatively
contribute to the affinities of the IgG-Fc for the effector proteins, at least partially, due to the increase in
the conformational entropic penalty upon their binding.

3.2. Intramolecular Interaction Networks of N-Glycans

In general, carbohydrate chains are conformationally dynamic compared to polypeptide chains
and, therefore, yield ambiguous electron densities in the crystal structures of glycoproteins [48,49].
However, this is not true for the N-glycans of IgG-Fc because they are packed between the two CH2
domains and, therefore, are restricted in terms of internal motion, which has been confirmed by the
previous and present MD simulations [24]. Consequently, in many crystal structures, the Fc N-glycans
have been visualized except for the non-reducing terminal galactose residues in the α1-3Man branches,
which are projected to the inner space of the horseshoe-structure and therefore are considerably
mobile [14,28].

The crystal structures indicated that the core part and the α1-6Man branch of the N-glycans make
extensive contacts with the amino acid residues located in the inner surface of the CH2 domain, while
the interactions between the two glycans are quite limited (Figure 4) [28]. The crystallographic data of
the sFcγRIIIa-bound Fc showed rearrangements of the interaction network, creating new contact pairs
with concomitant loss of a number of contact pairs, resulting in the disappearance of the intramolecular
glycan-glycan interactions [40,50]. All the contact pairs between the N-glycan and the CH2 amino
acid residues in both the free and the complexed forms were found in the MD-derived ensemble
model. Moreover, the ensemble model included more contact pairs not only between glycan and
amino acid residues but also between the two glycans, which were not observed in the Fc crystal
structures, demonstrating dynamic behaviors of the N-glycans within the inner space of the Fc. This is
consistent with the previously reported NMR observation for the mobility of the terminal galactose
residue of the α1-6Man branch [27] and its missing electron densities in many crystal structures
exemplified by 3AVE and 2DTS [40]. All these data suggest that the pair of N-glycans not only restrict
motional freedom of the CH2 domains but also endow quaternary structure plasticity through multiple
intramolecular interaction networks. It is conceivable that the intramolecular N-glycan interaction
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networks critically depend on the Fc glycoform. Lee and Im reported MD simulations of human
IgG1-Fc glycoforms exhibiting a series of sequentially truncated high-mannose-type glycans. In this
extreme case, the N-glycans dynamically interconverted between CH2-bound and unbound forms and
the glycan truncation affected the Fc quaternary conformational dynamics [51].
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Figure 4. Intramolecular interaction networks of the IgG1-Fc glycans. A pair of contact residues
between the N-glycan and the polypeptide chain or between the two N-glycans found within 4 Å is
connected by a line segment for the crystal structures of (a) Fc alone (3AVE) and (b) sFcγRIIIa-bound
Fc (5XJE). The terminal galactose residues of α1-6Man branch in 3AVE were modeled as described
in the Materials and Methods. The contact pairs involving either of these galactose residues are
conserved in the crystal structure 5IW3, which gave electron densities of the terminal galactose residues.
(c) Pairs of contact residues found within 4 Å in the ensemble model derived from the MD simulation
are connected by different types of line segments (red for carbohydrate-protein contact and cyan
for carbohydrate-carbohydrate contact) according to incidence as follows: More than 24,000 pairs
(thick solid line), 24,000 to 16,000 pairs (thin solid line), and 16,000 to 8,000 pairs (dashed line).

3.3. Effects of Fc Defucosylation of its Dynamic Conformation and FcγR Interaction

The major forms of IgG1-Fc N-glycans share the core fucose residue, which negatively contributes
to binding to FcγRIIIa, and thereby impairs ADCC activity [30–32]. While our crystallographic data
have indicated that the core fucosylation does not affect the overall conformation of IgG1-Fc, our
NMR data have shown defucosylation-induced microenvironmental changes surrounding this fucose
residue. This is best exemplified by Tyr296, which is crucially involved in the interaction with FcγRs,
including FcγRIIIa [40,52]. We performed a long-timescale MD simulation starting from a model based
on a crystal structure of non-fucosylated IgG1-Fc (2DTS) for comparing the local conformation of
this tyrosine residue between the fucosylated and non-fucosylated glycoforms (Figure 5). In either
of the crystal structures, where free IgG1-Fc in fucosylated or non-fucosylated form was used as the
initial structure in the simulation, the Tyr296 side chain adopts a semi-outward conformation with
χ1 dihedral angles of −96 and −91 degrees, respectively [40]. Remarkably, these conformations were
not the major ones during our MD simulation. In the fucosyl form, the most populated conformer
of the side chain of Tyr296 stays in a “flipped-in” state with a χ1 angle of approximately 80 degrees,
making contacts with the core fucose. This inward conformation has been experimentally confirmed
based on the observation of nuclear Overhauser effect (NOE) connectivities between the core fucose
and the Tyr296 side chain (Figure 5c). By contrast, in the non-fucosyl form, the conformational state of
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this tyrosine is more divergent with a significantly increased outward conformation with a χ1 angle
of approximately 180 degrees. The conformational multiplicity of Tyr296 in the non-fucosyl form
was also indicated by our NMR data. Interestingly, the crystallographic data indicated that Tyr296 is
involved in the interaction with FcγRIIIa in a flipped-out state with a χ1 angle of 189 and 200 degrees
in the fucosylated and non-fucosylated glycoforms, respectively [50,53]. These data indicated that the
Tyr296 side chain is stabilized in the inward conformation through interaction with the core fucose
and, on defucosylation, undergoes a conformational population shift with an increased outward
conformation, which is favorable for FcγRIIIa binding. It is possible that, in the fucosylated IgG1,
the flipping-out of this tyrosine side chain can be a rate-limiting step in its interaction with FcγRIIIa.
This view is consistent with the previously reported kinetic data indicating that the core fucosylation
of IgG1 primarily affects its association phase of FcγRIIIa binding [54].
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Figure 5. Conformational dynamics of the side chain of Tyr296 of IgG1-Fc depending on the core
fucosylation. Distributions of χ1 dihedral angles of Tyr296 in the ensemble models derived from
MD simulations are plotted for (a) fucosylated IgG1-Fc and (b) non-fucosylated IgG1-Fc. The typical
conformational snapshots of derived from the major conformational states (magenta arrows) in the
simulation trajectory are shown along with the crystal structures used for building the starting models
(green arrows; A, 3AVE; B, 2DTS) and those of sFcγRIIIa-bound Fc (cyan arrows; A, 5XJE; B, 3AY4).
(c) 2D HSQC-NOESY spectrum of IgG1-Fc labeled with [CO, α, β, γ, ε1, ε2-13C6; β2, δ1, δ2-2H3;
15N] tyrosine.

4. Conclusions

In this study, the conformational spaces in IgG1-Fc glycoproteins were investigated by performing
long-timescale MD simulations in explicit water with validation by experiments in solution.
The MD-derived conformational ensembles included most of the crystallographic snapshots of
IgG1-Fc thus far reported, whilst its conformational space was restricted by the hinge disulfides
and the Asn297 glycans. We presumed that during the evolutionary process, the freedom of the
Fc quaternary conformation was optimally restricted to strike a balance between the increase in
adaptability to a variety of binding partners and the decrease in a conformational entropic penalty upon
their interactions. From the viewpoint of antibody engineering, the conformational plasticity of Fc can
be targeted to control its interactions with specific binding partners. As in the case of the removal of
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the core fucose, engineering strategies have been developed to control local conformational dynamics
around the specific target binding sites of the Fc region, through amino acid substitutions and/or
N-glycan remodeling [30–32,55,56]. In a complementary approach, a detailed understanding of the
quaternary conformational dynamics of the Fc region, through concerted theoretical and experimental
approaches will open up opportunities for developing novel therapeutic antibodies by allosteric control
of their interactions with effector molecules.
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Abbreviations

ADCC Antibody-dependent cell-mediated cytotoxicity
FcγR Fcγ receptor
Fuc Fucose
Gal Galactose
GlcNAc N- Acetylglucosamine
HSQC Heteronuclear single-quantum correlation
IgG Immunoglobulin G
Man Mannose
MD Molecular dynamics
NMR Nuclear magnetic resonance
NOE Nuclear Overhauser effect
NOESY Nuclear Overhauser effect spectroscopy
PDB Protein Data Bank
RMSD Root mean square deviation
RMSF Root mean square fluctuation
SAXS Small-angle X-ray scattering
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